77
Light field imaging: modelling, parameterization and sparsification Atanas Gotchev, Tampere University

Light field imaging: modelling, parameterization and sparsificationclim.inria.fr/workshop/DSLF_Gotchev.pdf · 2019-07-02 · Light field imaging: modelling, parameterization and sparsification

  • Upload
    others

  • View
    7

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Light field imaging: modelling, parameterization and sparsificationclim.inria.fr/workshop/DSLF_Gotchev.pdf · 2019-07-02 · Light field imaging: modelling, parameterization and sparsification

Light field imaging: modelling,

parameterization and sparsification

Atanas Gotchev, Tampere University

Page 2: Light field imaging: modelling, parameterization and sparsificationclim.inria.fr/workshop/DSLF_Gotchev.pdf · 2019-07-02 · Light field imaging: modelling, parameterization and sparsification

11.6.2019 2

The most popular

city to live and study

in

Tampere UniversitiesTampere University of Technology,

University of Tampere and Tampere

University of Applied Sciences

• 35,000 students

• 5,000 employees

Tampere

Third largest

city in Finland,

220,000

inhabitants

One of the

fastest

growing urban

centres in

Finland

Page 3: Light field imaging: modelling, parameterization and sparsificationclim.inria.fr/workshop/DSLF_Gotchev.pdf · 2019-07-02 · Light field imaging: modelling, parameterization and sparsification

Methods for capture, representation and processing real world 3D visual data

Knowledge about perception of depth and visual cues

Optimal visualization on emerging 3D displays

Page 4: Light field imaging: modelling, parameterization and sparsificationclim.inria.fr/workshop/DSLF_Gotchev.pdf · 2019-07-02 · Light field imaging: modelling, parameterization and sparsification

This project has received funding from the European Union’s

Horizon 2020 research and innovation programme under the

Marie Sklodowska-Curie grant agreement No 764951.

The science

of more

exciting

tomorrow

Page 5: Light field imaging: modelling, parameterization and sparsificationclim.inria.fr/workshop/DSLF_Gotchev.pdf · 2019-07-02 · Light field imaging: modelling, parameterization and sparsification

Presentation Outline

• Introduction to plenoptic function, 4D light field and light field displays

• Epipolar plane image representation and densely sampled light fields (DSLF)

• DSLF reconstruction

• Angular super-resolution

• Spatial super-resolution

• DSLF compression

• DSLF applications

Page 6: Light field imaging: modelling, parameterization and sparsificationclim.inria.fr/workshop/DSLF_Gotchev.pdf · 2019-07-02 · Light field imaging: modelling, parameterization and sparsification

Plenoptic function, 4D light field and light field displays

Page 7: Light field imaging: modelling, parameterization and sparsificationclim.inria.fr/workshop/DSLF_Gotchev.pdf · 2019-07-02 · Light field imaging: modelling, parameterization and sparsification

Plenoptic function (PF)

• Introduced by Adelson and Bergen (1991)

• Plenus (complete) + Optic = Plenoptic

• 7-D continuous function that describes the light field P(q,j,l,t,Vx,Vy,Vz)

• (Vx, Vy, Vz) – location in 3D space

• (q, j) – angles determining the direction

• l – wavelength

• t – time

x

zy

j

q

(Vx,Vy,Vz)

Page 8: Light field imaging: modelling, parameterization and sparsificationclim.inria.fr/workshop/DSLF_Gotchev.pdf · 2019-07-02 · Light field imaging: modelling, parameterization and sparsification

Two-plane parameterization

• A 4-D approximation of PF, parameterized through two parallel planes L(u,v,s,t)

u

s

Ds

Du

v

u

t

s

Levoy and Hanrah (1996) – light field

Gortler et al. (1996) – Lumigraph

Page 9: Light field imaging: modelling, parameterization and sparsificationclim.inria.fr/workshop/DSLF_Gotchev.pdf · 2019-07-02 · Light field imaging: modelling, parameterization and sparsification

Light field displays

• Perceptual light field (PLF): how the human eyes sample

the light field

• Light field displays aimed at reconstructing:

• Stereo

• Focus (accommodation and retinal blur)

• Continuous parallax

A. Stern, Y. Yitzhaky, B. Javidi, “Perceivable light fields:

Matching the requirements between the human visual system

and autostereoscopic 3-D displays,” Proc. IEEE, Oct. 2014.

