Lecture 7 - CpE 690 Introduction to VLSI Design

Embed Size (px)

Citation preview

  • 8/13/2019 Lecture 7 - CpE 690 Introduction to VLSI Design

    1/50

    CpE 690: Introduction to VLSI DesignFall 2013

    Lecture 7

    CMOS Transistor Theory and DC Response

    1

    Bryan Ackland

    Department of Electrical and Computer Engineering

    Stevens Institute of Technology

    Hoboken, NJ 07030

    Adapted from Lecture Notes, David Mahoney Harris CMOS VLSI Design

  • 8/13/2019 Lecture 7 - CpE 690 Introduction to VLSI Design

    2/50

    2

    So far, we have treated transistors as ideal switches

    An ON transistor passes a finite amount of current Depends on terminal voltages Derive current-voltage (I-V) relationships

    Transistor gate, source, drain all have capacitance

    I = C (V/t) -> t = (C/I) V Capacitance and current determine speed

    Also revisit what a degraded level means

    Introduction

    nMOS pMOS

  • 8/13/2019 Lecture 7 - CpE 690 Introduction to VLSI Design

    3/50

    3

    Gate and body formMOS capacitor:

    Accumulation:Vg< 0

    Depletion:0 < Vg< Vt

    Inversion:Vg> Vt

    MOS Capacitor

  • 8/13/2019 Lecture 7 - CpE 690 Introduction to VLSI Design

    4/50

    4

    Mode of operation depends on Vg, Vd, Vs

    Vgs= Vg VsVgd = Vg VdVds= Vd Vs= Vgs Vgd

    Source and drain are (physically)symmetric terminals By convention, nMOS source is terminal at

    lower voltage Hence Vds0

    nMOS body is grounded (0 volts).

    For now, assume source is grounded too. Three regions of operation

    Cutoff Linear

    Saturation

    nMOS Terminal Voltages

    Vg

    Vs Vd

    Vgs Vgd

    Vds

  • 8/13/2019 Lecture 7 - CpE 690 Introduction to VLSI Design

    5/50

    5

    Vgs< Vt : No channel

    Source-body and drain-body junctions are reverse biased Ids 0

    nMOS Cutoff

    +-

    Vgs

    = 0

    n+ n+

    +-

    Vgd

    p-type body

    b

    g

    s d

  • 8/13/2019 Lecture 7 - CpE 690 Introduction to VLSI Design

    6/50

    6

    Vgs< Vt : Channel forms

    Current flows from drainto source electrons go from source

    to drain

    Ids increases with Vds Similar to linear resistor

    Also called:

    resistive triode non-saturated

    nMOS Linear

  • 8/13/2019 Lecture 7 - CpE 690 Introduction to VLSI Design

    7/50

    7

    If Vds > VgsVtthen Vgd < Vt: channel pinches off

    Conduction due to drift induced by positive drain voltage Idsindependent of Vds We say channel current saturates Similar to current source

    nMOS Saturation

    +-

    Vgs

    > Vt

    n+ n+

    +-

    Vgd

    < Vt

    Vds

    > Vgs

    -Vt

    p-type body

    b

    g

    s d Ids

  • 8/13/2019 Lecture 7 - CpE 690 Introduction to VLSI Design

    8/50

    8

    In linear region, Idsdepends on

    How much chargeis in the channel? Howfastis the charge moving?

    Linear I/V Characteristics

  • 8/13/2019 Lecture 7 - CpE 690 Introduction to VLSI Design

    9/50

    9

    MOS structure looks like parallel plate capacitor while

    operating in inversion Gate : oxide : channel Qchannel= C =

    V =

    Channel Charge

    C.V

    Cg= ox.W.L/tox= Cox.W.L where Cox= ox/ toxCoxis gate capacitance perunit area

    Vgc Vt= (Vgs Vds/2) Vt

    n+ n+

    p-type body

    W

    L

    tox

    SiO2gate oxide

    (good insulator, ox= 3.9)

    polysilicongate

    n+ n+

    p-type body

    +

    Vgd

    gate

    + +

    source

    -

    Vgs-

    drain

    Vds

    channel-

    Vg

    Vs

    Vd

    Cg

  • 8/13/2019 Lecture 7 - CpE 690 Introduction to VLSI Design

    10/50

    10

    Charge is carried by e-

    Electrons are propelled by the lateral electric fieldbetween source and drainE = Vds/L

