Lecture Capacity Investment Planning Stochastic Model

  • Upload
    lte002

  • View
    216

  • Download
    0

Embed Size (px)

Citation preview

  • 8/20/2019 Lecture Capacity Investment Planning Stochastic Model

    1/14

    1

    Capacity PlanningCapacity Planning

    under Uncertaintyunder Uncertainty

    CHE: 5480CHE: 5480

    Economic Decision Making in the Process IndustryEconomic Decision Making in the Process Industry

    Prof. Miguel BagajewiczProf. Miguel Bagajewicz

    University of OklahomaUniversity of Oklahoma

    School of Chemical Engineering and Material ScienceSchool of Chemical Engineering and Material Science

  • 8/20/2019 Lecture Capacity Investment Planning Stochastic Model

    2/14

    2

    Characteristics of Two-StageCharacteristics of Two-StageStochastic Optimization ModelsStochastic Optimization Models

    PhilosophyPhilosophy• Maximize theMaximize the Expected Value Expected Value of the objective over all possible realizations of of the objective over all possible realizations of 

      uncertain parameters.uncertain parameters.

    • Typically, the objective isTypically, the objective is Profit  Profit  oror Net Present Value Net Present Value..

    • Sometimes the minimization ofSometimes the minimization of Cost Cost  is considered as objective.is considered as objective.

     UncertaintyUncertainty• Typically, the uncertain parameters are:Typically, the uncertain parameters are: market demands, availabilities,market demands, availabilities,

      prices, process yields, rate of interest, inflation, etc. prices, process yields, rate of interest, inflation, etc.

    • n T!o"Sta#e Pro#rammin#, uncertainty is modeled throu#h a finite numbern T!o"Sta#e Pro#rammin#, uncertainty is modeled throu#h a finite number

      of independentof independent Scenarios Scenarios..

    • Scenarios are typically formed byScenarios are typically formed by random samplesrandom samples ta$en from the probabilityta$en from the probability

      distributions of the uncertain parameters.distributions of the uncertain parameters.

  • 8/20/2019 Lecture Capacity Investment Planning Stochastic Model

    3/14

    3

     %irst"Sta#e &ecisions%irst"Sta#e &ecisions• Ta$en before the uncertainty is revealed. They usually correspond to structuralTa$en before the uncertainty is revealed. They usually correspond to structural

    decisions 'not operational(.decisions 'not operational(.

    • )lso called *+ere and o!- decisions.)lso called *+ere and o!- decisions.• epresented by *&esi#n- /ariables.epresented by *&esi#n- /ariables.

    • 0xamples:0xamples:

    Characteristics of Two-StageCharacteristics of Two-StageStochastic Optimization ModelsStochastic Optimization Models

    −To build a plant or not. +o! much capacity should be added, etc.To build a plant or not. +o! much capacity should be added, etc.

    −To place an order no!.To place an order no!.

    −To si#n contracts or buy options.To si#n contracts or buy options.

    −To pic$ a reactor volume, to pic$ a certain number of trays and sizeTo pic$ a reactor volume, to pic$ a certain number of trays and size

    the condenser and the reboiler of a column, etcthe condenser and the reboiler of a column, etc

  • 8/20/2019 Lecture Capacity Investment Planning Stochastic Model

    4/14

    4

     Second"Sta#e &ecisionsSecond"Sta#e &ecisions

    • Ta$en in order to adapt the plan or desi#n to the uncertain parametersTa$en in order to adapt the plan or desi#n to the uncertain parameters

    realization.realization.

    • )lso called *ecourse- decisions.)lso called *ecourse- decisions.

    • epresented by *1ontrol- /ariables.epresented by *1ontrol- /ariables.• 0xample: the operatin# level2 the production slate of a plant.0xample: the operatin# level2 the production slate of a plant.

    • Sometimes first sta#e decisions can be treated as second sta#e decisions.Sometimes first sta#e decisions can be treated as second sta#e decisions.

    n such case the problem is called a multiple sta#e problem.n such case the problem is called a multiple sta#e problem.

    Characteristics of Two-StageCharacteristics of Two-StageStochastic Optimization ModelsStochastic Optimization Models

  • 8/20/2019 Lecture Capacity Investment Planning Stochastic Model

    5/14

    5

     Two-Stage Stochastic Formulation Two-Stage Stochastic Formulation

    30)30) M4&03 SPM4&03 SP

     xc yq p Max T 

     s s

    T  s s   −∑   xc yq p Max

     s s

    T  s s   −∑

    b Ax=b Ax=

     X  x x   ∈≥0   X  x x   ∈≥0

     s s s  hWy xT    =+   s s s   hWy xT    =+

    0≥ s

     y 0≥ s y

     s.t.