M. Banks, D. Hoffman, J. Kim, G. Wetzstein, “3D Displays“,

Annual Review of Vision Science 2016

Page 10: Light field imaging: modelling, parameterization and sparsificationclim.inria.fr/workshop/DSLF_Gotchev.pdf · 2019-07-02 · Light field imaging: modelling, parameterization and sparsification

A non-exhaustive LF display nomenclature

• Integral Imaging displays

• Super-multiview displays

• Tensor displays

H. Huang and H. Hua, “Systematic

characterization and optimization of 3d light

field displays,” Opt. Express, 2017

G. Wetzstein et. all., “Tensor displays: Compressive

light field synthesis using multilayer displays with

directional backlighting,” ACM Trans. Graph., July 2012

Y. Takaki, “Development of super multi-

view displays,” ITE Transactions on Media

Technology and Applications, 2014.

Page 11: Light field imaging: modelling, parameterization and sparsificationclim.inria.fr/workshop/DSLF_Gotchev.pdf · 2019-07-02 · Light field imaging: modelling, parameterization and sparsification

Projection Based Light Field Displays

• Ray generators

• Discrete to continuous conversion

• LF reconstruction instead of views

T. Balogh, “The HoloVizio system,” Proc. SPIE 6055, 2006

Page 12: Light field imaging: modelling, parameterization and sparsificationclim.inria.fr/workshop/DSLF_Gotchev.pdf · 2019-07-02 · Light field imaging: modelling, parameterization and sparsification

Epipolar plane images, their Fourier domain characteristics, and the densely-sampled light field

Page 13: Light field imaging: modelling, parameterization and sparsificationclim.inria.fr/workshop/DSLF_Gotchev.pdf · 2019-07-02 · Light field imaging: modelling, parameterization and sparsification

Forming epipolar plane image (EPI) from a 3D scene

s

t

u

v

(s,t) – camera plane

(u,v) – image plane

Two-plane parameterization

tAtBtCtDtE

tAtB

tC

tDtE

t

z

tAtBtCtDtE

Page 14: Light field imaging: modelling, parameterization and sparsificationclim.inria.fr/workshop/DSLF_Gotchev.pdf · 2019-07-02 · Light field imaging: modelling, parameterization and sparsification

Forming epipolar plane image (EPI) from a 3D scene

𝑣 =𝑣2 − 𝑣1𝑡2 − 𝑡1

𝑡 − 𝑡 + 𝑣 =𝑓

𝑧0𝑡 − 𝑡1 + 𝑣1

Δ𝑡 = 𝑡2 − 𝑡1

Δ𝑣 = 𝑣2 − 𝑣1Δ𝑣 =

𝑓

𝑧0Δ𝑡

Chai 00 siggraph

t

v

t1 t2

v1

v2

Page 15: Light field imaging: modelling, parameterization and sparsificationclim.inria.fr/workshop/DSLF_Gotchev.pdf · 2019-07-02 · Light field imaging: modelling, parameterization and sparsification

EPIs100

160

220

280

340

100

A

A

C

E

B

D

F

B C

D E F

v

u

t

v

Page 16: Light field imaging: modelling, parameterization and sparsificationclim.inria.fr/workshop/DSLF_Gotchev.pdf · 2019-07-02 · Light field imaging: modelling, parameterization and sparsification

Full parallax

• 4D EPI hyper-cube

t

v

s

u

s

t

u

v

Page 17: Light field imaging: modelling, parameterization and sparsificationclim.inria.fr/workshop/DSLF_Gotchev.pdf · 2019-07-02 · Light field imaging: modelling, parameterization and sparsification

EPI in continuous Fourier domain

zminzmax

fv

t

Chai 00 siggraph

EPIv

t

Wv

Wt

~zmax

~zmin

~inf

~ 0~ f

Page 18: Light field imaging: modelling, parameterization and sparsificationclim.inria.fr/workshop/DSLF_Gotchev.pdf · 2019-07-02 · Light field imaging: modelling, parameterization and sparsification

Discretization in spatial and angular domains

image

resolu

tion

camera density

Wv

Wt

Wt

Wv

2𝜋

Δ𝑡

2𝜋

Δ𝑣

Wt

Wv 2𝜋

Δ𝑡2𝜋

Δ𝑣

Wt

2𝜋

Δ𝑡

Wv

2𝜋

Δ𝑣

Page 19: Light field imaging: modelling, parameterization and sparsificationclim.inria.fr/workshop/DSLF_Gotchev.pdf · 2019-07-02 · Light field imaging: modelling, parameterization and sparsification

Alias free sampling

• Scene with Lambertian properties and without occlusions

• Practical estimation for scene sensing / rendering

#images

#layers1

resolution

1

J.-X. Chai, X. Tong, S.-C. Chan, H.-Y. Shum, “Plenoptic

sampling,” SIGGRAPH (Computer Graphics), July 2000.