    Carrier velocity v proportional to lateral E-field

    v = .E called (electron) mobility(~ 500-600 cm2/V.s in heavily doped channel)

    Time for carrier to cross channel:= L / v

    Carrier Velocity

    = L2/(.Vds)

    n+ n+

    p-type body

    +

    Vgd

    gate

    + +

    source

    -

    Vgs

    -drain

    Vds

    channel-

    Vg

    Vs

    Vd

    Cg

    v

  • 8/13/2019 Lecture 7 - CpE 690 Introduction to VLSI Design

    11/50

    11

    Now we know

    How much charge Qchannelis in the channel How much time each carrier takes to cross

    Ids= Qchannel /

    = (Cox.W.L) . (Vgs Vt Vds/2) / (L2/(.Vds))

    = . Cox.(W/L). (Vgs Vt Vds/2). Vds

    = . (Vgs Vt Vds/2). Vds

    nMOS Linear I/V

    n+ n+

    p-type body

    +

    Vgd

    gate+ +

    source

    -

    Vgs

    -drain

    Vds

    channel-

    Vg

    Vs

    Vd

    Cg

    v

    where= . Cox.(W/L)

  • 8/13/2019 Lecture 7 - CpE 690 Introduction to VLSI Design

    12/50

    nMOS IV Linear Region

    12

    For small , increases linearly behaves as a resistor As increases, charge in channel decreases

    as a result: decreases

    What happens when reaches it maximum ?

    =. 2

    .

    ()

    ()

    =2

    = 1.5

    =1

  • 8/13/2019 Lecture 7 - CpE 690 Introduction to VLSI Design

    13/50

    13

    Suppose we increase Vdsuntil Vds= Vgs- Vt

    Then Vgd= Vgs Vds= Vt The channel pinches off near drain We call this value of Vdsthe saturation voltage:

    Vdsat= Vgs Vt At the point of saturation:

    Idsat= . (Vgs Vt Vdsat/2). Vdsat= (/2). (Vgs- Vt )2

    nMOS Saturation

    n+ n+

    p-type body

    +

    Vgd

    gate

    + +

    source

    -

    Vgs

    -drain

    Vds

    channel-

    Vg

    Vs

    Vd

    Cg

  • 8/13/2019 Lecture 7 - CpE 690 Introduction to VLSI Design

    14/50

    14

    What happens if Vds> Vdsat

    Pinch off extends from the drain towards the source Now, length of inverted channel is L = L.(Vdsat/Vds) Gate to channel capacitance is now

    C = Cox.W.L = Cox.W.L.(Vdsat/Vds) Average voltage across capacitor is (Vgs-Vt)/2 = Vdsat/2

    So Qchannel= Cox.W.L.(Vdsat)2/(2.Vds)

    nMOS Saturation Channel Charge

    n+ n+

    p-type body

    +

    Vgd

    gate

    + +

    source

    -

    Vgs

    -drain

    Vds

    channel-

    Vg

    Vs

    Vd

    Cg

    L

  • 8/13/2019 Lecture 7 - CpE 690 Introduction to VLSI Design

    15/50

    15

    As before:Ids= Qchannel /

    = (Cox.W.L.(Vdsat)2/(2.Vds)) ((.Vds)/L2)= (. Cox.(W/L)/2) . (Vdsat)2

    = (/2). (Vgs- Vt )2

    Note that Ids= Idsatand is now independent of Vds MOS transistor in saturation behaves like a constant current

    source (with respect to Vds)

    Square law dependence on Vgs

    nMOS Saturation I/V

    n+ n+

    p-type body

    +

    Vgd

    gate+ +

    source

    -

    Vgs

    -drain

    Vds

    channel-

    Vg

    Vs

    Vd

    Cg

  • 8/13/2019 Lecture 7 - CpE 690 Introduction to VLSI Design

    16/50

    nMOS IV Linear Region

    16

    For > = , channel saturates

    Transistor behaves as a constant current source Idsindependent of Vds

    = ( 2) .

