34
Long-run Economic Growth Part I: Production and Solow’s Growth Model Chris Edmond NYU Stern Spring 2007 1

Lo ng-r u n Econo mi c Gr o wt h P art I: Pro duction a nd ...pages.stern.nyu.edu/~cedmond/ge07pt/LSession2.pdf · C r o ss-coun tr y GD P di ! er ences C oun try G DP p er p er son

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Lo ng-r u n Econo mi c Gr o wt h P art I: Pro duction a nd ...pages.stern.nyu.edu/~cedmond/ge07pt/LSession2.pdf · C r o ss-coun tr y GD P di ! er ences C oun try G DP p er p er son

Long-run Economic Growth

Part I: Production and Solow’s Growth Model

Chris EdmondNYU Stern

Spring 2007

1

Page 2: Lo ng-r u n Econo mi c Gr o wt h P art I: Pro duction a nd ...pages.stern.nyu.edu/~cedmond/ge07pt/LSession2.pdf · C r o ss-coun tr y GD P di ! er ences C oun try G DP p er p er son

Agenda

• Two classes on ‘long-run economic growth’

– the aggregate production function, a fundamental tool (today)– Robert Solow’s growth model– growth accounting (next class)– productivity and institutions

• To start with, what do we mean by ‘long-run growth’?

– in contrast with business cycle fluctuations– a key conceptual distinction in macroeconomics

2

Page 3: Lo ng-r u n Econo mi c Gr o wt h P art I: Pro duction a nd ...pages.stern.nyu.edu/~cedmond/ge07pt/LSession2.pdf · C r o ss-coun tr y GD P di ! er ences C oun try G DP p er p er son

US real GDP

0.00

2000.00

4000.00

6000.00

8000.00

10000.00

12000.00

1929 1934 1939 1944 1949 1954 1959 1964 1969 1974 1979 1984 1989 1994 1999 2004

in 2000 dollars

Source: Department of Commerce, BEA.

3

Page 4: Lo ng-r u n Econo mi c Gr o wt h P art I: Pro duction a nd ...pages.stern.nyu.edu/~cedmond/ge07pt/LSession2.pdf · C r o ss-coun tr y GD P di ! er ences C oun try G DP p er p er son

Trend

1.50

2.00

2.50

3.00

3.50

4.00

4.50

5.00

1929 1934 1939 1944 1949 1954 1959 1964 1969 1974 1979 1984 1989 1994 1999 2004

log real GDP

y = 2.02 + 0.036x

Source: Department of Commerce, BEA.

4

Page 5: Lo ng-r u n Econo mi c Gr o wt h P art I: Pro duction a nd ...pages.stern.nyu.edu/~cedmond/ge07pt/LSession2.pdf · C r o ss-coun tr y GD P di ! er ences C oun try G DP p er p er son

Business cycle fluctuations

-15.00

-10.00

-5.00

0.00

5.00

10.00

15.00

20.00

1930 1935 1940 1945 1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000

annual percentage change in real GDP

Source: Department of Commerce, BEA.

5

Page 6: Lo ng-r u n Econo mi c Gr o wt h P art I: Pro duction a nd ...pages.stern.nyu.edu/~cedmond/ge07pt/LSession2.pdf · C r o ss-coun tr y GD P di ! er ences C oun try G DP p er p er son

Long-run economic growth

• Questions

– why does a country’s income per capita grow over time?– why is there so much cross-country variation in income per capita?