Δ𝑡 =1

𝐾𝑓𝑣𝑓ℎ𝑑𝑁𝑑 , 𝑁𝑑 ≥ 1

ℎ𝑑 =1

𝑧𝑚𝑖𝑛−

1

𝑧𝑚𝑎𝑥

𝐾𝑓𝑣𝑓ℎ𝑑 = min 𝐵𝑣𝑠 ,

1

2Δ𝑣,1

2𝛿𝑣

𝐵𝑣𝑠 – highest (texture)frequency

Δ𝑣 – sampling camera resolution

𝛿𝑣 – rendering camera resolution

𝑁𝑑 – Number of layers

Δ𝑡 – Sampling interval

Page 20: Light field imaging: modelling, parameterization and sparsificationclim.inria.fr/workshop/DSLF_Gotchev.pdf · 2019-07-02 · Light field imaging: modelling, parameterization and sparsification

Densely sampled light field (DSLF)

• Sampling that allows to treat the disparity space as a

continuous space

• Less than 1px disparity between adjacent views

• Lines in EPI become unambiguous

• Influenced by

• Sampling density on the t and v plane

• (Minimal) depth and (smallest) details in the scene

• Bilinear interpolation can be used for finding finer

details

• Without introducing any major aliasing errors

t

Dt

Page 21: Light field imaging: modelling, parameterization and sparsificationclim.inria.fr/workshop/DSLF_Gotchev.pdf · 2019-07-02 · Light field imaging: modelling, parameterization and sparsification

Densely sampled light field (DSLF)

20 40 60 80 100 120 140

20

40

60

80

100

120

14020 40 60 80 100 120 140

2

4

6

8

10

12

14

20 40 60 80 100 120 140

20

40

60

80

100

120

140

dmax = 1dmax = 10

Continuous plenoptic function

Linear interpolationAdvance interpolation

Page 22: Light field imaging: modelling, parameterization and sparsificationclim.inria.fr/workshop/DSLF_Gotchev.pdf · 2019-07-02 · Light field imaging: modelling, parameterization and sparsification

Densely sampled light field recontstruction (aka angular super-resolution) by sparsification in shearlet transform domain

Page 23: Light field imaging: modelling, parameterization and sparsificationclim.inria.fr/workshop/DSLF_Gotchev.pdf · 2019-07-02 · Light field imaging: modelling, parameterization and sparsification

Reconstruction by processing EPIs

Set of captured viewsCoarsely

sampled

Densely

sampled

t

v

t

v

≤1px

disp.

lines in EPI domain

cones in spectral

domain

Structured data

Page 24: Light field imaging: modelling, parameterization and sparsificationclim.inria.fr/workshop/DSLF_Gotchev.pdf · 2019-07-02 · Light field imaging: modelling, parameterization and sparsification

Reconstruction by processing EPIs

• Impainting: fill in holes (missing pixels) with visually-

acceptable values

• argmin𝛼

1

2HD𝛼 − Hy 2

2 + 𝜆 𝛼 1 where H is the

operator selecting the given and missing values

• D is a proper dictionary / transform domain where the light field gets sparsified

Hy

y

Page 25: Light field imaging: modelling, parameterization and sparsificationclim.inria.fr/workshop/DSLF_Gotchev.pdf · 2019-07-02 · Light field imaging: modelling, parameterization and sparsification

Shearlet elements in Fourier and spatial domain

• Dictionary is formed by shearlet atoms and the coefficients are found by Shearlet transform

y = D𝛼; 𝛼 = 𝑆 y 𝑦 = 𝑆∗(𝛼)

Vagharshakuan, Bregovic, Gotchev, Light

Field Reconstruction using Shearlet

Transform, IEEE Trans. PAMI, 2017

Page 26: Light field imaging: modelling, parameterization and sparsificationclim.inria.fr/workshop/DSLF_Gotchev.pdf · 2019-07-02 · Light field imaging: modelling, parameterization and sparsification

The algorithm

• Reconstruction formula ො𝑦 = argmin𝑦

𝑆(𝑦) 1, subject to 𝑥 = 𝐻𝑦

t

v

t

v

y𝑥 = 𝐻𝑦

Page 27: Light field imaging: modelling, parameterization and sparsificationclim.inria.fr/workshop/DSLF_Gotchev.pdf · 2019-07-02 · Light field imaging: modelling, parameterization and sparsification

The algorithm

• How to solve this?