    ()

    ()

    =2

    = 1.5

    =1

  • 8/13/2019 Lecture 7 - CpE 690 Introduction to VLSI Design

    17/50

    17

    Shockley first-order model:

    also known as ideal, long-channel model

    nMOS I/V Summary

    ( )2

    cutoff

    linear

    saturatio

    0

    2

    2n

    gs t

    dsds gs t ds ds dsat

    gs t ds dsat

    V VV

    I V V V V V

    V V V V

  • 8/13/2019 Lecture 7 - CpE 690 Introduction to VLSI Design

    18/50

    0 1 2 3 4 5

    0

    0.5

    1

    1.5

    2

    2.5

    Vds

    Ids

    (mA)

    Vgs

    = 5

    Vgs

    = 4

    Vgs

    = 3

    Vgs

    = 2

    Vgs

    = 1 Vgs=1

    Vgs=2

    Vgs=3

    Vgs=4

    Vgs=5

    18

    tox= 100 = 350 cm2/V.s Vt= 0.7 V

    Use W/L = 4/2

    Example: 0.6m process

    ( )14

    2

    8

    3.9 8.85 10350 120 /

    100 10ox

    W W WC A V

    L L L

    = = =

  • 8/13/2019 Lecture 7 - CpE 690 Introduction to VLSI Design

    19/50

    19

    tox= 10.5 = 80 cm2/V.s Vt= 0.3 V

    Use W/L = 4/2

    Example: 65 nm process

    = 262 . (W/L) A/V2

  • 8/13/2019 Lecture 7 - CpE 690 Introduction to VLSI Design

    20/50

    20

    Shockley first-order model:

    also known as ideal, long-channel model

    pMOS I/V Summary

    ( )2

    cutoff

    linear

    saturatio

    0

    2

    2

    n

    gs t

    dsds gs t ds ds dsat

    gs t ds dsat

    V V

    VI V V V V V

    V V V V

    < =

    2

    2

    >

    >

  • 8/13/2019 Lecture 7 - CpE 690 Introduction to VLSI Design

    21/50

    21

    All dopings and voltages are inverted for pMOS

    Source is the more positive terminal Mobility pis determined by holes

    Typically 2-3x lower than that of electrons n 120 cm2/V.s in 0.6 m process

    Thus pMOS must be wider toprovide same current

    In this class: assume n/ p= 2

    pMOS I/V

    -5 -4 -3 -2 -1 0-0.8

    -0.6

    -0.4

    -0.2

    0

    Ids

    (mA)

    Vgs

    = -5

    Vgs

    = -4

    Vgs

    = -3

    Vgs = -2

    Vgs

    = -1

    Vds

    65nmpMOS

  • 8/13/2019 Lecture 7 - CpE 690 Introduction to VLSI Design

    22/50

    22

    Input to CMOS gate presents effectively infinite input

    resistance The dominant load in CMOS circuits is capacitance Capacitance exists wherever there are two conductors

    separated by a thin insulator

    Gate to channel capacitor is very important Creates channel charge necessary for operation

    Source and drain have capacitance to body Parasitic capacitance across reverse-biased diodes

    Depletion region (insulator) separates N & P type conductors Called diffusion capacitance because it is associated with

    source/drain diffusion

    Capacitance

  • 8/13/2019 Lecture 7 - CpE 690 Introduction to VLSI Design

    23/50

    23

    Gate is top plate of capacitor

    Assume bottom plate is source In cut-off, bottom plate is actually the body In linear mode, bottom plate is channel which is connected to

    source and drain In saturation, bottom plate is channel connected to source

    Cgs= ox.W.L/tox= Cox.W.L = Cpermicron.W Cpermicronis typically about 1-2 fF/m of width

