Lecture 8-7 acoustic.pdf

Embed Size (px)

Citation preview

  • 8/17/2019 Lecture 8-7 acoustic.pdf

    1/52

     Acoustic Wave Devices

    Lecture 8-7ME2082

  • 8/17/2019 Lecture 8-7 acoustic.pdf

    2/52

    Acoustic wave devices

    Surface acoustic wave sensors

     –  biological and chemical sensor

     –  viscosity sensor

     –  force sensors

     –  stress/strain sensors Bulk Sensors

     –  acoustic pressure sensor

     –  pressure sensors

     –  accelerometers

    Plate wave ((lamb wave) –  Piezo-motors

    Monolithic SAW device

     –  SAW on piezoelectric substrate

     –  SAW on non-piezoelectric

    substrate (e.g.)

    » Bi-layer or multi-layer

    » Polycrystalline structure

    » roughness larger

     –  Common configuration to excite

    SAW wave

    » IDT--interdigital transducer

    » frequency determined by thephotolithographic process

  • 8/17/2019 Lecture 8-7 acoustic.pdf

    3/52

    Acoustic wave devices Acoustic waves can be excited by various means such

    as mechanical impact, pulsed thermal energy, or the

    inverse piezoelectric effect. The last is by far the most

    important for acoustic devices.

    There are two groups of acoustic devices which make

    use of two distinctive transducer types: surface acousticwave (SAW) and bulk acoustic wave (BAW) devices.

     – The SAW employs interdigital transducers (IDTs), i.e.,

    thin-film metal comb (‘finger’) structures as depicted in

    the Figure. The principle of IDTs: if an alternating

    electric field is applied at the comb structure, a time-

    harmonic periodic deformation is induced in the

     piezoelectric substrate underneath. Thus, an acoustic

    wave perpendicular to the finger direction is excited by

    each finger pair.

     – The BAW is generally excited by means of thin-film

    transducers covering the excited volume of a

     piezoelectric material.

    Interdigital transducer (IDT)

    for the excitation of surface

    acoustic waves (SAW)

  • 8/17/2019 Lecture 8-7 acoustic.pdf

    4/52

    Acoustic wave devices

    Top view of a SAW delay line consisting of

    a quartz plate and interdigital metal

    transducers. The lower figure indicates the

    wave motion and direction of surface

     particle displacement.

    Top view of a TSM consisting of a

    quartz disc, metal electrodes and 

    electric contacts. The smaller figure

    illustrates the wave motion and the

    direction of particle displacement.

    BAW SAW

  • 8/17/2019 Lecture 8-7 acoustic.pdf

    5/52

    Acoustic wave devices

    Example: BAW-- Quartz thickness shear mode (TSM) resonators

     A

    m f  f 

    QQ

    ∆×−=∆

    2/1

    2

    0

    )(

    2

    µ  ρ 

    For the case of thin, rigid and

    uniform mass layer on the surface of

    the device, there is a relationship between the mass increase (∆m) at

    the quartz surface and the resonant

    frequency shift (∆ f )

    where f 0 is the resonant frequency ofthe quartz crystal, A is the active area

    of the coated crystal, µ Q is the shear

    modulus of the quartz crystal and  ρ Q is

    the density.

  • 8/17/2019 Lecture 8-7 acoustic.pdf

    6/52

    Acoustic wave devices

    C0   C

    1

    R1

    L1

    liquid loading

    C0

    L2

    C1

    R1

    L1

    R2

    unperturbed

    TSM resonator 

    L3

    mass loading

    liquid loading

    C0

    L2

    C1

    R1

    L1

    R2

    unperturbed

    TSM resonator 

    L3

    mass loading

    Example: BAW-- Quartz thickness shear mode (TSM) resonators

    For the liquid loading, Kanazawa and Gordon found that

    for the Newtonian liquid contacting with one side of

    resonator sensor, the resonant frequency shift depends upon

    the viscosity (µ  L) and density ( ρ  L) of the liquid

    2/1

    2/12/3

    0

    )(

    )(

    QQ

     L L f  f µ πρ 

    η  ρ −=∆

  • 8/17/2019 Lecture 8-7 acoustic.pdf

    7/52

    Acoustic wave devices

    Example: BAW-- Quartz thickness shear mode (TSM) resonators

    The electrical admittance spectra Y(w) generated

    from BVD model is given by:

    ( )

    0

    111   1

    1  C  j

    C  j L j R

     jBGY 

    ω ω ω 

    ω 

    +

    ++

    =

    +=

    2/1

    11   )(

    1

    2

    1

    C  L f s

    π =

    For unperturbed TSM resonator, the series resonance

    frequency f s at which G is maximum (Gmax), is given by:

