20
Linac 4 LL RF Hardware Architecture and Design Status Reported by John C. Molendijk CERN-BE-RF-CS J.C. Molendijk - Linac 4 Hardware Architecture and Design Status 1 2010-05-27 Gregoire Hagmann, Jose Noirjean, Donat Stellfeld, Daniel Valuch, Julien Lollierou, Anirban Krishna Bhattacharyya, Philippe Baudrenghien CERN-BE-RF-FB John C. Molendijk CERN-BE-RF-CS

Linac 4 LL RF Hardware Architecture and Design Status Reported by John C. Molendijk CERN-BE-RF-CS J.C. Molendijk - Linac 4 Hardware Architecture and Design

Embed Size (px)

Citation preview

Linac 4 LL RF Hardware Architecture and Design Status

Reported by John C. Molendijk CERN-BE-RF-CS

J.C. Molendijk - Linac 4 Hardware Architecture and Design Status 12010-05-27

Gregoire Hagmann, Jose Noirjean, Donat Stellfeld, Daniel Valuch, Julien Lollierou, Anirban Krishna Bhattacharyya, Philippe Baudrenghien

CERN-BE-RF-FB

John C. Molendijk CERN-BE-RF-CS

Outline Linac 4 LL RF hardware Architecture and Design Status

Hardware Architecture Block Diagram Chassis Linac 4 Clocking Scheme Cavity Loops Module Switch & Limit Module Tuner Loop Module Conditioning DDS

Status of Electronic Designs

J.C. Molendijk - Linac 4 Hardware Architecture and Design Status 22010-05-27

Linac Module Servo Controller. Simplified Block Diagram

Technology: DSP

CPLD or FPGA

Analog RF

Signals:Digital:

Analog baseband:

Digital I/Q pair:

Analog I/Q pair:

Tuner Processor

Dir. Coupler

Fwd

Rev

DA

C

Digital RF feedback

Ic fwd

Ic rev

TUNER LOOP

CAVITY LOOPS

Klystron

Circ

Ig fwd

Klystron Polar Loop

Feed-forward

Tuner Control

Ic fwd

CONDITIONING DDS

SWITCH & LIMIT

SWITCH

Analog IQ

M

odulator

IQ Rotator &Gain Control

LO

Var G

ain RF

A

mpifier

DDS AM Chopper

Main Coupler Vacuum

FAST LIMIT

RF Drive permitted

DIGITAL I/Q DEMOD

DIGITAL I/Q DEMOD

DIGITAL I/Q DEMOD

DIGITAL I/Q DEMOD

DIGITAL I/Q DEMOD

Fwd

Ant

RF @ 352.2 MHz

LINAC TANK

Voltage Ref

I0Q0

Set Point Generation

SUM

DIGITAL I/Q DEMOD

DIGITAL I/Q DEMOD

Ref

Ant

SUM

Version: 20100524

Includes:FillingAFF

Chopping CompensationEnergy ramping?

Includes:Energy ramping

SinCos CORDIC

Gain & Phase

IC revFrom Tuner

Loop

Gain Set

IC rev

Linac 4 LL RF Block Diagram

J.C. Molendijk - Linac 4 Hardware Architecture and Design Status 32010-05-27

Linac 4 LL RF Chassis Private backplane (Based on LHC LL RF system)

Low noise Analog power supplies. Fully buffered, Quad low-jitter differential clock distribution. Hardware Timing distribution for chopping information etc. Serial distribution of Reference RF phase. 220 mm deep slots offering sufficient real-estate for RF circuitry. Geographical VME addressing. Crate-wide JTAG enabling remote FPGA flashing through the crate

manager module.

J.C. Molendijk - Linac 4 Hardware Architecture and Design Status 42010-05-27

CLO

CK

DIS

TR

IBU

TIO

N

TU

NE

R L

OO

P

CO

ND

ITIO

NIN

G D

DS

SW

ITC

H &

PR

OT

EC

TIO

N

CA

VIT

Y L

OO

PS

CM

M

220 mm deep LLRF modules 160 mm deep

OTS

CP

U

CT

RV

Tim

ing

Linac 4 LL RF Chassis

J.C. Molendijk - Linac 4 Hardware Architecture and Design Status 52010-05-27

AGND

-12 V

-6 V

+6 V

+12 V

RefPhase Sta* / SD*

Analog Power Supply + AGND

(3 pins each)