• Data

– Penn World Tables, careful cross-country measurements

6

Page 7: Lo ng-r u n Econo mi c Gr o wt h P art I: Pro duction a nd ...pages.stern.nyu.edu/~cedmond/ge07pt/LSession2.pdf · C r o ss-coun tr y GD P di ! er ences C oun try G DP p er p er son

Cross-country GDP di!erences

Country GDP per person (2000 dollars at ‘PPP’)

Argentina 10,938Brazil 7,204China 5,332Egypt 4,759France 26,168India 2,990Ireland 28,956Japan 24,661Korea 18,423Mexico 8,165United States 36,098Zimbabwe 2,438

Source: Penn World Tables, 6.2

7

Page 8: Lo ng-r u n Econo mi c Gr o wt h P art I: Pro duction a nd ...pages.stern.nyu.edu/~cedmond/ge07pt/LSession2.pdf · C r o ss-coun tr y GD P di ! er ences C oun try G DP p er p er son

GDP per person

0

5000

10000

15000

20000

25000

30000

35000

40000

1950 1954 1958 1962 1966 1970 1974 1978 1982 1986 1990 1994 1998 2002

USA

FRA

CHN

IND

KOR

ARG

IRL

JPN

in 2000 dollars at ‘PPP’

Source: Penn World Tables, 6.2

8

Page 9: Lo ng-r u n Econo mi c Gr o wt h P art I: Pro duction a nd ...pages.stern.nyu.edu/~cedmond/ge07pt/LSession2.pdf · C r o ss-coun tr y GD P di ! er ences C oun try G DP p er p er son

Production functions

GDP

Capital and LaborProductivity

(''Black Box'')

Output

Inputs

9

Page 10: Lo ng-r u n Econo mi c Gr o wt h P art I: Pro duction a nd ...pages.stern.nyu.edu/~cedmond/ge07pt/LSession2.pdf · C r o ss-coun tr y GD P di ! er ences C oun try G DP p er p er son

Production functions

• Relate output to inputs, e.g., capital and labor

• Mathematical version

Y = AK!L1!!

(‘Cobb-Douglas’)

• Definitions

Y = quantity of outputK = quantity of physical capital used (plant and equipment)L = quantity of labor usedA = ‘total factor productivity,’ i.e., everything left out! = 0.33 in US data

10

Page 11: Lo ng-r u n Econo mi c Gr o wt h P art I: Pro duction a nd ...pages.stern.nyu.edu/~cedmond/ge07pt/LSession2.pdf · C r o ss-coun tr y GD P di ! er ences C oun try G DP p er p er son

Properties

• More inputs give more output

– positive marginal products of capital and labor"Y

"K> 0,

"Y

"L> 0

• Output e!ect of additional inputs falls

– diminishing marginal products

"2Y

"K2< 0,

"2Y

"L2< 0

• If we double all inputs, we double output

– constant returns to scale

#Y = AF (#K,#L), # > 0

11

Page 12: Lo ng-r u n Econo mi c Gr o wt h P art I: Pro duction a nd ...pages.stern.nyu.edu/~cedmond/ge07pt/LSession2.pdf · C r o ss-coun tr y GD P di ! er ences C oun try G DP p er p er son

Production function

0 50 100 150 200 250 300 350 40020

40

60

80

100

120

140

160

Y = AF (K,L), holding labor fixed

K

Y

12

Page 13: Lo ng-r u n Econo mi c Gr o wt h P art I: Pro duction a nd ...pages.stern.nyu.edu/~cedmond/ge07pt/LSession2.pdf · C r o ss-coun tr y GD P di ! er ences C oun try G DP p er p er son

Capital

• Meaning: physical capital, plant and equipment

• Why does it change?

– depreciation– destruction– new investment

• Mathematical version

Kt+1 !Kt = It ! $Kt

for simplicity, a constant rate of depreciation, $

• Adjustments for quality?

13

Page 14: Lo ng-r u n Econo mi c Gr o wt h P art I: Pro duction a nd ...pages.stern.nyu.edu/~cedmond/ge07pt/LSession2.pdf · C r o ss-coun tr y GD P di ! er ences C oun try G DP p er p er son

Capital per worker

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

200000

1950 1954 1958 1962 1966 1970 1974 1978 1982 1986 1990 1994 1998 2002

USA

FRA

CHN

IND

KOR

ARG

IRL

JPN

in 2000 dollars at ‘PPP’

Source: Penn World Tables, 6.2

14

Page 15: Lo ng-r u n Econo mi c Gr o wt h P art I: Pro duction a nd ...pages.stern.nyu.edu/~cedmond/ge07pt/LSession2.pdf · C r o ss-coun tr y GD P di ! er ences C oun try G DP p er p er son

Labor

• Meaning: units of work e!ort

• Why does it change?

