40
Linköping University Sören Sjöström IEI, Solid Mechanics

Linköping University

  • Upload
    elliot

  • View
    40

  • Download
    0

Embed Size (px)

DESCRIPTION

Linköping University. Sören Sjöström IEI, Solid Mechanics. High-cycle fatigue (HCF) Railway accidents and the Wöhler test. Catastrophe ferroviaire de Meudon (entre Versailles et Paris), 8 mai 1945 . Entgleisung 19.Oktober 1875, Bahnhof Timelkam ( zwischen Linz und Salzburg ). - PowerPoint PPT Presentation

Citation preview

Page 1: Linköping University

Linköping University

Sören SjöströmIEI, Solid Mechanics

Page 2: Linköping University

2

High-cycle fatigue (HCF)Railway accidents and the Wöhler test

Entgleisung 19.Oktober 1875, Bahnhof Timelkam (zwischen Linz und Salzburg)

Catastrophe ferroviaire de Meudon (entre Versailles et Paris), 8 mai 1945

Mystery: Wheels and axles completely correctly designedstatically designed

Page 3: Linköping University

3

Fatigue: Wöhler test

German railway engineer August Wöhler 1819-1914

t

sa

-sa

Roller bearing

s(t) at a fixed point on the surface

F

Page 4: Linköping University

4

t

sa

-sa

log Nf

sa

orlog sa

Fatigue limit

76543

Fatigue: Wöhler diagram

LCF region

HCF region

Page 5: Linköping University

5

t

sa

-sa

log Nf

sa

orlog sa

Fatigue limit

76543

Fatigue: Wöhler diagram, continued

t

sa

-sa

sm

Increasing sm

Other name: S-N diagram

Page 6: Linköping University

6

Haigh diagram

(sFLP,sFLP) =(sup,sup)

sm

sa

sFL=su

sUTS=sB

sY

sY

Allowed region

t

sa

-sa

t

sa

-sa

sm

Page 7: Linköping University

7

HCF (High-cycle Fatigue)

The Haigh diagram has been set up by standardised testing using a standardised test specimen, for instance:

Polished

In most data tables, a specimen diameter of 10 mm has been used

Page 8: Linköping University

8

I. Surface roughness Rough surfaces are more dangerous in fatigue than smooth surfaces

Reduction!

If fatigue data have been measured on ideally smooth (polished) specimens, how can we use them for a not so ideally smooth specimen?

(sFLP,sFLP) =(sup,sup)

sm

sa

sFL=su

sUTS=sB

k·su

(sup, k·sup)

Page 9: Linköping University

9

In this example,(a) polished surface(b) ground surface(c) machined surface(d) ’notch’(e) hot-rolled surface(f) corrosion in tap water(g) corrosion in salt water(all are for steel materials)

Surface roughness, cont.

Note that:• Fatigue properties are dramatically worsened under corrosive

conditions [(f) and (g)]• The higher tensile strength the steel has, the more sensitive it

is to surface conditions

• A bad surface can be very destructive

Page 10: Linköping University

10

II. Loaded volume

(sFLP,sFLP) =(sup,sup)

sm

sa

sFL=su

sUTS=sB

d·su

(sup, d·sup)

The risk of failure for a given load increases with the amount of material loaded (Weibull statistics – the larger volume of material is loaded, the more likely is it that a fatally bad material point exists) Again, if the actual case loads a different volume than the standardised test specimen, we must therefore reduce the Haigh diagram.

Page 11: Linköping University

11

Loaded volume, cont.

(a) sUTS = 1500 Mpa(b) sUTS = 1000 MPa(c) sUTS = 600 MPa(d) sUTS = 400 MPa

Steel with

(e) aluminium alloy

Note: this effect is usually less than that of surface condition

Page 12: Linköping University

12

III. Stress concentrations

If there exists a local region of raised stress,this region is of course dangerous from the point of view of fatigue.The maximum stress in such a region can be computed by using stress concentration factor Kt diagrams. One example is shown in the figure

Page 13: Linköping University

13

The same reasoning as before about volumes and statistical risks can be applied.Since the volume having high stress is small, we need not take the full stress concentration factor Kt into account; instead we define a fatigue strength reduction factor

)1(1 - tf KqK

Stress concentrations, cont.

q = notch sensitivity factor; depends on the notch radius and the tensile strength of the material

Page 14: Linköping University

14

Stress concentrations, continued

In the diagram to the left, all curves are for steel.(a) sUTS = 1600 Mpa(b) sUTS = 1300 Mpa(c) sUTS = 1000 Mpa(d) sUTS = 700 Mpa(e) sUTS = 400 Mpa

Note again that higher sUTS higher ⇒ q higher sensitivity to high ⇒stresses in notches

Page 15: Linköping University

15

Kt and Kf are now used for increasing the nominal stress state:

tKKt afmt sss sin)(

Nominal: tt am sss sin)(

⇒ Increased:

(sFLP,sFLP) = (sup,sup)

sm

sa

sFL=su

sUTS=sB

(sm,sa)

(Ktsm,Kfsa)

Stress concentrations, cont.