+3.3 V Extra Digital V

Timings (12x)

Digital data(3x6)

LINAC 4 LLRF backplaneLower connector: 3 x 32 pins

version 24/05/2010

Intlk/Alarm (3x)

A B C

1

32

DGND

Linear Power Supply

Switched Mode Power Supply

Cold reset*

Observation Trig*

Post-mortem Trig*

AnalyzeTrig*

AGND

Gnd

Clocks (Differential ECL)

+Module Address

(MA3-0)

ADClk-

ADClk/4 MHz-

10 MHz-

Fc-

Gnd

Gnd

MA0

MA2

Fc+ (FIF /2048)

10 MHz+

ADClk/4 MHz+

ADClk+

8 x DGND

-5.2 V (for backplane ECL buffers only!)

Gnd

MA1

MA3

TDI

TCK

DGND, TDO

!ENA, TMS Jtag

FG SDin DGND, SDout

4

5

10

13

21

26

ConfigDone

Cycle Start*

Beam In*

See page 2

BpTA3* / Beam Out*

PowerDown*

RF ON*

RF OFF*

Beam On wn*

Beam Off wn*

Inj Enable

Module Serial Number Bus

Note: ADClk = 88.05 MHz

Linac 4 RF Low Level Chassis

Std VME section160 mm

Linac4 Low Level boardsection 220 mm

1 2 3 4 5

VME P2

1 2 3 4 6 7 8 9 10 11 12 13 14 15 16 17 18 19 205

VME P1

1 2 3 4 6 7 8 9 10 11 12 13 145

Linac 4 RF Low Level Backplane

0Geographical Base-Address

Cra

te M

an

ag

er

Clo

ck G

en

era

tor

Dis

trib

uto

r

CTRVRIO3CPU

0 14

201 4 6

1 4

4 TE

Occupation

Linac 4 LL RF Chassis

J.C. Molendijk - Linac 4 Hardware Architecture and Design Status 62010-05-27

Linac 4 Clocking Scheme

A RF reference-line will propagate the 352 MHz reference RF all along Linac4 At each cavity a directional coupler will extract some of the reference RF from the

reference-line. The antenna signals are routed in a bundle with the reference RF towards the

cavity controller crate. All signals are submitted to similar drift effects. At the cavity controller the reference RF is used to normalize the Antenna RF

signal phase making these acquisitions robust against phase drift incurred by the cabling.

J.C. Molendijk - Linac 4 Hardware Architecture and Design Status 72010-05-27

Clock Generation

Designer

Date Version

PageTitle

John C. Molendijk BE/RF/cs

2010/03/26

EDA-0xxxx

352MHz 352MHz 50 dBmReference line

50

1 dc / CavityController

RF RefAntenae

RF RefAntenae

Cavity ControllersBundled routing

Bundled routing

Cavity / Tank Cavity / Tank

ReferenceOscillator

Cavity / Tank

RF RefAntenae

Bundled routing

Beam

Linac 4 Clocking Scheme

Clocks Required for RF LL Reference RF. Local Oscillator (LO) for the mixers (Receivers and Modulators). ADC clock (4 * fIF). ADC clock /2 and ADC clock /4 for IQ demodulation. 10 MHz reference clock.

Critical Clocks Reference RF, LO and ADC clock must have very low phase noise (jitter) to

minimize demodulation errors and to maintain the effective number of bits (ENOB) in the Digital RF Receivers.

J.C. Molendijk - Linac 4 Hardware Architecture and Design Status 82010-05-27

I1 Q1 -I2 -Q2

Inverted Signal

I3 Q3 -I4Signal

Offs

TunerCtrl applies 2 stage CIC with R=16 => Average over I/Q 16 (even) samples => Offset Cancelled.

0Intended Signal

Moving Average over 1 cyclefor PM & Observation MemoryFull 40MSPS rate & Offset compensation!

(Ii + Offs) - (-Ii+1 + Offs)

2I'i =

(Qi + Offs) - (-Qi+1 + Offs)

2Q'i =

12.5 ns

20050615 J.C.Molendijk CERN AB/RF

TADClk

Clock Generation

Designer

Date Version

PageTitle

John C. Molendijk BE/RF/cs

2010/03/26

EDA-0xxxx

RF inLPF

ADClk =4 * fIF

LO

IF

0 1

+1 -1 ADClk/4

01

ADClk/2

I

Q

Digital IQ Demodulator

Analog Domain Digital Domain

Typical Digital RF ReceiverIQ Sampling & ADC Offset Compensation

Linac 4 Clocking Scheme LHC case

The beam synchronous RF is generated in SR4 (surface building) and then optically transported to the UX45 (cavern) faraday cages.