– population growth– fraction of population employed, hours worked

• Adjustments for quality?

– skills? education? other factors?– if call this H for human capital, then

Y = AF (K, HL)= AK!(HL)1!!

= (AH1!!)K!L1!!

(‘augmented production function’)

15

Page 16: Lo ng-r u n Econo mi c Gr o wt h P art I: Pro duction a nd ...pages.stern.nyu.edu/~cedmond/ge07pt/LSession2.pdf · C r o ss-coun tr y GD P di ! er ences C oun try G DP p er p er son

Employed as fraction of population

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

1950 1954 1958 1962 1966 1970 1974 1978 1982 1986 1990 1994 1998 2002

USA

FRA

CHN

IND

KOR

ARG

IRL

JPN

Source: Penn World Tables, 6.2

16

Page 17: Lo ng-r u n Econo mi c Gr o wt h P art I: Pro duction a nd ...pages.stern.nyu.edu/~cedmond/ge07pt/LSession2.pdf · C r o ss-coun tr y GD P di ! er ences C oun try G DP p er p er son

Human capital?

0

2

4

6

8

10

12

14

1960 1964 1968 1972 1976 1980 1984 1988 1992 1996 2000 2004

USA

CHN

IND

KOR

ARG

IRL

JPN

average years schooling, 15+ population

Source: Barro-Lee educational attainments database

17

Page 18: Lo ng-r u n Econo mi c Gr o wt h P art I: Pro duction a nd ...pages.stern.nyu.edu/~cedmond/ge07pt/LSession2.pdf · C r o ss-coun tr y GD P di ! er ences C oun try G DP p er p er son

Productivity

• Standard number

– average product of labor, YL

• Our preferred number

– total factor productivity, A = YF (K,L)

• How do we measure it?

– use the production function to solve for A

F (K, L) = K!L1!! " A =Y

!K

L

"!

• US example

– YL = 67, 865 and K

L = 177, 007 and ! = 13 so A = 1, 208

18

Page 19: Lo ng-r u n Econo mi c Gr o wt h P art I: Pro duction a nd ...pages.stern.nyu.edu/~cedmond/ge07pt/LSession2.pdf · C r o ss-coun tr y GD P di ! er ences C oun try G DP p er p er son

Simple productivity calculations

Country GDP/person GDP/worker Capital/worker TFP

Argentina 10,170 24,284 57,858 627Brazil 7,204 15,461 37,603 461China 4,969 8,283 18,015 315Egypt 4,759 12,051 9,593 567France 25,663 56,908 166,636 1,034India 2,990 6,724 7,891 337Ireland 28,248 65,924 131,131 1,297Japan 24,036 45,030 180,283 797Korea 17,596 33,783 113,711 697Mexico 7,938 18,627 47,089 515United States 36,098 67,865 177,007 1,208Zimbabwe 2,438 5,416 14,064 224

Source: Penn World Tables, 6.2

19

Page 20: Lo ng-r u n Econo mi c Gr o wt h P art I: Pro duction a nd ...pages.stern.nyu.edu/~cedmond/ge07pt/LSession2.pdf · C r o ss-coun tr y GD P di ! er ences C oun try G DP p er p er son

What have we learned so far?

• links output to inputs and productivity

Y = AK!L1!!