    %irst"Sta#e 1onstraints%irst"Sta#e 1onstraints

    Second"Sta#e 1onstraintsSecond"Sta#e 1onstraints

    ecourseecourse

    %unction%unction

    %irst"Sta#e%irst"Sta#e

    1ost1ost

    %irst sta#e variables

    Second Sta#e /ariables

    Technolo#y matrix

    ecourse matrix '%ixed ecourse(

    Sometimes not fixed 'nterest rates in Portfolio 4ptimization(

    Complete recourse: therecourse cost (or profit) for

    every possible uncertainty

    realization remains finite,

    inepenently of the first!sta"e

    ecisions (#)$

     Relatively complete recourse: 

    the recourse cost (or profit) is

    feasible for the set of feasible

    first!sta"e ecisions$ %his

    conition means that for every

    feasible first!sta"e ecision,

    there is a &ay of aaptin" the

     plan to the realization ofuncertain parameters$

    'e also have foun that one

    can sacrifice efficiency for

    certain scenarios to improve

    ris mana"ement$ 'e o notno& ho& to call this yet$

    3et us leave it linear

    because as is it is

    complex enou#h.555

  • 8/20/2019 Lecture Capacity Investment Planning Stochastic Model

    6/14

    Process Planning Under UncertaintyProcess Planning Under Uncertainty

    46701T/0S46701T/0S**  Maximize 0xpected et Present /alueMaximize 0xpected et Present /alue

     Minimize %inancial is$ Minimize %inancial is$ 

     Production 3evelsProduction 3evels

    &0T0M0&0T0M0**  et!or$ 0xpansionset!or$ 0xpansionsTiming Timing 

    Sizing Sizing 

     Location Location

    8/0:8/0:  Process et!or$ Process et!or$ Set of ProcessesSet of Processes

    Set of ChemicalsSet of Chemicals)) 99

    11

    &&;;

    66

     %orecasted &ata%orecasted &ata eman!s " A#ailabilities eman!s " A#ailabilities

    Costs " PricesCosts " Prices

    Capital $%!get Capital $%!get 

  • 8/20/2019 Lecture Capacity Investment Planning Stochastic Model

    7/14+

    Process Planning Under UncertaintyProcess Planning Under Uncertainty

    &esi#n /ariables:&esi#n /ariables: to be ecie before the uncertainty revealsto be ecie before the uncertainty reveals

    { }

     x    E it Y it , , it 

    * -ecision of builin" process* -ecision of builin" process ii in perioin perio t t 

    .* /apacity e#pansion of process.* /apacity e#pansion of process ii in perioin perio t t 

    * %otal capacity of process* %otal capacity of process ii in perioin perio t t 

    1ontrol /ariables:1ontrol /ariables:  selecte after the uncertain parameters become no&nselecte after the uncertain parameters become no&n

     ** ales of prouctales of prouct & & in maretin maret l l  at timeat time t t  an scenarioan scenario s s

     ** urchase of ra& mat$urchase of ra& mat$ & & in maretin maret l l  at timeat time tt an scenarioan scenario s s

    '*'* peratin" level of of processperatin" level of of process ii in perioin perio t t  an scenarioan scenario s s{ }

     ys   P  !lts S  !lts , , " its

  • 8/20/2019 Lecture Capacity Investment Planning Stochastic Model

    8/14

    MODELMODEL

    3MTS 4 0

  • 8/20/2019 Lecture Capacity Investment Planning Stochastic Model

    9/14

    MODELMODEL

    UT3>0& 1)P)1T= S

    34?0 T+) T4T)31)P)1T=

     ' ( Processes i)*+),)-P 

      ( /a0 mat.1Pro!%cts) &*+),)-C 

    T( Time perio!s. T*+),)-T 

     L( Mar2ets) l*+)..-M  

     -T t  -P i ,,1 ,,1 

      ==

     -T t  -P i ,,1 ,,1     ==M)T0)3 6)3)10

    64U&S

    8 it ( An expansion of process ' in perio! t ta2es place :8it*+;) !oes not ta2e place :8it*

  • 8/20/2019 Lecture Capacity Investment Planning Stochastic Model

    10/1410

    MODELMODEL

    46701T/0 %U1T4

     ' ( Processes i)*+),)-P 

      ( /a0 mat.1Pro!%cts) &*+),)-C 

    T( Time perio!s. T*+),)-T 

     L( Mar2ets) l*+)..-M  

    8 it ( An expansion of process ' in perio! t ta2es place :8it*+;) !oes not ta2e place :8it* &lt  ( Sale price of pro!%ct1interme!iate pro!%ct & in mar2et l in perio! t 

