LN1_s

Embed Size (px)

Citation preview

  • 8/13/2019 LN1_s

    1/11

    Interaction of light with matter

    Basicprocesses (A.Einstein,1916)E2

    E1

    h = E2 - E1

    E2

    E1

    h = E2 - E1

    Absorption Spontaneousemission transitionprobabilityA21 random phaseanddirection

    Stimulatedemission

    E2

    E1

    h = E2 - E1h = E2 - E1

    transitionprobabilityB21 hasthesame frequencyand

    phase asthe incidentlight lightamplification

    1Laser fundamentals

    transitionprobabilityB12

    2

    An ensemble of (two-level) atoms in equilibrium with black-body radiation at temperatute T:

    kTh

    kTE

    kTE

    ee

    e

    N

    N //

    /

    1

    2

    1

    2

    ==

    when E2 >E1 N2

  • 8/13/2019 LN1_s

    2/11

    3

    B12=B21 and N2

  • 8/13/2019 LN1_s

    3/11

    5

    4-level laser

    dt

    dN

    dt

    dN

    dt

    dN

    dt

    dN

    NNdt

    dN

    NN

    dt

    dN

    NNdt

    dN

    3210

    33203

    3322212

    2211101

    ++=

    =

    +=

    +=

    0

    3

    2

    1

    32

    21

    10

    30,3121

    1

    3

    2

    32

    21

    Population inversion: N2>N1 , when>21

    3-level laser

    Laser fundamentals

    4-levelsystem

    Population inversion much easier to achieve

    in a 4-level system

    0idN

    dt=

    In equilibrium:

    6

    In the optical region:

  • 8/13/2019 LN1_s

    4/11

    7

    M M

    L

    z

    Laser has an open resonator

    in its simlest form: two mirrors facing each other

    phase factor due to propagation:

    e-ikz (k=2/ =2/c)

    pkL =+ 222

    one round trip through the resonator:

    the phase must change by a multiple of 2 resonance frequencies

    Phase change in mirror reflection

    p = 0, 1, 2 ...

    assume: empty cavity

    L

    cpL

    c 22 =

    separationbetweensuccessiveresonances: constant2

    ==L

    c

    Laser fundamentals

    2

    c

    L

    thephaseconditiondefinestheLONGITUDINAL (ORAXIAL)MODESTRUCTURE

    8

    Eigenmodes of the laser resonator:

    21/2

    = c

    L2

    FL

    c 2

    42/1

    =

    (OBS!NOTthelaserlinewidth)

    (R= mirror reflectivity)

    2)1(

    4

    R

    RF

    =

    Linewidth

    lossesAmplification scattering

    diffraction mirrors

    Losses

    OutputIntensity

    Laser fundamentals

    AMPLIFYINGMEDIUMplacedinOPTICALRESONATOR LASER

  • 8/13/2019 LN1_s

    5/11

    9

    LASERTHRESHOLD(limitwhereround-tripgainexceedstotalloss)

    Np =cavityphotonnumberr =normalizedpumprate

    Np

    Under threshold: (spontaneous emission)

    radiation isotropic incoherent, thermal light

    broad spectrum

    Above threshold: (stimulated emission)

    laser output in a directed, narrow beam coherent light narrow spectrum

    Laser fundamentals

    What happens when pumping is gradually increased?

    spontaneous emission staysat its threshold value

    Np explodes at the threshold

    Above threshold Np increases linearly asa function of pumping

    Above threshold the population inversionstays at its threshold value

    10

    Summary:

    PUMPING

    Optical pumping

    Electron excitation

    Inelastic atom-atom or

    molecule-molecule collisions

    Chemical reaction

    Laser fundamentals

    LASERMEDIUM solid gas

    liquid semiconductor

    LASERBEAM

    R~100% R

  • 8/13/2019 LN1_s

    6/11

    Unstableresonator

    11Laser fundamentals

    LASERRESONATORCONFIGURATIONS

    12Laser fundamentals

    M1 M2

    (x,y)E1(x,y) (x,y)

    E2(x,y)z

    R

    Fresnel - Kirchhoff :

    ( ) ( ) [ ]

    ( ) dxdye

    yxEik

    dxdyeyxEikyxE

    ik

    ik

    +=

    ,2

    1cos,4','

    1

    12

    R >>x,y,x,yR

    yy

    R

    xxR

    ''

    Integrationlimits

    ( )

    +

    +

    dxdyeyxER

    eik R

    yy

    R

    xxikikR

    ''

    1 ,2E2(x,y)

    TRANSVERSEMODESTRUCTURE:CONFOCALRESONATORAtransversemodeisafieldconfigurationonthesurfaceofonereflectorthatpropagatestotheotherreflectorandback,returninginthesamepattern,apartfromacomplexamplitudefactor(thatgivesthetotalphaseshiftandlossoftheroundtrip.

