lecture3_16

Embed Size (px)

Citation preview

  • 7/31/2019 lecture3_16

    1/18

    16.711 Lecture 3 Optical fibers

    Last lecture

    Geometric optic view of waveguide, numeric aperture Symmetric planar dielectric Slab waveguide

    Modal and waveguide dispersion in palnar waveguide

    Rectangular waveguide, effective index method

  • 7/31/2019 lecture3_16

    2/18

    16.711 Lecture 3 Optical fibers

    Today

    Fiber modes Fiber Losses

    Dispersion in single-mode fibers

    Dispersion induced limitations

    Dispersion management

    The Graded index fibers

  • 7/31/2019 lecture3_16

    3/18

    16.711 Lecture 3 Optical fibers

    Fiber modes --- single mode and multi-mode fibers

    V-number

    ,2

    2

    2

    1

    2

    2

    2

    nn

    nnb

    eff

    ,)/996.01428.1( 2Vb

    ,)(2 2/12

    2

    2

    1 nna

    V

    ,41.2)(

    2 2/122

    2

    1 nna

    Vc

    cutoff

    Number of modes when V>>2.41

    ,2

    2

    VM

    Normalized propagation constant

    for V between 1.52.5.

    Mode field diameter (MFD)

    ),11(22

    Vaw

  • 7/31/2019 lecture3_16

    4/18

    16.711 Lecture 3 Optical fibers

    Examples --- single mode and multi-mode fibers

    1. Calculate the number of allowed modes in a multimode step index fiber, a = 100 m, core

    index of 1.468 and a cladding index of 1.447 at the wavelength of 850nm.

    ,44.91)(2 2/12

    2

    2

    1 nna

    V

    ,4181

    2

    2

    V

    M

    Solution:

    a < 2.1m

    2. What should be the core radius of a single mode fiber that has the core index of 1.468 and the

    cladding index of 1.447 at the wavelength of 1.3m.

    ,4.2)(2 2/12

    2

    2

    1 nna

    V

    Solution:

    3. Calculate the mode field diameter of a single mode fiber that has the core index of 1.458 and

    the cladding index of 1.452 at the wavelength of 1.3m.

    ,1.10)/11(22 0 mVaw

    Solution:

  • 7/31/2019 lecture3_16

    5/18

  • 7/31/2019 lecture3_16

    6/18

  • 7/31/2019 lecture3_16

    7/18

    16.711 Lecture 3 Optical fibers

    Dispersions in single mode fiber

    Waveguide dispersion

    ,|0

    d

    dvg ,

    g

    gv

    L

    ,

    2)2(

    984.1)(

    2

    2

    2

    2

    cna

    N

    d

    d

    L

    gg

    , LDmg

    Example --- waveguide dispersion

    n2 = 1.48, and delta n = 0.2 percent. Calculate Dw at 1310nm.

    Solution:

    ,)()(

    )(2

    2

    212

    dV

    VbdV

    c

    nnn

    d

    d

    L

    g

    ,)()(2

    2

    212

    dV

    VbdV

    c

    nnnDw

    ,)/996.01428.1( 2Vb for V between 1.52.5.

    ,26.0)(2

    2

    dV

    VbdV

    ),/(9.1)()(2

    2

    212 kmnmps

    dV

    VbdV

    c

    nnnDw

  • 7/31/2019 lecture3_16

    8/18

    16.711 Lecture 3 Optical fibers

    chromatic dispersion (material plus waveduide dispersion)

    ,)(

    wm

    gDD

    L

    material dispersion is determined by

    the material composition of a fiber.

    waveguide dispersion is determined

    by the waveguide index profile of a

    fiber

  • 7/31/2019 lecture3_16

    9/18

    16.711 Lecture 3 Optical fibers

    Polarization mode dispersion

    , pg D

    L

    fiber is not perfectly symmetric,

    inhomogeneous.

    refractive index is not isotropic.

    dispersion flattened fibers:

    Use waveguide geometry and

    index profiles to compensate

    the material dispersion

  • 7/31/2019 lecture3_16

    10/18

    16.711 Lecture 3 Optical fibers

    Dispersion induced limitations

    ,

    2

    1

    2/1

    B

    For RZ bit With no intersymbol interference

    ,1

    2/1B

    For NRZ bit With no intersymbol interference

  • 7/31/2019 lecture3_16

    11/18

    16.711 Lecture 3 Optical fibers

    Dispersion induced limitations

    ,212/1

    B

    Optical and Electrical Bandwidth

    ,7.03 Bf dB

    Bandwidth length product

    ,25.0

    D

    BL

  • 7/31/2019 lecture3_16

    12/18

    16.711 Lecture 3 Optical fibers

    Dispersion induced limitations

    ,16/ 12/1 pskmDL

    ,8.27.03 GHzBf dB

    ,9.3625.0 1kmGbsD

    BL

    Example --- bit rate and bandwidthCalculate the bandwidth and length product for an optical fiber with chromatic dispersion

    coefficient 8pskm-1nm-1 and optical bandwidth for 10km of this kind of fiber and linewidth of

    2nm.