    Gate Capacitance

    n+ n+

    p-type body

    W

    L

    tox

    SiO2gate oxide

    (good insulator, ox

    = 3.90)

    polysilicongate

  • 8/13/2019 Lecture 7 - CpE 690 Introduction to VLSI Design

    24/50

    24

    Csb, Cdb

    Diffusion region isresistive and capacitive(to body)

    Capacitance depends onarea and perimeter

    Use small as possiblediffusion nodes

    Comparable to Cgforcontacted diffusion

    Use Cg/2 for merged Varies with process

    Diffusion Capacitance

    Isolated

    Diffusion Gg

    Cnode= 2.Cg

    Shared

    Diffusion Gg

    Cnode= Cg

    MergedDiffusion Gg/2

    Cnode= Cg/2

  • 8/13/2019 Lecture 7 - CpE 690 Introduction to VLSI Design

    25/50

    25

    We have assumed source is grounded or at least close to ground, pulling drain down

    What if source >> 0? e.g. nMOS pass transistor passing VDD

    Vg= VDD If V

    s> V

    DD-V

    t, V

    gs< V

    t Hence transistor would turn itself off

    nMOS pass transistors pull no higher than VDD-Vtn Produces a degraded 1 Approach degraded value slowly (low Ids)

    pMOS pass transistors pull no lower than |Vtp| Transmission gates are needed to pass both good 0 and good 1

    Pass Transistors

    VDDV

    DD

  • 8/13/2019 Lecture 7 - CpE 690 Introduction to VLSI Design

    26/50

    26

    Degraded Time Constant

    VDD

    VDD

    C Ids((VDDVt) - Vs)2

    Ids

    pull-up deviceis in saturation:

    VDD

    C IdsVs

    Ids

    pull-down device isin linear (mostly):

    VDD

    GND

    VDD - Vt

    t/

    Pull-up time constant (to90% final value) can be 6xpull-down time constant!

  • 8/13/2019 Lecture 7 - CpE 690 Introduction to VLSI Design

    27/50

    27

    Cascaded Pass Transistors

    VDD

    VDD

    VDD- Vtn

    | Vtp |

    VDD

    VDD VDD VDD

    VDD- Vtn VDD- Vtn VDD- Vtn

    VDD

    VDD

    VDD- Vtn

    VDD 2.Vtn

  • 8/13/2019 Lecture 7 - CpE 690 Introduction to VLSI Design

    28/50

    28

    Digital circuits are merely analog circuits used over aconstrained portion of their range

    Derive DC transfer function for static CMOS inverter When Vin= 0 Vout = VDD When Vin = VDD Vout= 0

    In between, Voutdepends ontransistor size and current

    By KCL, must settle such thatIdsn= | Idsp |

    We could solve equations, but Graphical solution gives more insight

    DC Response: Inverter

    Idsn

    Idsp

    Vout

    VDD

    Vin

  • 8/13/2019 Lecture 7 - CpE 690 Introduction to VLSI Design

    29/50

    29

    Current (Idsn, Idsp) depends on region of transistor behavior

    For what Vinand Voutare nMOS and pMOS in

    Cutoff?

    Linear?

    Saturation?

    Transistor Operation

    Idsn

    Idsp

    Vout

    VDD

    Vin

  • 8/13/2019 Lecture 7 - CpE 690 Introduction to VLSI Design

    30/50

    30

    Inverter: nMOS Operation

    Cutoff Linear Saturated

    Vgsn Vgsn

    Vdsn

    Vgsn

    Vdsn

    Idsn

    Idsp Vout

    VDD

    Vin

    < Vtn > Vtn > Vtn

    < Vgsn - Vtn > Vgsn - Vtn

    Vgsn= VinVdsn= Vout

    Vin< Vtn Vin> Vtn Vin> Vtn

    Vout< Vin - Vtn Vout> Vin - Vtn

  • 8/13/2019 Lecture 7 - CpE 690 Introduction to VLSI Design

    31/50

    31

    Inverter: pMOS Operation

    Cutoff Linear Saturated

    Vgsp> VtpVin> VDD+ Vtp

    Vgsp< VtpVin< VDD+ Vtp

    Vdsp> Vgsp Vtp

    Vout> Vin- Vtp

    Vgsp< VtpVin< VDD+ Vtp

    Vdsp< Vgsp Vtp

    Vout< Vin- Vtp

    Idsn

    Idsp Vout

    VDD

    Vin

    Vgsp= Vin- VDD

    Vdsp= Vout- VDD

    (remember: Vdspand Vtp< 0)

