lifting line theory revisited

Embed Size (px)

Citation preview

  • 8/9/2019 lifting line theory revisited

    1/19

    Lifting Line Theory

  • 8/9/2019 lifting line theory revisited

    2/19

    Lifting Line Theory• Applies to large aspect ratio unswept wings at small angle of attack.• Developed by Prandtl and Lanchester during the early 20 th century.• Relevance

    – Analytic results for simple wings – Basis of much of modern wing theory (e.g. helicopter rotor aerodynamic

    analysis, extends to vortex lattice method,) – Basis of much of the qualitative understanding of induced drag and aspect

    ratio

    1875-19531868-1946

    Γ h

    V

    π 4

    Γ=

    h

    Biot Savart Law:Velocity produced by asemi-infinite segment of

    a vortex filament

    Thin-airfoil theoryC l=2 π(α-αo)

  • 8/9/2019 lifting line theory revisited

    3/19

    Large Aspect Ratio? Unswept?

  • 8/9/2019 lifting line theory revisited

    4/19

    O u t w

    a s h

    Physics of an Unswept Wingl, Γ

    y

    pu

  • 8/9/2019 lifting line theory revisited

    5/19

    Simplest Possible ModelSection A-A

    α ε

    V ∞ -w

    l

    ε

    d i

    c

    α = α (y) Geometric angle of attack ε = ε (y) Downwash angle-w=-w (y) Downwash velocityc=c (y) Chordlengths Half spanl Lift per unit spand i Drag per unit span

    Induced dragb

    Total drag coeff

    S V L

    C L 221

    = ρ

    S V

    DC i

    D i 221 ∞

    = ρ

    Total lift coeff

    A

    A

    Wake model Section model

  • 8/9/2019 lifting line theory revisited

    6/19

    LLT – The Wake ModelΓ

    y1 y

    dy1

    Strength ofvortex shed at y1=

    • Assume role up of wake unimportant• Assume wake remains in a planeparallel to the free stream• Model wake using single vortex sheetstarting at the quarter chord

    Downwash at y dueto vortex shed at y1 )(4

    )(1

    11

    y y

    dydyd

    ydw y−

    Γ−=−

    π

    Downwash at ydue to entire wake ∫

    − −

    Γ=

    s

    s

    y

    y y

    dydyd

    yw)(4

    )(1

    11

    π

    s-s

  • 8/9/2019 lifting line theory revisited

    7/19

    LLT – The Section Model

    α ε

    V ∞ -w

    l

    ε

    d i

    =Γ==∞

    ∞ cV V

    cV l

    C l 2212

    21 ρ

    ρ ρ

    wccV π α α π +−=Γ ∞ )( 0

    Sectional lift coefficient

    • Assume flow over each section 2Dand determined by downwash at ¼

    chord, and thin airfoil theory

    So

    Sectional forces Γ≈ ∞V l ρ Γ−≈Γ≈ ∞ wV d i ρ ε ρ

    ∫−

    ∞ Γ≈s

    s

    dyV L ρ ∫−

    Γ−≈s

    si dyw D ρ

    ∫−∞∞

    Γ≈=s

    s

    L dy

    S V S V

    LC

    22

    21

    ρ ∫

    −∞∞

    Γ≈=s

    s

    i D dyw

    S V S V

    DC

    i 22

    2

    1

    2

    ρ

    Total Forcesintegrated over span

    Total Coefficients

  • 8/9/2019 lifting line theory revisited

    8/19

    The Monoplane EquationWake model

    Section model∫− −

    Γ=

    s

    s

    y

    y ydydy

    d

    yw)(4

    )(1

    11

    π

    wccV π α α π +−=Γ ∞ )( 0

    l, Γ

    ys-s

    ∫−

    ∞ −

    Γ+−=Γ

    s

    s

    y

    y y

    dydyd

    ccV

    1

    1

    01

    4)( α α π

    0 π θ

    θ cos/ −=s y

    Substitute for θ , and expressΓ as a sine series in θ

    ∑∞

    =∞=Γ

    odd nn n AsU

    ,1

    )sin(4 θ

    ⎥⎦

    ⎢⎣

    ⎡ +=− ∑∞

    π θ θ α α

    π sin

    4)sin(sin)(

    4 ,10 s

    cnn A

    sc

    odd nn The Monoplane Eqn.