    Solution:

    Fiber limiting factor absorption or dispersion?

    ,5.21025.0 dBkmdBLoss

  • 7/31/2019 lecture3_16

    13/18

    16.711 Lecture 3 Optical fibers

    Dispersion Management

    ],)(2

    1exp[),0(

    2

    0

    0T

    tAtA ),

    2exp()2(),0(

    ~2

    0

    22/12

    00

    TTAA

    ,

    1

    0

    0T

    Pre compensation schemes

    1. Prechirp

    Gaussian Pulse:

    ...,|2

    1)(|)(

    000 2

    2

    0

    d

    kd

    d

    dkkk

    ...,)(2

    1...|)(|

    )()( 22102

    2

    00 00

    d

    d

    d

    d

    c

    k

    ),2

    exp(),0(~),(

    ~2 z

    iAzA

    ],)(2

    1exp[)(

    )2

    exp(),0(~

    2

    1),(

    2

    0

    020

    zQTzQ

    Adz

    iAtzA

    ,1)( 20

    2

    TzizQ ,])(1[)( 0

    2/122

    0

    2 TTzzT

  • 7/31/2019 lecture3_16

    14/18

    16.711 Lecture 3 Optical fibers

    Dispersion Management

    ],)(2

    )1(exp[),0(

    2

    0

    0T

    tiCAtA

    ),

    )1(2exp()

    1

    2(),0(

    ~2

    0

    22/1

    2

    00

    iC

    T

    iC

    TAA

    Pre compensation schemes

    1. Prechirp

    Prechirped Gaussian Pulse:

    ],)1()1(2

    exp[)1

    2()

    2exp(),0(

    ~),(

    ~2

    2

    2

    02

    2

    2

    0

    22/1

    2

    00

    2

    2C

    iCT

    C

    T

    iC

    TAz

    iAzA

    ],)(2

    1exp[)(

    )2

    exp(),0(~

    2

    1),(

    2

    0

    020

    zQTzQ

    Adz

    iAtzA

    ,)(

    1)(2

    0

    2

    T

    ziCzQ

    ,])()1[()(

    0

    2/12

    2

    0

    22

    2

    0

    2 TT

    z

    T

    zCzT

    ,1)1(0

    2/12

    0T

    C

  • 7/31/2019 lecture3_16

    15/18

    16.711 Lecture 3 Optical fibers

    Dispersion Management

    1. Prechirp

    With T1/T0 = sqrt(2), the transmission distance is:

    ,1

    212

    2

    DLC

    CCL

    ,/ 2

    2

    0 TLD

  • 7/31/2019 lecture3_16

    16/18

    16.711 Lecture 3 Optical fibers

    Dispersion Management

    Examples:

    ),(1052

    1 11

    sBTFWHM

    1. Whats the dispersion limited transmission distance for a 1.55m light wave system making

    use of direct modulation at 10Gb/s? D = 17ps(km-nm). Assume that frequency chirping

    broadens the guassian-shape by a factor of 6 from its transform limited width.

    Solution:

    ,10366.1/11

    0 sTT FWHM

    ,1)1(0

    2/12

    0T

    C ,9.5C

    ,])()1[()( 002/12

    2

    0

    22

    2

    0

    2 TTT

    z

    T

    zCzT

    ,2

    22

    cD ,/24

    2

    2 kmps

    ,12kmz

  • 7/31/2019 lecture3_16

    17/18

    16.711 Lecture 3 Optical fibers

    Dispersion compensation fiber or dispersion shifted fiber

    Why dispersion compensation fiber:

    02211 LDLD

    for long haul fiber optic communication.

    Alloptical solution

    Approaches

    ),(2

    2

    d

    nd

    cDm

    longer wavelength has

    a larger index.

    make the waveguide

    weakly guided so that

    longer wavelength has a

    lower index.

  • 7/31/2019 lecture3_16

    18/18

    16.711 Lecture 3 Optical fibers

    The Graded index fibers

    02211 LDLD

    Approaches

    ,;)1(1

    ,];)/(1[)(

    2

    1

    ann

    aann

    General case Intermode dispersion

    ,1

    2

    2

    d

    dn

    ndz

    d

    ),sin(')cos( 00 pzpz

    ,)/2(2/12

    ap ,/2 pz

    ,32021

    c

    nL

    Only valid for paraxial approximation

    Calculate the BL product of a grade index filber of 50m core with refractive index of n1 =

    1.480 and n2 = 1.460. At 1.3 m.

    ,6.925.0 1kmGbsLBL

    Solution:

    ,026.032021 ns

    cnL