ො𝑦 = argmin𝑦

𝑆(𝑦) 1, subject to 𝑥 = 𝐻𝑦

• One needs a regularizer, which will minimize the 𝑙1 norm

• Regularizer applied in the form of hard thresholding in the shearlet domain in

the fashion of denoising…

(𝑇𝜆𝑠)(𝑘) = ቊ𝑠(𝑘), |𝑠(𝑘)| ≥ 𝜆0, |𝑠(𝑛)| < 𝜆

Page 28: Light field imaging: modelling, parameterization and sparsificationclim.inria.fr/workshop/DSLF_Gotchev.pdf · 2019-07-02 · Light field imaging: modelling, parameterization and sparsification

The algorithm

• Iterative procedure

𝑦𝑛+1 = 𝑆∗ 𝑇𝜆𝑛(𝑆(𝑦𝑛 + 𝛼𝑛(𝑥 − 𝐻𝑦𝑛))) ,

where

(𝑇𝜆𝑠)(𝑘) = ቊ𝑠(𝑘), |𝑠(𝑘)| ≥ 𝜆0, |𝑠(𝑘)| < 𝜆

is a hard thresholding operator and 𝛼𝑛 is an

acceleration parameter controlling the convergence

Vagharshakuan, Bregovic, Gotchev, Light

Field Reconstruction using Shearlet

Transform, IEEE Trans. PAMI, 2017

Page 29: Light field imaging: modelling, parameterization and sparsificationclim.inria.fr/workshop/DSLF_Gotchev.pdf · 2019-07-02 · Light field imaging: modelling, parameterization and sparsification

Epipolar-plane image reconstruction (x32)

Page 30: Light field imaging: modelling, parameterization and sparsificationclim.inria.fr/workshop/DSLF_Gotchev.pdf · 2019-07-02 · Light field imaging: modelling, parameterization and sparsification

Input (16

views)Ground-truth Reconstructed

Epipolar-plane image reconstruction (x32)

Page 31: Light field imaging: modelling, parameterization and sparsificationclim.inria.fr/workshop/DSLF_Gotchev.pdf · 2019-07-02 · Light field imaging: modelling, parameterization and sparsification

How to handle full parallax

• Hierarchical reconstruction allows to use lower number of layers

Page 32: Light field imaging: modelling, parameterization and sparsificationclim.inria.fr/workshop/DSLF_Gotchev.pdf · 2019-07-02 · Light field imaging: modelling, parameterization and sparsification

Full parallax

Page 33: Light field imaging: modelling, parameterization and sparsificationclim.inria.fr/workshop/DSLF_Gotchev.pdf · 2019-07-02 · Light field imaging: modelling, parameterization and sparsification

Semi-transparent scenes

Page 34: Light field imaging: modelling, parameterization and sparsificationclim.inria.fr/workshop/DSLF_Gotchev.pdf · 2019-07-02 · Light field imaging: modelling, parameterization and sparsification

Non-Lambertian Scene

Ground Truth Shearlet Reconstruction SFFT[2]

[2] L. Shi, H. Hassanieh, A. Davis, D. Katabi, and F.

Durand, “Light field reconstruction using sparsity in

the continuous fourier domain,” ACM Trans. on

Graphics (TOG), vol. 34, no. 1, p. 12, 2014

Sergio Moreschini, Robert Bregovic, Atanas

Gotchev, Shearlet-Based Light Field

Reconstruction of Scenes with non-Lambertian

properties, 3DTV-CON 2018

Page 35: Light field imaging: modelling, parameterization and sparsificationclim.inria.fr/workshop/DSLF_Gotchev.pdf · 2019-07-02 · Light field imaging: modelling, parameterization and sparsification

Non-Lambertian Scene

Ground Truth Shearlet Reconstruction SFFT[2]

Page 36: Light field imaging: modelling, parameterization and sparsificationclim.inria.fr/workshop/DSLF_Gotchev.pdf · 2019-07-02 · Light field imaging: modelling, parameterization and sparsification

36

Non-Lambertian Scene

Shearlet Reconstruction SFFT[2]

Page 37: Light field imaging: modelling, parameterization and sparsificationclim.inria.fr/workshop/DSLF_Gotchev.pdf · 2019-07-02 · Light field imaging: modelling, parameterization and sparsification

Joint spatial-angular super-resolution

Page 38: Light field imaging: modelling, parameterization and sparsificationclim.inria.fr/workshop/DSLF_Gotchev.pdf · 2019-07-02 · Light field imaging: modelling, parameterization and sparsification

In angular direction….