• Capital input, K

– plant and equipment– a consequence of investment, I

• Labor input, L

– population growth– participation and hours– skills etc, H

• TFP, A, can be inferred from data on output and inputs

20

Page 21: Lo ng-r u n Econo mi c Gr o wt h P art I: Pro duction a nd ...pages.stern.nyu.edu/~cedmond/ge07pt/LSession2.pdf · C r o ss-coun tr y GD P di ! er ences C oun try G DP p er p er son

Rest of this class

• Robert Solow’s growth model

– pieces of the model– dynamics– ‘steady state’

• Main implication: productivity is key

– long-run growth due to productivity increases, not capital investment– cross-country variation in income per capita due to variation in productivity

21

Page 22: Lo ng-r u n Econo mi c Gr o wt h P art I: Pro duction a nd ...pages.stern.nyu.edu/~cedmond/ge07pt/LSession2.pdf · C r o ss-coun tr y GD P di ! er ences C oun try G DP p er p er son

Solow’s growth model

• Just four equations

– production function

Y = AF (K, L) = AK!L1!!

– national income accounting

C + I = Y

– constant savings rate s

S = I = sY

– capital accumulation

Kt+1 !Kt = It ! $Kt

22

Page 23: Lo ng-r u n Econo mi c Gr o wt h P art I: Pro duction a nd ...pages.stern.nyu.edu/~cedmond/ge07pt/LSession2.pdf · C r o ss-coun tr y GD P di ! er ences C oun try G DP p er p er son

Capital accumulation dynamics

• Put it all together to get

Kt+1 !Kt = sAK!t L1!!

t ! $Kt

• Suppose constant labor force, Lt = L. Let k = K/L, y = Y/L, etc. Then

kt+1 ! kt = sAk!t ! $kt

• Given parameters (s,A, !, $) and initial capital k0, see how kt moves through time

– capital increasing if investment is bigger than depreciation– capital decreasing if investment is smaller than depreciation

• A picture might help . . .

23

Page 24: Lo ng-r u n Econo mi c Gr o wt h P art I: Pro duction a nd ...pages.stern.nyu.edu/~cedmond/ge07pt/LSession2.pdf · C r o ss-coun tr y GD P di ! er ences C oun try G DP p er p er son

Savings versus depreciation

0 50 100 150 200 250 300 350 4000

20

40

60

80

100

120

140

160

y = Ak!

sAk!

!k

k

y

24

Page 25: Lo ng-r u n Econo mi c Gr o wt h P art I: Pro duction a nd ...pages.stern.nyu.edu/~cedmond/ge07pt/LSession2.pdf · C r o ss-coun tr y GD P di ! er ences C oun try G DP p er p er son

‘Steady state’

• If new investment equals depreciation, capital per worker is constant

0 = sAk! ! $k

• Solving this we get

k =!

sA

$

" 11!!

• This is the ‘steady state’ level of capital per worker

– higher when s,A, ! are higher– lower when $ is higher

• Capital stock ‘gravitates’ to this steady state value

• To see why, let’s look at that picture again . . .

25

Page 26: Lo ng-r u n Econo mi c Gr o wt h P art I: Pro duction a nd ...pages.stern.nyu.edu/~cedmond/ge07pt/LSession2.pdf · C r o ss-coun tr y GD P di ! er ences C oun try G DP p er p er son

Gravitation to ‘steady state’

0 50 100 150 200 250 300 350 4000

5

10

15

20

25

30

35

40

k

sAk!

!k

k

26

Page 27: Lo ng-r u n Econo mi c Gr o wt h P art I: Pro duction a nd ...pages.stern.nyu.edu/~cedmond/ge07pt/LSession2.pdf · C r o ss-coun tr y GD P di ! er ences C oun try G DP p er p er son

Convergence hypothesis

• Capital per worker converges to steady state

k =!

sA

$

" 11!!

• Therefore output per worker converges to steady state too

y = Ak!

= A1

1!!

#s

$

$ !1!!