  • 8/9/2019 lifting line theory revisited

    9/19

    Results

    ∫− −

    Γ=

    s

    s

    y

    y y

    dydyd

    yw)(4

    )(1

    11

    π ∫−∞Γ=

    s

    s L dyS V

    C 2 ∫

    −∞

    Γ=s

    s D dywS V

    C i 2

    2

    ∑∞

    =∞=Γ

    odd nn n AsU

    ,1

    )sin(4 θ Substituting

    into

    • Lift increases with aspect ratio• For planar wings at least lift goes linearly with angle of attack and liftcurve slope increases with aspect ratio (to 2 π at ∞)

    • Drag decreases with aspect ratio and goes as the lift squared?• Downwash tends to be largest at the wing tips ?• Drag is minimum for a wing for which An=0 for n≥ 3.

    So,

    gives 1 A ARC L π =)1(

    2

    δ π

    += ARC

    C L D i

    ∑∞

    =

    =odd n

    n A An,3

    21 )/(δ θ

    θ

    sin

    )sin(,1∑

    =

    −= odd nn nnA

    V wα

    ⎥⎦

    ⎢⎣

    ⎡ +=− ∑∞

    π θ θ α α

    π sin

    4)sin(sin)(

    4 ,10

    s

    cnn A

    s

    c

    odd nn

  • 8/9/2019 lifting line theory revisited

    10/19

    Solution of monoplane equation⎥⎦

    ⎢⎣

    ⎡ +=− ∑∞

    π θ θ α α

    π sin

    4)sin(sin)(

    4 ,10 s

    cnn A

    sc

    odd nn

    ys-s0 π θ

    θ cos/ −=s y

    1. Decide on the number of terms N needed for the sine series for Γ 2. Select N points across the half span, evenly spaced in θ 3. At each point evaluate c, α , α 0 and thus the NxN matrix of terms that

    multiplies the An’s and the N terms on the left hand side4. Solve for the An’s by matrix division5. Evaluate CL, CDi , w(y), and Γ(y).

  • 8/9/2019 lifting line theory revisited

    11/19

    s=2. 8; %Hal f span ( di st ances nor mal i zed on r oot chor d)al pha=5*pi / 180; %5 degr ees angl e of at t ackal pha0=- 5. 4*pi / 180; %Zer o l i f t AoA=- 5. 4 deg. f or Cl ar k YN=20; %N=20 poi nt s acr oss hal f spant h=[ 1: N] ' / N*pi / 2; %Col umn vect or of t het a' sy=- cos( t h) *s; %Spanwi se posi t i onc=ones( si ze( t h) ) ; %Rect angul ar wi ng, so c = c_r ever ywher en=1: 2: 2*N- 1; %Row vect or of odd i ndi ces

    r es=pi *c/ 4/ s . *( al pha- al pha0) . *s i n( t h) ; %N by 1 r esul t vect orcoef =si n( t h*n) . *( pi *c*n/ 4/ s+r epmat ( si n( t h) , 1, N) ) ; %N by N coef f i ci ent mat r i xa=coef \ r es; %N by 1 sol ut i on vect or

    gamma=4*si n( t h*n) *a; %Nor mal i zed on ui nf and sw=- ( s i n( t h* n) * ( a. * n' ) ) . / si n( t h) ;AR=2*s/ mean( c) ;CL=AR*pi *a( 1) ;CDi =CL 2̂/ pi / AR*( 1+n( 2: end) *( a( 2: end) . 2̂/ a( 1) . 2̂) ) ;

    1. Decide on the number of terms N needed for the sine series for Γ 2. Select N points across the half span, evenly spaced in θ 3. At each point evaluate c, α , α 0 and thus the NxN matrix of terms that

    multiplies the An’s and the N terms on the left hand side4. Solve for the An’s by matrix division5. Evaluate CL, CDi , w(y), and Γ(y).