Horizontal parallax light field Densely sampled light field

Page 39: Light field imaging: modelling, parameterization and sparsificationclim.inria.fr/workshop/DSLF_Gotchev.pdf · 2019-07-02 · Light field imaging: modelling, parameterization and sparsification

In spatial direction….

High resolution and densely sampled light field

Low spatial resolutionmulti-perspective images

Required high resolution images

𝐱𝐝𝐬𝐲 𝐱𝐬𝐫

𝐲 = 𝐇𝐬𝐩𝐭 𝐱𝐬𝐫 𝐱𝐬𝐫 = 𝐇𝐚𝐧𝐱𝐝𝐬

𝐇𝐬𝐩𝐭 - given decimation

matrix in spatial domain

𝐇𝐬𝐩𝐭 - decimation matrix

in angular dimension

Page 40: Light field imaging: modelling, parameterization and sparsificationclim.inria.fr/workshop/DSLF_Gotchev.pdf · 2019-07-02 · Light field imaging: modelling, parameterization and sparsification

argminxsr,xds

𝐲 − 𝐇𝐬𝐩𝐭 𝐱𝐬𝐫 𝟐

𝟐+ 𝛾 𝐱𝐬𝐫 −𝐇𝐚𝐧𝐱𝐝𝐬 𝟐

𝟐 + 𝜆 𝐒𝐱𝐝𝐬 𝟎

Spatial and angular super-resolution formulated as a variational optimization problem

Formulating the problem….

Page 41: Light field imaging: modelling, parameterization and sparsificationclim.inria.fr/workshop/DSLF_Gotchev.pdf · 2019-07-02 · Light field imaging: modelling, parameterization and sparsification

𝐲 − 𝐇𝐬𝐩𝐭 𝐱𝐬𝐫 𝟐

𝟐+ 𝛾 𝐱𝐬𝐫 −𝐇𝐚𝐧𝐱𝐝𝐬 𝟐

𝟐 + 𝜆 𝐒𝐱𝐝𝐬 𝟎

xsrk = xsr

k−1 + 𝜏 A y − Hsptxsrk−1 + 𝛾zk

A~Hspt−1

almost inverse, interpolation filter + guided filtering

𝐲 − 𝐇𝐬𝐩𝐭 𝐱𝐬𝐫 𝟐

𝟐+ 𝛾 𝐱𝐬𝐫 − zk

𝟐

𝟐, for fixed z𝐤 = 𝐇𝐚𝐧𝐱𝐝𝐬

Gradient descent

Spatial super-resolution

Page 42: Light field imaging: modelling, parameterization and sparsificationclim.inria.fr/workshop/DSLF_Gotchev.pdf · 2019-07-02 · Light field imaging: modelling, parameterization and sparsification

𝐲 − 𝐇𝐬𝐩𝐭 𝐱𝐬𝐫 𝟐

𝟐+ 𝛾 𝐱𝐬𝐫 −𝐇𝐚𝐧𝐱𝐝𝐬 𝟐

𝟐 + 𝜆 𝐒𝐱𝐝𝐬 𝟎

S. Vagharshakyan, R. Bregovic and A. Gotchev, "Accelerated Shearlet-Domain Light Field Reconstruction,"

in IEEE Journal of Selected Topics in Signal Processing, vol. 11, no. 7, pp. 1082-1091, Oct. 2017

𝛾 𝐱𝐬𝐫𝐤 −𝐇𝐚𝐧𝐱𝐝𝐬 𝟐

𝟐+ 𝜆 𝐒𝐱𝐝𝐬 𝟎, for fixed 𝐱𝐬𝐫

𝐤

Iterative thresholding in Shearlet transform domain

Angular super-resolution

Page 43: Light field imaging: modelling, parameterization and sparsificationclim.inria.fr/workshop/DSLF_Gotchev.pdf · 2019-07-02 · Light field imaging: modelling, parameterization and sparsification

Results: block-average x2

Mattia Rossi and Pascal Frossard, Geometry-Consistent Light Field

Super-Resolution Via Graph-Based Regularization, IEEE Tran. on

Image Processing, vol. 27, no. 9, pp. 4207-4218, Sep. 2018

Page 44: Light field imaging: modelling, parameterization and sparsificationclim.inria.fr/workshop/DSLF_Gotchev.pdf · 2019-07-02 · Light field imaging: modelling, parameterization and sparsification