All RF synchronous clocks are there derived from the SR4 reference by one central clock Generator per beam.

A distribution system supplies the reference RF and all generated clocks (380, 80, 40 and 20 MHz) to all 8 cavity controllers crates per beam.

Linac 4 Reference RF is generated from a high quality Oscillator which is then amplified

(~100W) to drive the Linac 4 RF reference line. All RF synchronous clocks are derived and distributed within each cavity

controller. Big savings in distribution and improved clock signal quality. The Locally generated and distributed LO does not have to be phase drift

stabilized since both the down and up convertors use the same (see p13). The cavity controller’s Clock Generator Distributors receive and demodulate the

Reference RF. The measured phase is distributed serially over the backplane to allow all modules to normalize their acquisitions. No need for individual ref. RF receivers per module.

Only the absolute 10 MHz reference is distributed individually.

J.C. Molendijk - Linac 4 Hardware Architecture and Design Status 92010-05-27

Linac 4 Clocking Scheme Clock Generator Distributor per Cavity Controller

J.C. Molendijk - Linac 4 Hardware Architecture and Design Status 102010-05-27

Clock Generation

Designer

Date Version

PageTitle

John C. Molendijk BE/RF/cs

2010/03/26

EDA-0xxxx 1/4Overview

3.0source: G:\Departments\AB\Groups\RF\Machines\Linac4\LowLevel\Diagrams\ClockGenDistriv3.dsf

352MHz

99

9

9 10MHz to Cavity Controllers

Ref RF IN

RF OUT

RF OUT Splitter

Front Panel

f/KADClk OUT

ADClk OUT

ADClk / 4 OUT

LL RF Backplane

SplitterFc OUT10 kHz

Fc OUT

10MHz IN 10MHz OUT

LO OUT

LO OUTto Fdbk

LO OUTto TunerLO OUTto SwAp

50

50

50

Nim Distribution

f/4

DividersLinac4:SPL: N=32, M=31, K=8

N=16, M=15, K=4

Splitter

Frequencies:

IF = 22.0125 MHzLinac4 LO = 330.1875 MHz SPL LO = 682.3875 MHzADClk = 88.05 MHz

Linac4 RF = 352.2 MHz SPL RF = 704.4 MHz

For LegacyCompatibility.

Via FrevBackplane

Count = 3once per 2048

14.3 ns

Via MHz40Backplane

Via MHz10Backplane

10MHz

352MHz 50 dBmReference line

50

Att

50

50

PhaseDetector

Ref. Phase Serial OUT

LO OUTVCOf/N

f/M22MHzLO

1 dc / CavityController

LO

ClockDistri Principle

SN65EPT20? (single)SN65EPT22 (double)

0 dBm

0 to 1 dBm4 way

0 dBm

0 to 1 dBm

100-800MHz

100-800MHz

Clock Generation

Designer

Date Version

PageTitle

John C. Molendijk BE/RF/cs

2010/03/26

EDA-0xxxx Clock Distributor 3/4

Ref Line

VectoringCORDIC

RF

LO MHz

I

Q

IQ Demod

AD

Clk

/ 2

AD

Clk

/ 4

LPF50

LPF32k

I

AD

Clk

Q

2 kS/sADClk MS/s

Zn

Diag ro Register

Ref Phase

FPGA

VRef Level

ADClkDiv(1,0)

FcDiv(1,0) Div = 3by 2048

Via FrevBackplane

Count = 3once per 2048

TADClk

ro Registers

3.0

Via 40 MHzBackplane

Routing delay <= Fc routing delay.