    ⎥⎦

    ⎢⎣

    ⎡ +=− ∑∞

    π θ θ α α

    π sin

    4)sin(sin)(

    4 ,10 s

    cnn A

    sc

    odd nn

    1 A ARC L π =)1(

    2

    δ π

    += ARC

    C L D i

    ∑∞

    =∞=Γ

    odd nn n AsU

    ,1

    )sin(4 θ

    llt.m

  • 8/9/2019 lifting line theory revisited

    12/19

    Example

    -1 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 00

    0.05

    0.1

    0.15

    0.2

    Γ / V

    ∞ s

    CL=0.80783, C Di=0.038738

    -1 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0-0.2

    -0.15

    -0.1

    -0.05

    0

    y/s

    - w / V

    0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

    0.05

    0.1

    x/c

    y / c αo≈-5.4 o

    Determine aerodynamic characteristics

    of our rectangular Clark Y wing

    Our AR=5.6 Rectangular Clark Y Wing

  • 8/9/2019 lifting line theory revisited

    13/19

    Drag Polar ARC

    C L D π

    2

    = Curve for minimumdrag (elliptical wing)

    Note that friction drag coefficient of 0.01 added to CDi

  • 8/9/2019 lifting line theory revisited

    14/19

    If we pretend wing is elliptical…

    -1 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 00

    0.05

    0.1

    0.15

    0.2

    Γ / V

    ∞ s

    CL=0.80783, C Di=0.038738

    -1 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0-0.2

    -0.15

    -0.1

    -0.05

    0

    y/s

    - w / V

    041.0

    856.02

    )(2

    2

    0

    ==

    =+

    −=

    ARC

    C

    AR AR

    C

    L D

    L

    i π

    α α π

    AR=5.6, α =5 o, α 0=-5.6 o

    Thus, an elliptical lift distribution can often be a good approximation!

  • 8/9/2019 lifting line theory revisited

    15/19

    The Elliptic WingThe minimum drag occurs for a wing for which An=0 for n≥ 3. For this wing:

    ( )s y /cos −=θ

    14

    22

    1

    =⎟ ⎠ ⎞

    ⎜⎝ ⎛ +

    ⎟⎟

    ⎞⎜⎜

    ⎛ Γ⇒

    ∞ s y

    s AV

    )sin(4)sin(4 1,1

    θ θ sAU n AsU odd n

    n ∞

    =∞ ==Γ ∑

    1,1

    sin

    )sin( A

    nnA

    V w odd n

    n

    −=−=∑∞

    =

    ∞ θ

    θ

    wccV π α α π +−=Γ ∞ )( 0

    π α α π 10 )( AV V c

    ∞∞ −−Γ=⇒

    • If the wing is untwisted, the chordlength isproportional to circulation and thus also hasan elliptical form

    • Lift distribution has an elliptical shape.

    • Downwash velocity is constant across span

    1.

    2.

    3.

  • 8/9/2019 lifting line theory revisited

    16/19

    Spitfire

    Note that the chordlengths are all lined up along the quarter chord line sothe actual wing shape is not an ellipse

  • 8/9/2019 lifting line theory revisited

    17/19

    Further results1 A ARC L π = AR

    C C L D i π

    2

    = 1 AV w −=∞

    But what is A1?

    s AV ss AV r

    r 1

    22

    1

    410

    4 ∞

    =Γ⇒=⎟ ⎠ ⎞

    ⎜⎝ ⎛ +

    ⎟⎟

    ⎞⎜⎜

    ⎛ Γ

    π α α π 10 )( AV V c r r

    ∞∞ −−Γ=

    Planform area of elliptic wing is r scS π 21=

    Now

    and

    Substituting and solving for A1 gives )2/()(2 01 +−= AR A α α

    And thus2

    )(22

    )(2 00+

    −−=+

    −=∞ ARV

    w AR

    ARC L

    α α α α π

    …confirming our earlier presumption about aspect ratio effects on CL

  • 8/9/2019 lifting line theory revisited

    18/19

  • 8/9/2019 lifting line theory revisited

    19/19

    Geometrically Similar WingsThese results work quite well even for non-elliptical wings:

    ⎟⎟ ⎠

    ⎞⎜⎜⎝

    ⎛ −=−

    B A

    L B A AR AR

    C 11π α α ⎟⎟ ⎠

    ⎞⎜⎜⎝

    ⎛ −=−

    B A

    L D D AR AR

    C C C iBiA

    112

    π

    Prandtl’s ClassicRectangular WingData for Different

    Aspect Ratios

    Prandtl’srescaling usingLLT result to

    AR=5