Results: block-average x3

Page 45: Light field imaging: modelling, parameterization and sparsificationclim.inria.fr/workshop/DSLF_Gotchev.pdf · 2019-07-02 · Light field imaging: modelling, parameterization and sparsification

Results: block-average x4

Page 46: Light field imaging: modelling, parameterization and sparsificationclim.inria.fr/workshop/DSLF_Gotchev.pdf · 2019-07-02 · Light field imaging: modelling, parameterization and sparsification

Results: Gaussian average x2

Martin Alain, Aljosha Smolic, "Light Field Super-Resolution

via LFBM5D Sparse Coding", IEEE International

Conference on Image Processing (ICIP 2018), 2018

Page 47: Light field imaging: modelling, parameterization and sparsificationclim.inria.fr/workshop/DSLF_Gotchev.pdf · 2019-07-02 · Light field imaging: modelling, parameterization and sparsification

Results: Gaussian average x3

Page 48: Light field imaging: modelling, parameterization and sparsificationclim.inria.fr/workshop/DSLF_Gotchev.pdf · 2019-07-02 · Light field imaging: modelling, parameterization and sparsification

Results: Gaussian average x4

Page 49: Light field imaging: modelling, parameterization and sparsificationclim.inria.fr/workshop/DSLF_Gotchev.pdf · 2019-07-02 · Light field imaging: modelling, parameterization and sparsification

Compression

Page 50: Light field imaging: modelling, parameterization and sparsificationclim.inria.fr/workshop/DSLF_Gotchev.pdf · 2019-07-02 · Light field imaging: modelling, parameterization and sparsification

POC 0

POC 4

POC 8

POC 12

POC 16

• POC 0,4,8,12,16 are encoded with MV-HEVC.

• Predict & encode intermediate views with MV-HEVC.

• Predict & encode intermediate views with Shearlet transform.

• Anchor, encoded POC 0 to POC 16 with HEVC.

Research Methodology (Single Layer Example)

Compression

Page 51: Light field imaging: modelling, parameterization and sparsificationclim.inria.fr/workshop/DSLF_Gotchev.pdf · 2019-07-02 · Light field imaging: modelling, parameterization and sparsification

Sub-Sampling of

Views

Input 17x17 Views

Decoded 5x5 Views

MV-HEVC

Encoder

MV-HEVC

Decoder

5x5 Views

Shearlet

Transform

Prediction

Predicted [17x17 - 5x5] Views

Residual

Estimation

Reference [17x17 - 5x5] Views

MV-HEVC

Encoder

Encoded Stream

Proposed Compression Scheme

Encoder

Page 52: Light field imaging: modelling, parameterization and sparsificationclim.inria.fr/workshop/DSLF_Gotchev.pdf · 2019-07-02 · Light field imaging: modelling, parameterization and sparsification

Preprocessing

Encoded Stream

Decoded 5x5 Views

MV-HEVC

Decoder

Encoded 5x5 Views

Shearlet

Transform

Prediction

Residual

Compensation

17x17 Output Views

Proposed Compression Scheme

Decoder

MV-HEVC

Decoder

Predicted [17x17 - 5x5] Views

Residual [17x17 - 5x5] Views

Encoded Residual [17x17 - 5x5] Views

Page 53: Light field imaging: modelling, parameterization and sparsificationclim.inria.fr/workshop/DSLF_Gotchev.pdf · 2019-07-02 · Light field imaging: modelling, parameterization and sparsification

Compression

Delta SNR=-2.21

Truck Image

Rate Distortion curves between 17x17 Grid Encoded by HEVC & X265 and

17x17 Grid reconstructed by Shearlet (using 5x5 HEVC decoded grid)

Delta SNR=-3.88

X265 AnchorHEVC Anchor

Page 54: Light field imaging: modelling, parameterization and sparsificationclim.inria.fr/workshop/DSLF_Gotchev.pdf · 2019-07-02 · Light field imaging: modelling, parameterization and sparsification
Page 55: Light field imaging: modelling, parameterization and sparsificationclim.inria.fr/workshop/DSLF_Gotchev.pdf · 2019-07-02 · Light field imaging: modelling, parameterization and sparsification

HEVC, 35 dB

Page 56: Light field imaging: modelling, parameterization and sparsificationclim.inria.fr/workshop/DSLF_Gotchev.pdf · 2019-07-02 · Light field imaging: modelling, parameterization and sparsification

Shearlet, 39 dB

Page 57: Light field imaging: modelling, parameterization and sparsificationclim.inria.fr/workshop/DSLF_Gotchev.pdf · 2019-07-02 · Light field imaging: modelling, parameterization and sparsification

