54
Lecture 5-8 Instrumentation

Lecture 5-8 Instrumentation Info/Electron Spectroscopies 2007/L6-8 Instrumentation.pdfLecture 5-8 Instrumentation. Requirements Vacuum Mean Free Path Contamination probability UHV

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Lecture 5-8 Instrumentation Info/Electron Spectroscopies 2007/L6-8 Instrumentation.pdfLecture 5-8 Instrumentation. Requirements Vacuum Mean Free Path Contamination probability UHV

Lecture 5-8Instrumentation

Page 2: Lecture 5-8 Instrumentation Info/Electron Spectroscopies 2007/L6-8 Instrumentation.pdfLecture 5-8 Instrumentation. Requirements Vacuum Mean Free Path Contamination probability UHV

Requirements1. Vacuum

Mean Free PathContaminationSticking probability

UHVMaterialsStrengthStabilityPermeation

Design considerationsPumping speedVirtual leaksLeakingde-greasing

Page 3: Lecture 5-8 Instrumentation Info/Electron Spectroscopies 2007/L6-8 Instrumentation.pdfLecture 5-8 Instrumentation. Requirements Vacuum Mean Free Path Contamination probability UHV

Vacuum pumps

DiffusionIon pumpsTurbo molecular pumpsSublimation pumpsCryo pumps

Sample handlingPreparationTreatment in vacuumManipulation

Page 4: Lecture 5-8 Instrumentation Info/Electron Spectroscopies 2007/L6-8 Instrumentation.pdfLecture 5-8 Instrumentation. Requirements Vacuum Mean Free Path Contamination probability UHV

Instrument : Light source, analyser, detector

Resolution, SensitivityWidth of radiationWidth of the level Analyser resolution

FW HM

Analysers

Dispersive Retarding potential

I(Photoelectrons V, Inr, AS, D Analyser solid angleat detector)

Cross section Area of the slit

Photon Intensity

Page 5: Lecture 5-8 Instrumentation Info/Electron Spectroscopies 2007/L6-8 Instrumentation.pdfLecture 5-8 Instrumentation. Requirements Vacuum Mean Free Path Contamination probability UHV

Transmission Fraction of electrons reaching the detector from an isotropic point source

= Useful instrument solid angle . Transmission factor

Integral of point source transmission over slit area luminosity

Integral of solid angle over slit area étendue

Line width of radiation pressure broadening (Stark, van der Waals, resonance)

Doppler broadeningRecoil of atoms

Life time

Page 6: Lecture 5-8 Instrumentation Info/Electron Spectroscopies 2007/L6-8 Instrumentation.pdfLecture 5-8 Instrumentation. Requirements Vacuum Mean Free Path Contamination probability UHV

I(T) = 1 + E/2 [3/2 (sin2 T ) – 1] for unpolarised photonsE- asymmetry parameter

Surface Sensitivity

e-Angle

hQe-

AdsorbateI

Bulk

T

Page 7: Lecture 5-8 Instrumentation Info/Electron Spectroscopies 2007/L6-8 Instrumentation.pdfLecture 5-8 Instrumentation. Requirements Vacuum Mean Free Path Contamination probability UHV

Other techniquesPhoto detachment EXAFS, SEXAPS, synchrotron radiation

EPMA or Electron probe x-ray micro analysis

Ion beam techniques

SIMSdynamic

staticINS (ion neutralization spectroscopy)

SNMS (sputtered neutral mass spectrometry)PIXE (particle induced x-ray emission

ISSRBSFABMS

Page 8: Lecture 5-8 Instrumentation Info/Electron Spectroscopies 2007/L6-8 Instrumentation.pdfLecture 5-8 Instrumentation. Requirements Vacuum Mean Free Path Contamination probability UHV

History

Photoelectric effect 1887 HertzRutherford E ray spectroscopy Before WWI

Basic XPS equation, EK = hQ - EB Originally stated by Rutherford 1914

Moseley After WWIRawlinsonRobinson E ray spectrum of elements

Anomalous lines corresponding to electron ejection due to fluorescence excitation.