    6 &lt  ( Cost of pro!%ct1interme!iate pro!%ct & in mar2et l in perio! t 

    ?it  ( @perating cost of process i in perio! t 

    4it  ( 5ariable cost of expansion for process i in perio! t 

     6 it ( 7ixe! cost of expansion for process i in perio! t  Lt  ( isco%nt factor for perio! t 

     'SC@=-T3 /353-=3S   '-53STM3-T 

  • 8/20/2019 Lecture Capacity Investment Planning Stochastic Model

    11/14

    11

    ExampleExample

     Uncertain Parameters:Uncertain Parameters: &emands, )vailabilities, Sales Price, Purchase Price&emands, )vailabilities, Sales Price, Purchase Price

     Total of @AA ScenariosTotal of @AA Scenarios

     Project Sta#ed in ; Time Periods of , .B, ;.B yearsProject Sta#ed in ; Time Periods of , .B, ;.B years

    Process 91hemical 9 Process

    1hemical B

    1hemical

    1hemical C

    Process ;

    1hemical ;

    Process B

    1hemical D

    1hemical E

    Process @

    1hemical @

  • 8/20/2019 Lecture Capacity Investment Planning Stochastic Model

    12/14

    12

    Period 9Period 9

    years years

    Period Period

    .B years.B years

    Period ;Period ;

    ;.B years;.B years

    Process 91hemical 9

    1hemical B

    Process ;

    1hemical ;

    1hemical D

    10$23 ton7yr 

    22$+3 ton7yr 

    5$2+ ton7yr 

    5$2+ ton7yr 

    1$0 ton7yr 

    1$0 ton7yr 

    Process 91hemical 9

    1hemical B

    Process ;

    1hemical ;

    Process B1hemical D

    1hemical E

    Process @

    1hemical @

    10$23 ton7yr 

    22$+3 ton7yr 

    22$+3 ton7yr 

    22$+3 ton7yr 

    4$+1 ton7yr 

    4$+1 ton7yr 

    41$+5 ton7yr 

    20$+ ton7yr 

    20$+ ton7yr 

    20$+ ton7yr 

    1hemical 9 Process

    1hemical B

    1hemical

    1hemical C

    Process ;

    1hemical ;

    Process B

    1hemical D

    1hemical E

    Process @

    1hemical @

    22$+3 ton7yr 

    22$+3 ton7yr  22$+3 ton7yr 

    0$++ ton7yr  0$++ ton7yr 44$44 ton7yr 

    14$5 ton7yr 

    2$4 ton7yr 

    2$4 ton7yr 

    43$++ ton7yr 

    2$4 ton7yr 

    21$ ton7yr 

    21$ ton7yr 

    21$ ton7yr 

    Process 9

    Example – Solution with Max ENPVExample – Solution with Max ENPV

  • 8/20/2019 Lecture Capacity Investment Planning Stochastic Model

    13/14

    13

    Period 9Period 9

    years years

    Period Period

    .B years.B years

    Period ;Period ;

    ;.B years;.B years

    Example – Solution with Min DRisk(Example – Solution with Min DRisk( =900)=900)

    Process 91hemical 9

    1hemical B

    Process ;

    1hemical ;

    1hemical D

    10$5 ton7yr 

    22$3+ ton7yr 

    5$5 ton7yr 

    5$5 ton7yr 

    1$30 ton7yr 

    1$30 ton7yr 

    Process 91hemical 9

    1hemical B

    Process ;

    1hemical ;

    Process B1hemical D

    1hemical E

    Process @

    1hemical @

    10$5 ton7yr 

    22$3+ ton7yr 

    22$3+ ton7yr 

    22$43 ton7yr 

    4$ ton7yr 

    4$ ton7yr 

    41$+0 ton7yr 

    20$5 ton7yr 

    20$5 ton7yr 

    20$5 ton7yr 

    Process 91hemical 9 Process

    1hemical B

    1hemical

    1hemical C

    Process ;

    1hemical ;

    Process B

    1hemical D

    1hemical E

    Process @

    1hemical @

    22$3+ ton7yr 

    22$3+ ton7yr  22$++ ton7yr 

    10$5 ton7yr 10$5 ton7yr  +$54 ton7yr 

    2$3 ton7yr 

    5$15 ton7yr 

    5$15 ton7yr 

    43$54 ton7yr 

    5$15 ton7yr 

    21$++ ton7yr 

    21$++ ton7yr 

    21$++ ton7yr 

  • 8/20/2019 Lecture Capacity Investment Planning Stochastic Model

    14/14

    14

    Example – Solution with Max ENPVExample – Solution with Max ENPV

    0.0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1.0

    250 500 750 1000 1250 1500 1750 2000 2250 2500 2750 3000 3250

    P/ 'MF(

    is$ 

    22 solution

    .8 -P5 9 : 1140 ;