Div(1) Via 20 MHzBackplane

22 MHz

ADClk

Ref PhaseSerializer

Start

SD

Start

SD27a

27b

Via SpareBackplane bus

-1

FRev

D Q

Clr

TTL to LVPECL

ResyncEna D Q D Q

Q

RF

SyncB

D Q

Clr

'1'

DQ

ClrClr

PDC

RF-TP

FRevTP

SyncIn SyncHS

AD9512 ADClk MHzresyncDivide by K

Prog

Q

88 MHzsplit 3 ECL+ LVCMOS

ADClk

Linac 4 Clocking Scheme Phase Discriminator

J.C. Molendijk - Linac 4 Hardware Architecture and Design Status 112010-05-27

Linac 4 Clocking Scheme

J.C. Molendijk - Linac 4 Hardware Architecture and Design Status 122010-05-27

New Low noise LO PLL and distribution

Designer J. Lollierou

N =15

R =16

LO L4 Jitter = 270 fs, Band integrated [10Hz-10MHz]

LO LHC Jitter=264 fs

f/R

f/N

Phase

Detector

LPF VCO

f1

f2

Clk1

Clk1B

Clk2Clk2B

ADF4106

Using std VCO

LO L4 Jitter= 120 fs

Using Coaxial resonator based VCO

Retained solution

Cavity Loops Module

J.C. Molendijk - Linac 4 Hardware Architecture and Design Status 132010-05-27

RF Feedback Linac4

Designer

Date Version

PageTitle

John C. Molendijk BE/RF/cs

2009/05/05

EDA-0xxxx

352.2 MHz

LO 330.2 MHz 88 MHz

I

Q

IQ Demod

Processing

Setpoint

Ref LinePhase

Cav Fwd

Antenna

Phaser

SinCosCORDIC

sin

cos

Phase

Gain

I

Q

I

Q IQ Mod

Z-1 I

Q

Dual TX DAC

RFIQ Mod

LO 330.2 MHz

352.2 MHzRF drive

88MHz

44 M

Hz

22 M

Hz

I

QLPF50

Antenna

I

Q

Ref LinePhi Ref

Antenna'

RF Measurements relative to Phi Ref.

Cav Fwd

Cav Fwd'

LPF50

Principle

1.0

1/1

44 M

Hz

22 M

Hz

Div(1,0)88 MHz

Fc

Syn Clr

Ref PhaseSerial Rx

Start

SD27a

27b

From Clock Distrivia Backplane

20a20c

Phase Offset

rw Register

ADC

Polarloop Control

De-serialized Reference-line RF Phase used to normalize the phase of the RF Measurements.

System Independent of LO phase

IQ Demodulators synchronized by Fc (use same demux signals

as Ref-line demodulator).

Implements:RF Feedback,Adaptive FF andKlystron Polar Loop

Linac 4 Switch and Limit Block Diagram

J.C. Molendijk - Linac 4 Hardware Architecture and Design Status 142010-05-27

Comp

VGA

log

Obs mem.(2M word)

logic

on

off

FeedForward:· Auto· Forced on· Forced off

DACDAC

ADC

―log

logic

ADC

Feedback:· Auto· Forced on· Forced off

DA

C

Trip level

Gain

SetPoint

on

off

Veto switch(RF on) out

Opera in

Condit in

RF Sat

FPGA

FF FB

PM mem.(2M word)

PM mem.(2M word)

Obs mem.(2M word)

Record length (Only PM, zero Obs):· Full rate 44MSPS (I/Q pair), Fs=88MHz· PMtime = 91ms (2 channels), 4M words = 2M I/Q pairs => 48ms· PMtime = 182ms (1 channel), 8M words = 4M I/Q pairs => 95 ms

Switch and Limit

Designer G. Hagmann

Pdrive

Without Limiter

With Limiter

Pd

rive

Pin

PdriveMax

PinMax

Po

ut

Psat

PdriveMax

Kly

stro

n

PinPdrive

Avoids overdriving the Klystron

Linac 4 Tuner Loop Front-end Simplified Block Diagram

J.C. Molendijk - Linac 4 Hardware Architecture and Design Status 152010-05-27

Designer J. Noirjean

Coupler ADC

PwrDet

LPF

Digital IF signal to IQ

demodulators

8 x channels

RF input IF

RF level

IF differential

FPGA

LO

Chebyshev 5th order, fc = 35 MHz

Tuner Front-end

LPF

Chebyshev 3rd order, fc = 385 Mhz

ADC driver

Tuner Control

Samtec controlled impedance connection

J.N., 25.05.2010

Tuner Loop

ADC Clk

Linac 4 Tuner Loop Front-end

J.C. Molendijk - Linac 4 Hardware Architecture and Design Status 162010-05-27

Designer J. Noirjean

Linac 4 Tuner Loop Module Simplified Block Diagram

J.C. Molendijk - Linac 4 Hardware Architecture and Design Status 172010-05-27

Designer J. Noirjean

Tuner Linac4

Designer

Date Version

PageTitleJohn C. Molendijk BE/RF/csJose Noirjean BE/RF/fb

2009/05/06

EDA-0xxxx

352.2 MHz

LO 330.2 MHz

AD

Clk

MH

z

I

Q

IQ DemodAntenna

-Ref Phase

AD

Clk

/2

AD

Clk

/ 4

LPF50

Antenna

I

Q

Ref LinePhi Ref

Antenna'

RF Measurements relative to Phi Ref.