  • 8/13/2019 Lecture 7 - CpE 690 Introduction to VLSI Design

    32/50

    32

    Mobility of holes is 2-3x less than mobility of electrons

    Usually make pMOS 2x wider than nMOS so that

    I-V Characteristics

    Idsn

    Idsp

    VDD

    VDD

    Vdsn

    VdspVgsn0Vgsn1Vgsn2Vgsn3

    Vgsn4

    Vgsn5

    Vgsp0Vgsp1V

    gsp2Vgsp3

    Vgsp4

    Vgsp5

  • 8/13/2019 Lecture 7 - CpE 690 Introduction to VLSI Design

    33/50

    33

    Replot I-V as function of Vout & Vin

    Idsn

    IdspV

    out

    VDD

    Vin

    Voutis where Idn= -Idp

    VinC

    Idsn,

    VoutVDD

    Vin5

    Vin4

    Vin3

    Vin2Vin1Vin0

    VinC

    Vin5Vin4Vin3

    Vin2

    Vin1

    Vin0

    |Idsp

    |

  • 8/13/2019 Lecture 7 - CpE 690 Introduction to VLSI Design

    34/50

    34

    Load Line Analysis

    Idsn

    Idsp

    Vout

    VDD

    Vin

    Vin= 0

    Vin0

    Vin0

    Idsn,|Idsp|

    VoutVDD

  • 8/13/2019 Lecture 7 - CpE 690 Introduction to VLSI Design

    35/50

    35

    Load Line Analysis

    Idsn

    Idsp

    Vout

    VDD

    Vin

    Vin= 0.2V

    DD

    Vin1

    Vin1Idsn,|Idsp|

    VoutVDD

  • 8/13/2019 Lecture 7 - CpE 690 Introduction to VLSI Design

    36/50

    36

    Load Line Analysis

    Idsn

    Idsp

    Vout

    VDD

    Vin

    Vin= 0.4V

    DD

    Vin2

    Vin2

    Idsn,|Idsp|

    VoutVDD

    L d Li A l i

  • 8/13/2019 Lecture 7 - CpE 690 Introduction to VLSI Design

    37/50

    37

    Load Line Analysis

    Idsn

    Idsp

    Vout

    VDD

    Vin

    Vin= 0.5V

    DD

    VinCVinC

    Idsn,|Idsp|

    VoutVDD

    L d Li A l i

  • 8/13/2019 Lecture 7 - CpE 690 Introduction to VLSI Design

    38/50

    38

    Load Line Analysis

    Idsn

    Idsp

    Vout

    VDD

    Vin

    Vin= 0.6V

    DD

    Vin3

    Vin3

    Idsn,|Idsp|

    VoutVDD

    L d Li A l i

  • 8/13/2019 Lecture 7 - CpE 690 Introduction to VLSI Design

    39/50

    39

    Load Line Analysis

    Idsn

    Idsp

    Vout

    VDD

    Vin

    Vin= 0.8V

    DD

    Vin4

    Vin4

    Idsn,|Idsp|

    VoutVDD

    L d Li A l i

  • 8/13/2019 Lecture 7 - CpE 690 Introduction to VLSI Design

    40/50

    40

    Load Line Analysis

    Idsn

    Idsp Vout

    VDD

    Vin

    Vin

    = VDD

    Vin5

    Vin5

    Idsn,|Idsp|

    VoutVDD

    L d Li A l i

  • 8/13/2019 Lecture 7 - CpE 690 Introduction to VLSI Design

    41/50

    41

    Load Line Analysis

    Idsn

    IdspV

    out

    VDD

    Vin

    VinCVinC

    Idsn,|Idsp|

    VoutVDD

    Vin5

    Vin5

    Vin4

    Vin4

    Vin3

    Vin3 Vin2

    Vin2

    Vin1

    Vin1

    Vin0

    Vin0

    DC T f C

  • 8/13/2019 Lecture 7 - CpE 690 Introduction to VLSI Design

    42/50

    42

    DC Transfer Curve

    CV

    out

    0

    Vin

    VDD

    VDD

    A B

    DE

    Vtn

    VDD

    /2 VDD

    +Vtp

    Vin0

    Vin1

    Vin2

    Vin3

    Vin4 Vin5