Anger spectroscopy 1925

Page 9: Lecture 5-8 Instrumentation Info/Electron Spectroscopies 2007/L6-8 Instrumentation.pdfLecture 5-8 Instrumentation. Requirements Vacuum Mean Free Path Contamination probability UHV

Steinhardt 1951

“An x-ray photoelectron spectrometer for chemical analysis”

Kai Seigbahn – Uppsala 1940’s 1967 “ESCA: Atomic, Molecular and solid state structure studied by means of Electron spectroscopy”

Acronym ESCA is due to Seigbahn

Page 10: Lecture 5-8 Instrumentation Info/Electron Spectroscopies 2007/L6-8 Instrumentation.pdfLecture 5-8 Instrumentation. Requirements Vacuum Mean Free Path Contamination probability UHV

Early Hertz Experiment

Page 11: Lecture 5-8 Instrumentation Info/Electron Spectroscopies 2007/L6-8 Instrumentation.pdfLecture 5-8 Instrumentation. Requirements Vacuum Mean Free Path Contamination probability UHV
Page 12: Lecture 5-8 Instrumentation Info/Electron Spectroscopies 2007/L6-8 Instrumentation.pdfLecture 5-8 Instrumentation. Requirements Vacuum Mean Free Path Contamination probability UHV

U vs. Z for a number of metals

Page 13: Lecture 5-8 Instrumentation Info/Electron Spectroscopies 2007/L6-8 Instrumentation.pdfLecture 5-8 Instrumentation. Requirements Vacuum Mean Free Path Contamination probability UHV

Simple UPS

Page 14: Lecture 5-8 Instrumentation Info/Electron Spectroscopies 2007/L6-8 Instrumentation.pdfLecture 5-8 Instrumentation. Requirements Vacuum Mean Free Path Contamination probability UHV
Page 15: Lecture 5-8 Instrumentation Info/Electron Spectroscopies 2007/L6-8 Instrumentation.pdfLecture 5-8 Instrumentation. Requirements Vacuum Mean Free Path Contamination probability UHV

Heart of the instrument

Page 16: Lecture 5-8 Instrumentation Info/Electron Spectroscopies 2007/L6-8 Instrumentation.pdfLecture 5-8 Instrumentation. Requirements Vacuum Mean Free Path Contamination probability UHV

What is inside

Page 17: Lecture 5-8 Instrumentation Info/Electron Spectroscopies 2007/L6-8 Instrumentation.pdfLecture 5-8 Instrumentation. Requirements Vacuum Mean Free Path Contamination probability UHV

X-Ray Source

Page 18: Lecture 5-8 Instrumentation Info/Electron Spectroscopies 2007/L6-8 Instrumentation.pdfLecture 5-8 Instrumentation. Requirements Vacuum Mean Free Path Contamination probability UHV

X-Ray emissionspectrum

Page 19: Lecture 5-8 Instrumentation Info/Electron Spectroscopies 2007/L6-8 Instrumentation.pdfLecture 5-8 Instrumentation. Requirements Vacuum Mean Free Path Contamination probability UHV

Detail of the spectrum

Page 20: Lecture 5-8 Instrumentation Info/Electron Spectroscopies 2007/L6-8 Instrumentation.pdfLecture 5-8 Instrumentation. Requirements Vacuum Mean Free Path Contamination probability UHV
Page 21: Lecture 5-8 Instrumentation Info/Electron Spectroscopies 2007/L6-8 Instrumentation.pdfLecture 5-8 Instrumentation. Requirements Vacuum Mean Free Path Contamination probability UHV
Page 22: Lecture 5-8 Instrumentation Info/Electron Spectroscopies 2007/L6-8 Instrumentation.pdfLecture 5-8 Instrumentation. Requirements Vacuum Mean Free Path Contamination probability UHV

X-ray source with dual filament and anode faces

Water Inlet Tube

Focusing Shields

Filament 2Filament 1

Anode Face 1 Anode Face 2

WindowX-rays

Page 23: Lecture 5-8 Instrumentation Info/Electron Spectroscopies 2007/L6-8 Instrumentation.pdfLecture 5-8 Instrumentation. Requirements Vacuum Mean Free Path Contamination probability UHV

UV Source

Page 24: Lecture 5-8 Instrumentation Info/Electron Spectroscopies 2007/L6-8 Instrumentation.pdfLecture 5-8 Instrumentation. Requirements Vacuum Mean Free Path Contamination probability UHV

Synchrotron

Page 25: Lecture 5-8 Instrumentation Info/Electron Spectroscopies 2007/L6-8 Instrumentation.pdfLecture 5-8 Instrumentation. Requirements Vacuum Mean Free Path Contamination probability UHV

ResolutionAbsolute resolution, FWHM 'EBase width 'EB = 2 'E

Relative resolution R = 'E/E0

Represented normally, in percentage, 'E/E0 x 100

Resolving power U = 1/R = E0/'E

XPS line widths 0.7eV Mg KD, 0.85 eV Al KD, For an absolute resolution of 0.2 eV, the relative resolution is 10-4 or a resolving power of 10,000.

To keep the analyser size to an optimum value, the KEs have to be retarded - pass energy.