  • 8/17/2019 Lecture 8-7 acoustic.pdf

    8/52

    Acoustic wave devicesQuartz TSM resonator impedance

  • 8/17/2019 Lecture 8-7 acoustic.pdf

    9/52

    Acoustic wave devices

  • 8/17/2019 Lecture 8-7 acoustic.pdf

    10/52

    Acoustic wave devices

    Quartz thickness shear mode BAWFrequency

     phase

  • 8/17/2019 Lecture 8-7 acoustic.pdf

    11/52

    Acoustic wave devices

  • 8/17/2019 Lecture 8-7 acoustic.pdf

    12/52

    Acoustic wave devicesExample: BAW-- Quartz crystal microbalance (QCM) gas sensor 

    Typical response to 50 ppm of NO2 of the device coated with

     NO2-absorbing polymer 

  • 8/17/2019 Lecture 8-7 acoustic.pdf

    13/52

    Acoustic wave devicesExample: BAW-- Quartz crystal microbalance (QCM) gas sensor forammonia detection at ppb level

    QCM is coated with fibrous

     polyacrylic acid (PAA)

    membrane

  • 8/17/2019 Lecture 8-7 acoustic.pdf

    14/52

    Acoustic wave devices

    For SAW device – If multiple finger pairs exist, interference occurs

    yielding to a maximum SAW magnitude if 

    ,.....3,2,1,0,

    12=⋅

    +=

      nv

    n

     f n λ 

    with the excitation frequency f , the acoustic wavevelocity v of the particular mode, and the transducer

     period λ=2(a+b).

     – Hence an IDT is a frequency-selective element.The frequency of the lowest order mode f o iscalled the characteristic frequency.

  • 8/17/2019 Lecture 8-7 acoustic.pdf

    15/52

    Acoustic wave devices

    SAW: Basic Acoustic Structures

     – One of the simplest and best known acoustic structures is the delay line

    shown in Figure. The transducer IDT1 serves as the input for an electric

    radio-frequency (RF) signal which is transformed by means of the inverse

     piezoelectric effect into an acoustic wave traveling to the outputtransducer IDT2. Here, a re-transformation takes place back into the

    electrical domain. Hence the electrical signal experiences a delay τ 

     because the acoustic wave is five orders of magnitude slower than the

    velocity of light:

     

    ⋅=

    ν τ   CC 

  • 8/17/2019 Lecture 8-7 acoustic.pdf

    16/52

    Acoustic wave devices

    If no transmission loss occurs, the delay linetransfer function H  DL(f ) can be written as

    with the transfer functions H 1(f) and H 2(f) of IDT1

    and IDT2, respectively.

    ( ) ( ) ( ) ( )⋅⋅−⋅=   τ π  f  j f  H  f  H  f  H  DL   2exp21

    The magnitude of the transfer function depends on the IDTcharacteristics, whereas CC determines the phase ϕ

    ( ) ( )o f  f vCC  f    −⋅⋅−=   π ϕ    2

    Hence, amplitude and phase characteristics can be chosenindependently of each other. Changes of both quantities due toexternal influences may serve as measuring effects.

  • 8/17/2019 Lecture 8-7 acoustic.pdf

    17/52

    Acoustic wave devices

    By Materials

     –  Bulk wave

     –  Surface wave

     –  Flexural plate wave

    By wave forms

     –  Longitudinal wave

     –  Transverse wave

     –  Raleigh wave (mixed long. and trans. wave)

    Bulk Materials –  Quartz

     –  Piezo-ceramic materials

    Thin films materials

     –  ZnO

     –  PZT

     –  organic polymer

     –  GaAs

    Surface acoustic wave transducers

    Electrical -Mechanical

    Transducer 

    Mechanical - Electrical

    Transducer Electrical

    input

    Electrical

    output

    Mechanical

    output

    Frequency

    Amp.

    Phase

    Delay line

    (temperature, mass,

    stress, morphology)Oscillator 

  • 8/17/2019 Lecture 8-7 acoustic.pdf

    18/52

    Acoustic wave devices

    Frequency: f 

    Pitch

    Phase velocity: v p

    Important parameters:

  • 8/17/2019 Lecture 8-7 acoustic.pdf

    19/52

    Acoustic wave devices

    λ=4d 

  • 8/17/2019 Lecture 8-7 acoustic.pdf

    20/52

    Acoustic wave devices

    SAW chemical sensors

  • 8/17/2019 Lecture 8-7 acoustic.pdf

    21/52

    Acoustic wave sensors

    Dual delay line configuration.