Compression

Delta SNR=-0.17

Bunny Image

Rate curves between 17x17 Grid Encoded by HEVC and 17x17

Grid reconstructed by Shearlet (using 5x5 HEVC decoded grid)

Delta SNR= -1.85

X265 AnchorHEVC Anchor

Page 58: Light field imaging: modelling, parameterization and sparsificationclim.inria.fr/workshop/DSLF_Gotchev.pdf · 2019-07-02 · Light field imaging: modelling, parameterization and sparsification

Ground Truth

Page 59: Light field imaging: modelling, parameterization and sparsificationclim.inria.fr/workshop/DSLF_Gotchev.pdf · 2019-07-02 · Light field imaging: modelling, parameterization and sparsification

HEVC with PSNR 37 dB

Page 60: Light field imaging: modelling, parameterization and sparsificationclim.inria.fr/workshop/DSLF_Gotchev.pdf · 2019-07-02 · Light field imaging: modelling, parameterization and sparsification

Shearlet with PSNR 41 dB

Page 61: Light field imaging: modelling, parameterization and sparsificationclim.inria.fr/workshop/DSLF_Gotchev.pdf · 2019-07-02 · Light field imaging: modelling, parameterization and sparsification

Applications

Page 62: Light field imaging: modelling, parameterization and sparsificationclim.inria.fr/workshop/DSLF_Gotchev.pdf · 2019-07-02 · Light field imaging: modelling, parameterization and sparsification

Continuous refocusing for

integral microscopy with

Fourier plane recording

Page 63: Light field imaging: modelling, parameterization and sparsificationclim.inria.fr/workshop/DSLF_Gotchev.pdf · 2019-07-02 · Light field imaging: modelling, parameterization and sparsification
Page 64: Light field imaging: modelling, parameterization and sparsificationclim.inria.fr/workshop/DSLF_Gotchev.pdf · 2019-07-02 · Light field imaging: modelling, parameterization and sparsification
Page 65: Light field imaging: modelling, parameterization and sparsificationclim.inria.fr/workshop/DSLF_Gotchev.pdf · 2019-07-02 · Light field imaging: modelling, parameterization and sparsification
Page 66: Light field imaging: modelling, parameterization and sparsificationclim.inria.fr/workshop/DSLF_Gotchev.pdf · 2019-07-02 · Light field imaging: modelling, parameterization and sparsification

• Conversion of light fields to several different types of holographic representations (e.g. holographic stereogram,

Fresnel holograms) are studied.

• For example, hogels of holographic stereograms consist of several windowed planes waves (propagating to different

directions) whose intensities are defined by the captured light field:

𝑂𝐻𝑆 𝑥 =

𝑚

rect𝑥 − 𝑚∆𝑥

∆𝑥×

𝑖

𝐿 𝑚, 𝑖 exp 𝑗2𝜋𝑓𝑥𝑚𝑖𝑥

Hologram generation from light fields

Page 67: Light field imaging: modelling, parameterization and sparsificationclim.inria.fr/workshop/DSLF_Gotchev.pdf · 2019-07-02 · Light field imaging: modelling, parameterization and sparsification

• Holograms usually impose dense capture of light fields, which requires tedious work e.g. by camera rigs.

• We demonstrated that the capture constraints can be significantly relieved by utilizing the shearlet decomposition

based light field reconstruction. Thus, it becomes possible to use camera arrays.

Perceived images by human eye at different

viewpoints corresponding to LFs with

(a) 1mm, (b) 8mm baselines.

(hologram reconstructions are simulated via

wave field propagation)

(a) (b)

Sahin E., Vagharshakyan S., Mäkinen J., Bregovic R., Gotchev A. “Shearlet-domain light field reconstruction for

holographic stereogram generation”, 2016 IEEE Int. Conf. Image Processing (ICIP). IEEE, 2016. p. 1479-1483.