    Trans-scribe points onto Vin vs. Voutplot

    S l C t

  • 8/13/2019 Lecture 7 - CpE 690 Introduction to VLSI Design

    43/50

    43

    Supply Current

    IDD= Idsn= -Idsp

    Zero current when in normal logic range

    Transient current pulse drawn from VDDsupply on each

    switching event

    IDD

    Vin VDD0

    Operating Regions

  • 8/13/2019 Lecture 7 - CpE 690 Introduction to VLSI Design

    44/50

    44

    Operating Regions

    CV

    out

    0

    Vin

    VDD

    VDD

    A B

    DE

    Vtn

    VDD

    /2 VDD

    +Vtp

    Vin0 Vin1V

    in2

    Vin3

    Vin4 V

    in5

    Re-visit operating regions

    Region nMOS pMOS

    AB

    C

    D

    E

    Cutoff

    Saturation

    Saturation

    Linear

    Linear Cutoff

    Saturation

    Saturation

    LinearLinear

    Vout

    VDD

    Vin

    Simulated 65nm DC Characteristic

  • 8/13/2019 Lecture 7 - CpE 690 Introduction to VLSI Design

    45/50

    45

    Simulated 65nm DC Characteristic

    Beta Ratio

  • 8/13/2019 Lecture 7 - CpE 690 Introduction to VLSI Design

    46/50

    46

    If p/ n1, switching point will move from VDD/2

    Calledskewed

    gate Other gates: collapse into equivalent inverter

    Beta Ratio

    Restoring Logic

  • 8/13/2019 Lecture 7 - CpE 690 Introduction to VLSI Design

    47/50

    Restoring Logic

    Reason that we can build digital circuits with millionsof gates and always get same answer is:

    Most CMOS logic gates are restoring output logic level is better than input logic level

    47

    input 0 input 1

    output 1

    output 0

    Noise Margins

  • 8/13/2019 Lecture 7 - CpE 690 Introduction to VLSI Design

    48/50

    48

    How much noise can a gate input see before it does notrecognize the input?

    Noise Margins

    Indeterminate

    Region

    NML

    NMH

    Input CharacteristicsOutput Characteristics

    VOH

    VDD

    VOL

    GND

    VIH

    VIL

    Logical High

    Input Range

    Logical Low

    Input Range

    Logical High

    Output Range

    Logical Low

    Output Range

    Nominal Logic Levels

  • 8/13/2019 Lecture 7 - CpE 690 Introduction to VLSI Design

    49/50

    49

    To maximize noise margins, select worst case logic levels at unity gain point of DC transfer characteristic

    Nominal Logic Levels

    Vout

    Vin

    VDD

    VDD0

    Vout

    VDD

    Vin

    p/n > 1

    VOH

    VOL

    VIL VIH

    Unity Gain PointsSlope = -1

    Example: MOS IV Formula

  • 8/13/2019 Lecture 7 - CpE 690 Introduction to VLSI Design

    50/50

    50

    Example: MOS IV Formula

    Suppose we connect two identical nMOS devices in series between VDD

    and GND and connect the gates of each to VDD:

    Assuming VDD> VT,1.In which region is the upper transistor operating? Why?2.In which region is the lower transistor operating? Why?3.Derive an expression for the voltage Vxat the intermediate node