To be carried into the reduced Haigh diagram

Page 16: Linköping University

16

Further, one usually does not allow loads above the yield strength.

(sup,sup)

sm

sa

su

sUTS=sB

(sm,sa)

(Ktsm,Kfsa)

Yam ssis also entered in the Haigh diagram:

Y

Y

Finally allowed stress states

Yam ss

I.e., the line corresponding to

Page 17: Linköping University

17

Safety against fatigue

Study the load point P (Ktsm, Kfsa).

Draw a straight line OC’ from the origin through the load point to theIntersection with the limit of the allowed region.

OPOCSFam

'

sm

(sup,sup)

sa

su

sBO

C’

Define ’allowed length’/’used length’ as safety factor :

P

Page 18: Linköping University

18

Safety against fatigue

Study the load point P (Ktsm, Kfsa).

Alternatively: Draw a straight line DB’ from the sa axis through the loadpoint to the intersection with the limit of the allowed region.

DPDBSFm

'

sm

(sup,sup)

sa

su

sUTS=sB

P

O

B’

Define ’allowed length’/’used length’ as safety factor :

D

Page 19: Linköping University

19

Safety against fatigue

Study the load point P (Ktsm, Kfsa).

Another alternative: Draw a vertical line AA’ from the origin through the loadpoint to the intersection with the limit of the allowed region.

APAASFa

'

sm

(sup,sup)

sa

su

sUTS=sB

P

O

A’

Define ’allowed length’/’used length’ as safety factor :

A

Page 20: Linköping University

www.liu.se

Page 21: Linköping University

21

Page 22: Linköping University

22

Page 23: Linköping University

23

Page 24: Linköping University

24

Further, one usually does not allow loads above the yield strength.

(sup,sup)

sm

sa

su

sUTS=sB

(sm,sa)

(Ktsm,Kfsa)

Yam ssis also entered in the Haigh diagram:

Y

Y

Finally allowed stress states

Yam ss

I.e., the line corresponding to

Page 25: Linköping University

25

III. Stress concentrations

If there exists a local region of raised stress,this region is of course dangerous from the point of view of fatigue.The maximum stress in such a region can be computed by using stress concentration factor Kt diagrams. One example is shown in the figure

Page 26: Linköping University

26

Haigh diagram

(sFLP,sFLP) =(sup,sup)

sm

sa

sFL=su

sUTS=sB

sY

sY

Allowed region

Page 27: Linköping University

27

The same reasoning as before about volumes and statistical risks can be applied.Thus, we need not take the full stress concentration factor Kt into account; instead we define a fatigue strength reduction factor

where the notch sensitivity factor q depends on the notch radius and the tensile strength of the material

)1(1 - tf KqK

Page 28: Linköping University

28

Or, shown in another way:Large deformation

Fracture (static or fatigue)

Instability

Page 29: Linköping University

29

Different failure types

Large deformation

Too large stress

Instability

Plastic flow

Creep

Fracture

Static fracture Fatigue fracture

Page 30: Linköping University

30

History of a fatigue failure

- - Initiation of a small crack

- - Growth of the crack

- - Final fracture

Page 31: Linköping University

31

t

sa

-sa

log Nf

sa

orlog sa

Fatigue limit

76543

Fatigue: Wöhler diagram, continued

t

sa

-sa

sm

Increasing sm

Other name: S-N diagram

Page 32: Linköping University

32

t

sa

-sa

log Nf

sa

orlog sa

Fatigue limit

76543

Fatigue: Wöhler diagram

Page 33: Linköping University

33

Fatigue: Wöhler diagram

Page 34: Linköping University

34

History of a fatigue failure: Aloha Airlines’ flight No. 243, 28th April , 1988

13:25

13:48

XX

X

13:55 13:47

Page 35: Linköping University

35

Result: the one and only Boeing 737 convertible!

Page 36: Linköping University

36

Page 37: Linköping University

37

Page 38: Linköping University

38

Examples of fatigue failure

Aloha Airlines Boeing 737 ’convertible’ (28th April,1988)

Page 39: Linköping University

39

Examples of designs in which fatigue analysis is essential

Page 40: Linköping University

40

MARKERINGSYTA FÖR BILDERNär du gör egna slides, placera bilder och andra illustrationer inom dessa fält. Titta gärna i ”baspresentationen” för exempel på hur placeringen kan göras.