Hologram generation from light fields

Page 68: Light field imaging: modelling, parameterization and sparsificationclim.inria.fr/workshop/DSLF_Gotchev.pdf · 2019-07-02 · Light field imaging: modelling, parameterization and sparsification

Light field displays

Page 69: Light field imaging: modelling, parameterization and sparsificationclim.inria.fr/workshop/DSLF_Gotchev.pdf · 2019-07-02 · Light field imaging: modelling, parameterization and sparsification

Fourier analysis of Light Field displays

• Projection-based LF displays

• Optical modules

• Ray generators

• Holographic screen

• Discrete to continuous conversion

• LF reconstruction instead of views

T. Balogh, “The HoloVizio system,” Proc. SPIE 6055, 2006

Page 70: Light field imaging: modelling, parameterization and sparsificationclim.inria.fr/workshop/DSLF_Gotchev.pdf · 2019-07-02 · Light field imaging: modelling, parameterization and sparsification

Ray Propagation in LF displays

x

z

Screenplane(s)

(x,z) = (0,0)

zp1

Ray generator(RG) plane

dp

ds

1 Np

FOVp

Ray r

zp2

zp3

zp4

Samplingpatterns

Page 71: Light field imaging: modelling, parameterization and sparsificationclim.inria.fr/workshop/DSLF_Gotchev.pdf · 2019-07-02 · Light field imaging: modelling, parameterization and sparsification

LF sampling topologies in ray space

-2 0 2-2

-1

0

1

2

x

-2 0 2-2

-1

0

1

2

x

-2 0 2-2

-1

0

1

2

x

-4 -2 0 2 4-4

-2

0

2

4

x

-4 -2 0 2 4-4

-2

0

2

4

x

zp1 zp3

-50 0 50-4

-2

0

2

4

x

-50 0 50-4

-2

0

2

4

x

-20 0 20-4

-2

0

2

4

x

zp2

z=0

z=0

zp2 zp4

zp4

Page 72: Light field imaging: modelling, parameterization and sparsificationclim.inria.fr/workshop/DSLF_Gotchev.pdf · 2019-07-02 · Light field imaging: modelling, parameterization and sparsification

Display bandwidth

• Angular-spatial bandwidth at the screen level

determined by the size of the Voronoi cells

calculated for the sampling grid at the screen

plane

• Determines the display passband (throughput)

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

R. Bregović, P. T. Kovács, A. Gotchev, “Optimization of light field display-camera

configuration based on display properties in spectral domain,” Opt. Express, Feb. 2016.

Page 73: Light field imaging: modelling, parameterization and sparsificationclim.inria.fr/workshop/DSLF_Gotchev.pdf · 2019-07-02 · Light field imaging: modelling, parameterization and sparsification

Display-camera setup

xc

zp

Ray

generators

plane

Screen

plane

Viewing /

camera

plane

(0,0)

z

xxp

s

FOVcam

FOVproj

zc

Nc

Np1

1

Finite number of rays

generated by the display

Limited display

bandwidth

Enough ‘correct’ rays

captured by cameras

Page 74: Light field imaging: modelling, parameterization and sparsificationclim.inria.fr/workshop/DSLF_Gotchev.pdf · 2019-07-02 · Light field imaging: modelling, parameterization and sparsification

Display bandwidth at camera plane

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Ω Ω

Ω x

Page 75: Light field imaging: modelling, parameterization and sparsificationclim.inria.fr/workshop/DSLF_Gotchev.pdf · 2019-07-02 · Light field imaging: modelling, parameterization and sparsification

Camera setup for optimal capture

-0.5 0 0.5-20

-10

0

10

20

x

Blue: 𝑆 ҧ𝑧𝑐 𝑃∗ 𝑉( ҧ𝑥𝑝, ത𝛼𝑝, ҧ𝑧𝑝)

Green: 𝑃∗ 𝑉( ҧ𝑥𝑐 , ത𝛼𝑐)Red: 𝑃∗ 𝑉(𝑥𝑐

𝐵𝐼𝐺 , 𝛼𝑐𝐵𝐼𝐺)

• Optimal with respect to a given display

• Desired visualization quality

• Determine the optimal display setup

• Given a display setup

• Determine the optimal capture (data) setup

• Will never have matching data

• LF interpolation / reconstruction needed

Page 76: Light field imaging: modelling, parameterization and sparsificationclim.inria.fr/workshop/DSLF_Gotchev.pdf · 2019-07-02 · Light field imaging: modelling, parameterization and sparsification

Conclusions

• Light Field technologies capable of recreating 3D visual cues beyond binocularity

• Densely Sampled Light Field as an LF representation capable to deliver the desired density

of rays for recreating focus and continuous parallax visual cues

• Computational imaging tools for DSLF reconstruction from sparse cameras

• Research challenges related with the computational complexity of LF reconstruction

techniques

• Research challenges related with the LF display technologies

Page 77: Light field imaging: modelling, parameterization and sparsificationclim.inria.fr/workshop/DSLF_Gotchev.pdf · 2019-07-02 · Light field imaging: modelling, parameterization and sparsification

Thank you for your attention!