Page 26: Lecture 5-8 Instrumentation Info/Electron Spectroscopies 2007/L6-8 Instrumentation.pdfLecture 5-8 Instrumentation. Requirements Vacuum Mean Free Path Contamination probability UHV

For an absolute resolution of 0.2 eV, the relative resolution is only 10-3. High absolute resolution can be achieved by retardation.

Not always advantageous.

Requirement in UPS

Page 27: Lecture 5-8 Instrumentation Info/Electron Spectroscopies 2007/L6-8 Instrumentation.pdfLecture 5-8 Instrumentation. Requirements Vacuum Mean Free Path Contamination probability UHV

EDC around EF in an UPS spectrum of Ag. Solid line is

the Fermi function at RT

Page 28: Lecture 5-8 Instrumentation Info/Electron Spectroscopies 2007/L6-8 Instrumentation.pdfLecture 5-8 Instrumentation. Requirements Vacuum Mean Free Path Contamination probability UHV

Electronic structure of solids

s

p

s band

p band

Band gap

Half full

Full

Page 29: Lecture 5-8 Instrumentation Info/Electron Spectroscopies 2007/L6-8 Instrumentation.pdfLecture 5-8 Instrumentation. Requirements Vacuum Mean Free Path Contamination probability UHV

Energy

Zero

Fermi level

Occupied

Unoccupied

Page 30: Lecture 5-8 Instrumentation Info/Electron Spectroscopies 2007/L6-8 Instrumentation.pdfLecture 5-8 Instrumentation. Requirements Vacuum Mean Free Path Contamination probability UHV

In a piece of metal, there are 1023 electrons.We have high quantum states for most electrons.

Probability that a given quantum state is occupied is given by the Fermi factor,

f(E) = 1/[e(E-Ȟ)/kT + 1]

Plot of this is given here which gives a definition of Femi level.

Page 31: Lecture 5-8 Instrumentation Info/Electron Spectroscopies 2007/L6-8 Instrumentation.pdfLecture 5-8 Instrumentation. Requirements Vacuum Mean Free Path Contamination probability UHV

Ȟ is chemical potential, is the energy of the level for which f(E) = ½

EF

Page 32: Lecture 5-8 Instrumentation Info/Electron Spectroscopies 2007/L6-8 Instrumentation.pdfLecture 5-8 Instrumentation. Requirements Vacuum Mean Free Path Contamination probability UHV

How the given energy states are occupied at a given temperature is given by Fermi-Dirac distribution.

N(E)dE = f(E)S(E)dE= S(E)dE/[e(E-Ȟ)/kT + 1]

N(E) = number of electrons per unit volume, having energy between E and E + dES(E) = number of available quantum states in this energy range.

This distribution obeys Pauli exclusion principle.Number of electrons N(E) can never be larger than the number of available statesS(E) as the denominator is always greater than one.

For states with energies well above Ȟ, 1 in the denominator can be neglected. N(E)dE § e-(E-Ȟ)/kT This resembles Bolzmann distribution

Page 33: Lecture 5-8 Instrumentation Info/Electron Spectroscopies 2007/L6-8 Instrumentation.pdfLecture 5-8 Instrumentation. Requirements Vacuum Mean Free Path Contamination probability UHV

UPS EDC at EF of Ag (15 K). Resolution, 'E is obtained by convoluting a Fermi

function with a Gaussian function

Page 34: Lecture 5-8 Instrumentation Info/Electron Spectroscopies 2007/L6-8 Instrumentation.pdfLecture 5-8 Instrumentation. Requirements Vacuum Mean Free Path Contamination probability UHV

AnalysersAnalysers

Page 35: Lecture 5-8 Instrumentation Info/Electron Spectroscopies 2007/L6-8 Instrumentation.pdfLecture 5-8 Instrumentation. Requirements Vacuum Mean Free Path Contamination probability UHV

Electron beam

Sample

Retarding Field Analyser

Scan

Detector

Amplifier

Page 36: Lecture 5-8 Instrumentation Info/Electron Spectroscopies 2007/L6-8 Instrumentation.pdfLecture 5-8 Instrumentation. Requirements Vacuum Mean Free Path Contamination probability UHV

Intensity

Retarding Voltage

Page 37: Lecture 5-8 Instrumentation Info/Electron Spectroscopies 2007/L6-8 Instrumentation.pdfLecture 5-8 Instrumentation. Requirements Vacuum Mean Free Path Contamination probability UHV
Page 38: Lecture 5-8 Instrumentation Info/Electron Spectroscopies 2007/L6-8 Instrumentation.pdfLecture 5-8 Instrumentation. Requirements Vacuum Mean Free Path Contamination probability UHV