    M1 and M2: radius of curvature = R cos ~1

    (essentially Huygens principle in mathematical form)

    R

    2-D Fourier transform

  • 8/13/2019 LN1_s

    7/11

    13Laser fundamentals

    E1returns to itself after one round trip Symmetry for the main modes: E2 = E1 E1 is its own F-transform:

    (cf. Quantummechanics / harmonicoscillator)( ) ( )

    2222 ybxanm eyHxHE

    For an eigenmode: field distribution is stationary inside the resonator

    TEMmn - modes

    TEM00 - mode

    Ansatz:

    +

    +

    = dyeedxeeR

    eik RikyyryRikxxrxikR

    /'//'/ 2022

    02

    2E2(x,y)

    +

    = 2222 4/ axixa e

    adxee

    ( )222

    20

    2

    ''42

    02

    yxR

    rkikR

    ereik +

    =

    E2(x,y)

    ( ) 2022 / ryxe +=E1(x,y)

    Hermitepolynomials:

    )12(2)(

    2)(

    1)(

    22

    1

    0

    =

    =

    =

    xxH

    xxH

    xH

    ( ) ( )' '

    2 1', ' ,2

    xx yyikR ikR Rik eE x y E x y e dxdy

    R

    + +

    14Laser fundamentals

    E1 E2 : k

    Rr

    R

    kr

    r

    2

    2

    10

    0

    0

    ==

    Gaussianintensitydistributiononthemirrors:( )2 2 20' ' / 2

    2 1

    i kRx y rikRE ie e e E

    + + = =

    ( )222

    20

    2

    ''42

    02

    yxR

    rkikR

    erR

    eik +=

    ( ) 2022 /ryxe +

    Phasefactor: e-i(kR+/2) for one round trip: 2 - - 2Rk = 2p[ foraplanemirrorresonator: 2 - 2Lk = 2p]

    2r0

    2

    2 0r

    R

    x

    OBS. At x=r00

    2

    2

    2 10 == = xrx E

    eE

    Wavefront Intensitydistribution E.g. = 633 nm, R = 1 m 2r0 = 0.9 mm (small !!)

    The mode is completely

    determined by theresonatorgeometry(and )Spot size on mirrors:

  • 8/13/2019 LN1_s

    8/11

    15Laser fundamentals

    TEM00 TEM10 TEM20

    TEM30 TEM60 TEM11

    TEM23TEM22TEM21

    HIGHERORDERTEMnm MODES

    OBS.Toeachtransversemodetherecorrespondsasetoflongitudinal modesspacedbyc/2L

    16Laser fundamentals

    Higher order transverse modes can be killedwith a suitable aperture in the cavity

    TEM00,TEM10,TEM20modes:

    Intensitydistributioninthetransverseplane

    -3 -2 -1 0 1 2 30.0

    0.2

    0.4

    0.6

    0.8

    1.0

    1.2

    Intensity

    (a.u.

    )

    Transversedistance(a.u.)

    SINGLETRANSVERSEMODEOPERATION

  • 8/13/2019 LN1_s

    9/11

    L

    c

    2=

    lossAmplifica

    tion

    1) by shortening L, the modes get further apart 2) Lower amplification (reduced pumping)

    loss

    Amplification

    1) and2) allow only low powers to be obtained (of no practical use)

    17Laser fundamentals

    SINGLELONGITUDINALMODEOPERATION

    LONGITUDINALMODE L

    z

    ,2

    L m

    = m=integer2

    7

    L=

    26L=

    3) Generate additional losses for the extra modes by placing frequency selective optical elementsin the laser resonator

    OBS. The lasing mode gets some of the gain of the killed modes

    higher power/mode

    18Laser fundamentals

  • 8/13/2019 LN1_s

    10/11

    19Laser fundamentals

    Wavelengthrange10 - 15 nm 100 - 500 m (100 eV 0.01 eV) tunable lasers: dye laser, diode laser, Ti:Sapphire laser

    Monochromaticity

    typically ~ 1 MHz - 1 GHzat best

    Directionality (d= beam diameter)

    typically ~1 mrad, with extra collimation 1rad

    =

    1 10010 10

    15 12Hz

    5 10 Hz14 ~

    d,

    LASERPROPERTIES

    Coherence

    coherence time = 1/ e.g. = 1 MHz = 1 s

    coherence length z = c

    e.g. z = c = 3 108

    m/s 1s = 300 m

    Spectralbrightness = P / A [W/cm

    2-sr-Hz] Sun ~ 1.5 10

    -12W/cm2-sr-Hz

    HeNe-laser (1 mW) ~ 25 W/cm2-sr-Hz

    Nd:glass-laser (10 GW) ~ 2 108W/cm2-sr-Hz

    Operationmode CW (continuous wave)

    pulsed operation shortest pulses < 10 fs (10-14 s) peak power at best tens of TW

    20Laser fundamentals

  • 8/13/2019 LN1_s

    11/11

    0.4

    Arion0.2 -0.306Aror rion0.33-0.36Ne0.33-0.3

    Pulseddye0.32-1.0

    Arion0.4 -0. 2Xeion0.4 -0. 4

    InGaAlPdiode0.63-0.66

    Alexandrite0. 2-0.GaAlAsdiode0. - 0.9

    Ti:Sapphire0.6 -1.13

    0.

    0.

    1.0

    0.1 Molecular luorine( 2)0.1Ar excimer0.192

    rClexcimer0.222r excimer0.24

    XeClexcimer0.30He-Cd0.32

    N20.33Xe excimer0.3 1He-Cd0.442Cuvapor0. 1HeNe0. 43

    Cuvapor0.HeNe0. 94HeNe0.612 Auvapor0.62HeNe0.633

    He-Cd0.636GaInPdiode0.6Ruby0.694HeNe0. 3

    InGaAsdiode0.9Nd:( AG,Glass, L )1.06

    1.

    2.0

    10.0

    1.0

    InGaAsPdiode1.2-1.6

    Colorcenter1.4-1.6

    Colorcenter2.3-3.3H chemical2.6-3.0chemical3.6-4.0

    CO -6CO29-11

    N2O10-11LeadSaltdiode3.3-29

    HeNe1.1

    Nd: L 1.313I21.31Nd: AG1.32

    HeNe1. 23Er-amplifier1. 4

    Holmium2.1

    Er: AG2.94HeNe3.39

    Wavelength Wavelength

    [m [m

    Most common laser lines