  • 8/17/2019 Lecture 8-7 acoustic.pdf

    22/52

    Acoustic wave devices

    SAW Devices Measurement Methods: Oscillator vs. delay line approach

     –  Oscillator: frequency f/f = Sm  m

    Sm: mass sensitivity, ∆m: mass/unit area

    Delay line: phase shift (time delay)

    amplitude(dispersion)quality factor (Q)

    Love Mode SAW

     –  High sensitivity

    Flexural Wave (Lamb) Plate

    High sensitivity than SAW

    Using a low velocity lamb wave allows the device to operate at low frequency

    The velocity can be made lower than the velocity of compression wave in

    common liquid, permitting low loss operation

    Heat capacity is low due to the reduced thickness

  • 8/17/2019 Lecture 8-7 acoustic.pdf

    23/52

    Acoustic Wave Devices

    Love Mode SAW Devices as gas sensormolecularly imprinted materials (MIM).

  • 8/17/2019 Lecture 8-7 acoustic.pdf

    24/52

    Acoustic wave devices

    SEM of liquid traps at the border between an IDT

    and the propagation path of a Love mode sensor 

  • 8/17/2019 Lecture 8-7 acoustic.pdf

    25/52

    Acoustic Wave Devices

    Love Mode SAW Devices

  • 8/17/2019 Lecture 8-7 acoustic.pdf

    26/52

    Acoustic Wave Devices

    Love Mode SAW Device as gas sensor

    Relative frequency change

    ∆ f/ ∆ f c due to MMP exposure

    for imprinted and non-imprinted (control)device.

    2-methoxy 3-methyl pyrazine,

    MMP, is a substance used in

     perfume industry.,

  • 8/17/2019 Lecture 8-7 acoustic.pdf

    27/52

    Acoustic Wave Devices

    Love Mode SAW Devices as gas sensor

  • 8/17/2019 Lecture 8-7 acoustic.pdf

    28/52

    Acoustic wave devices

  • 8/17/2019 Lecture 8-7 acoustic.pdf

    29/52

    Acoustic wave devices

    Lamb Wave sensor

    Effective mass

  • 8/17/2019 Lecture 8-7 acoustic.pdf

    30/52

    Acoustic wave devices

    Consideration when designing anacoustic wave devices

  • 8/17/2019 Lecture 8-7 acoustic.pdf

    31/52

    Acoustic wave devices

    Measurement Methods: Oscilaltor vs. delay line approach –  Oscillator: frequency f/f = Sm  m

    Sm: mass sensitivity, ∆m: mass/unit area

    Delay line: phase shift (timr delay)

    amplitude(dispersion)

    quality factor (Q)

  • 8/17/2019 Lecture 8-7 acoustic.pdf

    32/52

    Acoustic Wave

    Devices

    Love mode

  • 8/17/2019 Lecture 8-7 acoustic.pdf

    33/52

    Acoustic wave devices

  • 8/17/2019 Lecture 8-7 acoustic.pdf

    34/52

  • 8/17/2019 Lecture 8-7 acoustic.pdf

    35/52

    Acoustic wave devices

    Influence of Newtonian

    liquid viscosity on Love

    wave phase velocity

    Acoustic Love wave devices

  • 8/17/2019 Lecture 8-7 acoustic.pdf

    36/52

  • 8/17/2019 Lecture 8-7 acoustic.pdf

    37/52

    Acoustic wave devices

    Cantilever beam accelerometer

  • 8/17/2019 Lecture 8-7 acoustic.pdf

    38/52

    Acoustic wave devices

    Accelerometer

  • 8/17/2019 Lecture 8-7 acoustic.pdf

    39/52

    Vibration and acceleration sensors

  • 8/17/2019 Lecture 8-7 acoustic.pdf

    40/52

    Vibration and acceleration sensors

  • 8/17/2019 Lecture 8-7 acoustic.pdf

    41/52

    Torque Sensors

  • 8/17/2019 Lecture 8-7 acoustic.pdf

    42/52

    Gyro Sensor 

  • 8/17/2019 Lecture 8-7 acoustic.pdf

    43/52

    Humidity Sensors

  • 8/17/2019 Lecture 8-7 acoustic.pdf

    44/52

    Dew point sensor

  • 8/17/2019 Lecture 8-7 acoustic.pdf

    45/52

    Voltage sensor

  • 8/17/2019 Lecture 8-7 acoustic.pdf

    46/52

    Flow Sensor

  • 8/17/2019 Lecture 8-7 acoustic.pdf

    47/52

    Others

  • 8/17/2019 Lecture 8-7 acoustic.pdf

    48/52

    Acoustic Wave Devices

  • 8/17/2019 Lecture 8-7 acoustic.pdf

    49/52

  • 8/17/2019 Lecture 8-7 acoustic.pdf

    50/52

    Electrostatic ink jet printer

  • 8/17/2019 Lecture 8-7 acoustic.pdf

    51/52

    Electrostatic ink jet printer

  • 8/17/2019 Lecture 8-7 acoustic.pdf

    52/52

    Electrostatic ink jet printer