Eo/eV = k/ln(r2/r1) mv2/r = eV

Page 39: Lecture 5-8 Instrumentation Info/Electron Spectroscopies 2007/L6-8 Instrumentation.pdfLecture 5-8 Instrumentation. Requirements Vacuum Mean Free Path Contamination probability UHV
Page 40: Lecture 5-8 Instrumentation Info/Electron Spectroscopies 2007/L6-8 Instrumentation.pdfLecture 5-8 Instrumentation. Requirements Vacuum Mean Free Path Contamination probability UHV

ElectronGun

ElectronMultiplier

First Stage SecondState

Sample

X-Ray Source

Inner and OuterMagnetic Shields

OuterCylinder Inner

CylinderRotary Motion

Page 41: Lecture 5-8 Instrumentation Info/Electron Spectroscopies 2007/L6-8 Instrumentation.pdfLecture 5-8 Instrumentation. Requirements Vacuum Mean Free Path Contamination probability UHV

eǻV = E(R2/R1 – R1/R2)

Page 42: Lecture 5-8 Instrumentation Info/Electron Spectroscopies 2007/L6-8 Instrumentation.pdfLecture 5-8 Instrumentation. Requirements Vacuum Mean Free Path Contamination probability UHV
Page 43: Lecture 5-8 Instrumentation Info/Electron Spectroscopies 2007/L6-8 Instrumentation.pdfLecture 5-8 Instrumentation. Requirements Vacuum Mean Free Path Contamination probability UHV
Page 44: Lecture 5-8 Instrumentation Info/Electron Spectroscopies 2007/L6-8 Instrumentation.pdfLecture 5-8 Instrumentation. Requirements Vacuum Mean Free Path Contamination probability UHV
Page 45: Lecture 5-8 Instrumentation Info/Electron Spectroscopies 2007/L6-8 Instrumentation.pdfLecture 5-8 Instrumentation. Requirements Vacuum Mean Free Path Contamination probability UHV

1. Single-Channel DetectorChannel electron multiplier:A continuousdynode surface. High count rate of 106

counts per second.

2. Multi-Channel DetectorA set of parallel detector chains or positionsensitive detectors kept at the analyserexit slit plain.

Page 46: Lecture 5-8 Instrumentation Info/Electron Spectroscopies 2007/L6-8 Instrumentation.pdfLecture 5-8 Instrumentation. Requirements Vacuum Mean Free Path Contamination probability UHV

Semi Conducting Surface

Lead doped glass

HVe-

film

glass

106electron

Channel electron multiplier

Page 47: Lecture 5-8 Instrumentation Info/Electron Spectroscopies 2007/L6-8 Instrumentation.pdfLecture 5-8 Instrumentation. Requirements Vacuum Mean Free Path Contamination probability UHV

Hemispherical sector electron energy analyser and control

electronics.

Page 48: Lecture 5-8 Instrumentation Info/Electron Spectroscopies 2007/L6-8 Instrumentation.pdfLecture 5-8 Instrumentation. Requirements Vacuum Mean Free Path Contamination probability UHV

Spectrometer with X-ray monocromatisation

Page 49: Lecture 5-8 Instrumentation Info/Electron Spectroscopies 2007/L6-8 Instrumentation.pdfLecture 5-8 Instrumentation. Requirements Vacuum Mean Free Path Contamination probability UHV

Modern instrument for UPS, XPS, AES and EELS

Page 50: Lecture 5-8 Instrumentation Info/Electron Spectroscopies 2007/L6-8 Instrumentation.pdfLecture 5-8 Instrumentation. Requirements Vacuum Mean Free Path Contamination probability UHV

An electron gun for beams up to 10 ke V

Page 51: Lecture 5-8 Instrumentation Info/Electron Spectroscopies 2007/L6-8 Instrumentation.pdfLecture 5-8 Instrumentation. Requirements Vacuum Mean Free Path Contamination probability UHV

Ion gun using a Penning discharge.

Page 52: Lecture 5-8 Instrumentation Info/Electron Spectroscopies 2007/L6-8 Instrumentation.pdfLecture 5-8 Instrumentation. Requirements Vacuum Mean Free Path Contamination probability UHV

A liquid-metal field emission ion source

Page 53: Lecture 5-8 Instrumentation Info/Electron Spectroscopies 2007/L6-8 Instrumentation.pdfLecture 5-8 Instrumentation. Requirements Vacuum Mean Free Path Contamination probability UHV

A simple method of XPS imaging using a conventional HAS instrument

Page 54: Lecture 5-8 Instrumentation Info/Electron Spectroscopies 2007/L6-8 Instrumentation.pdfLecture 5-8 Instrumentation. Requirements Vacuum Mean Free Path Contamination probability UHV

Data analysis