• Implication

– capital investment does not explain long run growth of output per worker(that we see in data)

– higher savings rate s increases long run level of output, not growth rate

27

Page 28: Lo ng-r u n Econo mi c Gr o wt h P art I: Pro duction a nd ...pages.stern.nyu.edu/~cedmond/ge07pt/LSession2.pdf · C r o ss-coun tr y GD P di ! er ences C oun try G DP p er p er son

Higher savings rate

0 1 2 3 4 50

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

saving per worker

higher saving per worker

depreciation per worker

k

k!

28

Page 29: Lo ng-r u n Econo mi c Gr o wt h P art I: Pro duction a nd ...pages.stern.nyu.edu/~cedmond/ge07pt/LSession2.pdf · C r o ss-coun tr y GD P di ! er ences C oun try G DP p er p er son

A historical lesson

• Soviet economic growth very impressive in late 1950s – early 1960s

– 8-9% per year, roughly three times faster than US– concern about strategic implications of Soviet industrial ‘might’

• But ‘perspiration not inspiration’

– too much reliance on physical capital accumulation– generates growth in short run– but cannot generate sustained long run growth– diminishing returns

29

Page 30: Lo ng-r u n Econo mi c Gr o wt h P art I: Pro duction a nd ...pages.stern.nyu.edu/~cedmond/ge07pt/LSession2.pdf · C r o ss-coun tr y GD P di ! er ences C oun try G DP p er p er son

But what about long-run growth

• In this theory, capital investment alone cannot generate long run growth

– why? diminishing returns

• What can generate long run growth in output per worker?

– growth in total factor productivity A

– if A grows at 2%, then in the long run output per worker will also grow at 2%

• But where does TFP come from?

– in the Solow model, TFP is a ‘black box’– guess what we will talk about next?

30

Page 31: Lo ng-r u n Econo mi c Gr o wt h P art I: Pro duction a nd ...pages.stern.nyu.edu/~cedmond/ge07pt/LSession2.pdf · C r o ss-coun tr y GD P di ! er ences C oun try G DP p er p er son

Long run growth across countries

0

5000

10000

15000

20000

25000

30000

35000

40000

1950 1954 1958 1962 1966 1970 1974 1978 1982 1986 1990 1994 1998 2002

USA

FRA

CHN

IND

KOR

ARG

IRL

JPN

in 2000 dollars at ‘PPP’

Source: Penn World Tables, 6.2

31

Page 32: Lo ng-r u n Econo mi c Gr o wt h P art I: Pro duction a nd ...pages.stern.nyu.edu/~cedmond/ge07pt/LSession2.pdf · C r o ss-coun tr y GD P di ! er ences C oun try G DP p er p er son

Levels of output across countries

0.000

20.000

40.000

60.000

80.000

100.000

120.000

140.000

160.000

180.000

GDP per capita as percentage of US

Source: United Nations

32

Page 33: Lo ng-r u n Econo mi c Gr o wt h P art I: Pro duction a nd ...pages.stern.nyu.edu/~cedmond/ge07pt/LSession2.pdf · C r o ss-coun tr y GD P di ! er ences C oun try G DP p er p er son

Levels of output

• Solow model predicts output per worker

y = A1

1!!

#s

$

$ !1!!

– cross-country variation in y explained by four parameters (!, s, $, A)– we can measure (!, s, $)– they do not vary enough across countries to explain enormous variation in y

– again, leaves TFP as explanation

33

Page 34: Lo ng-r u n Econo mi c Gr o wt h P art I: Pro duction a nd ...pages.stern.nyu.edu/~cedmond/ge07pt/LSession2.pdf · C r o ss-coun tr y GD P di ! er ences C oun try G DP p er p er son

What have we learned today?

• Production

– production function links output to inputs and productivity– ‘total factor productivity’ can be inferred from data on output and inputs

• Solow model

– countries with higher savings rates have higher levels of output per worker– but capital investment cannot generate long run growth in output per worker– need productivity growth if output per worker is to grow in long run– need cross-country variation in productivity levels to explain enormous dis-

parities in data

34