Cav Fwd

Cav Fwd'

SinCosCORDIC

CrossProd

Phaser

sin(

Z0'

)

cos(

z0')

I

Q

Phase Set

SinCosCORDIC

Z0

Z0'

sin(Z0)

cos(Z0)

sin(Z0')

cos(Z0')

CIC16_2

352.2 MHz

LO 330.2 MHz

I

Q

IQ DemodIcFwdLPF50

Phaser

sin(

Z0)

cos(

z0)

I

Q

CIC16_2

+

To ExternalMemory

E_IcFwd

PowerProd

Vcav 2A

DC

lk M

Hz

Tuner FE Tuner Cntrl

88 MS/s 88 / 16 MS/s

Phase Add

I Q

I

Q

To ExternalMemory

I

Q

Signal Principle

1.0

1/1

Ref PhaseSerial Rx

Start

SD27a

27b

Div(1,0)ADClk MHz

Fc

Syn Clr

20a20c

AD

Clk

/ 2

AD

Clk

/ 4

DSP Tuning Control

E_IcFwd = Vcav X IcFwd

Optimal Vcav Phase

Common for all Linac4 structures: DSP orSoftware customized,L. Arnaudon

VME register

Linac 4 Conditioning DDS Simplified Block Diagram

J.C. Molendijk - Linac 4 Hardware Architecture and Design Status 182010-05-27

J2

10 MHz

Dual DDS Module version: Linac4 conditioning

last edit: 25-May-10

0.4GHz

Ext Clk

switch

48MHz

AD9959 DDS

48MHz

352 MHz BPF

RF1 out

Ref Clk

RF Part

X 40PLLADF4360-7

F/P/A update

SD

IO 0-3 S

ync_

out

Attn control

VME interface

Vacuum P Vacuum Loop

FPGA Part

I/O_U

PD

AT

E

Attn RVA2500

CH0 1:1LPF

cos

CH1 1:1LPF

sin

CH3 1:1LPF

sin

CH2 1:1LPF

cos

AD8345

I

QLO

RF

switch

RF out

352 MHz BPF

RF2 out

VGA

AD8345

I

QLO

RF

Switch control

AM mod (chopper +

envelope control)

CPLD Part

20ms

0dB

-40dBP (hPa)

J1VME A24-D16

CPLD / FPGA bridge

Optional 400 MHz

Interlocks / Command

PLL Locked

IcRev from Tuner Control

Pulse Timing 3 wire Serial Interface

DDS IF ~48 MHz

Prototype to be tested on DTL prototype, end 2010

Status of Electronic Designs Modules

J.C. Molendijk - Linac 4 Hardware Architecture and Design Status 192010-05-27

Linac 4 Modules Study Firmware Schematic Design Office Components Prototype DTL Proto Tests end 2010RFQ Tuning 3 MeV teststand begin 2011

Clock Generator Distributor 100% 80% 90% 08-06-10 OK for proto End July 2010New proto or modified LHC type

New proto or modified LHC type

Crate Manager OK OKLLRF Backplane OK OKCrate Current Measurement OK OKDistribution 10 MHz OK OK

Conditioning DDS 100% 60% Modified LHC typeNew proto or modified LHC type

Chopper Pulse Generator 20%Switch & Limit 100% 70% 100% Finalizing OK for proto End June 2010 New protoTuner Front-end 100% 100% 100% Finished OK for proto received New proto or LHC type New protoTuner Control 100% 30% + DSP code Finalizing End June 2010 Ordered Mid August 2010 New proto or LHC type New protoRef-line Directional CouplersCavity Loops 20%

Highest Priority

Lowest Priority Updated 20100525

Existing LHC Design

Existing LHC DesignExisting LHC DesignExisting LHC Design

Thank you for your attention.

J.C. Molendijk - Linac 4 Hardware Architecture and Design Status 202010-05-27