37
Lecture 4: Addition (and free vector spaces) of a series of preparatory lectures for the Fall 2013 online course MATH:7450 (22M:305) Topics in Topology: Scientific and Engineering Applications of Algebraic Topology Target Audience: Anyone interested in topological data analysis including graduate students, faculty, industrial researchers in bioinformatics, biology, computer science, cosmology, engineering, imaging, mathematics, neurology, physics, statistics, etc. Isabel K. Darcy Mathematics Department/Applied Mathematical & Computational Sciences University of Iowa http://www.math.uiowa.edu/~idarcy/ AppliedTopology.html

Lecture 4: Addition (and free vector spaces)

  • Upload
    shubha

  • View
    28

  • Download
    1

Embed Size (px)

DESCRIPTION

Isabel K. Darcy Mathematics Department/Applied Mathematical & Computational Sciences University of Iowa http://www.math.uiowa.edu/~ idarcy/AppliedTopology.html. Lecture 4: Addition (and free vector spaces) - PowerPoint PPT Presentation

Citation preview

Page 1: Lecture 4:  Addition  (and free vector spaces)

Lecture 4: Addition (and free vector spaces)

of a series of preparatory lectures for the Fall 2013 online course MATH:7450 (22M:305) Topics in Topology: Scientific and Engineering Applications of Algebraic Topology

Target Audience: Anyone interested in topological data analysis including graduate students, faculty, industrial researchers in bioinformatics, biology, computer science, cosmology, engineering, imaging, mathematics, neurology, physics, statistics, etc.

Isabel K. Darcy Mathematics Department/Applied Mathematical & Computational Sciences

University of Iowa

http://www.math.uiowa.edu/~idarcy/AppliedTopology.html

Page 2: Lecture 4:  Addition  (and free vector spaces)

A free abelian group generated by the elements x1, x2, …, xk consists of all elements of the form

n1x1 + n2x2 + … + nkxk

where ni are integers.

Z = The set of integers = { …, -2, -1, 0, 1, 2, …} = the set of all whole numbers (positive, negative, 0)

Addition:(n1x1 + n2x2 + … + nkxk) + (m1x1 + m2x2 + … + mkxk)

= (n1 + m1) x1 + (n2 + m2)x2 + … + (nk + mk)xk

Page 3: Lecture 4:  Addition  (and free vector spaces)

A free abelian group generated by the elements x1, x2, …, xk consists of all elements of the form

n1x1 + n2x2 + … + nkxk

where ni are integers.

Example: Z[x , x ]

4 ix + 2 I

x – 2 i

-3 x

k + n iii

Z = The set of integers = { …, -2, -1, 0, 1, 2, …}

Page 4: Lecture 4:  Addition  (and free vector spaces)

A free abelian group generated by the elements x1, x2, …, xk consists of all elements of the form

n1x1 + n2x2 + … + nkxk

where ni are integers.

Z = The set of integers = { …, -2, -1, 0, 1, 2, …} = the set of all whole numbers (positive, negative, 0)

Addition:(n1x1 + n2x2 + … + nkxk) + (m1x1 + m2x2 + … + mkxk)

= (n1 + m1) x1 + (n2 + m2)x2 + … + (nk + mk)xk

Page 5: Lecture 4:  Addition  (and free vector spaces)

A free vector space over the field F generated by the elements x1, x2, …, xk consists of all elements of the form

n1x1 + n2x2 + … + nkxk

where ni in F.

Examples of a field: R = set of real numbers Q = set of

rational numbers Z2 = {0, 1}

Addition:(n1x1 + n2x2 + … + nkxk) + (m1x1 + m2x2 + … + mkxk)

= (n1 + m1) x1 + (n2 + m2)x2 + … + (nk + mk)xk

Page 6: Lecture 4:  Addition  (and free vector spaces)

A free vector space over the field F generated by the elements x1, x2, …, xk consists of all elements of the form

n1x1 + n2x2 + … + nkxk

where ni in F.

Examples of a field:

R = set of real numbers:πx + √2 y + 3z is in R[x, y, z]

Q = set of rational numbers (i.e. fractions):(½)x + 4y is in Q[x, y]

Z2 = {0, 1}: 0x + 1y + 1w + 0z is in Z2[x, y, z, w]

Page 7: Lecture 4:  Addition  (and free vector spaces)

GroupClosure x, y in G implies x + y is in GAssociative (x + y) + z = x + (y + z) Identity 0 + x = x = x + 0Inverses x + (-x) = 0 = (-x) + x

Examples of a group under addition: R = set of real numbers Q = set of rational numbers. Z = set of integers.

Z2 = {0, 1}

Page 8: Lecture 4:  Addition  (and free vector spaces)

GroupClosure x, y in G implies x + y is in GAssociative (x + y) + z = x + (y + z) Identity 0 + x = x = x + 0Inverses x + (-x) = 0 = (-x) + x

Abelian GroupClosure x, y in G implies x + y is in GAssociative (x + y) + z = x + (y + z) Identity 0 + x = x = x + 0Inverses x + (-x) = 0 = (-x) + xCommutative x + y = y + x

Page 9: Lecture 4:  Addition  (and free vector spaces)

Examples of an abelian group under addition: R = set of real numbers

Q = set of rational numbers. Z = set of integers.

Z2 = {0, 1}

Abelian GroupClosure x, y in G implies x + y is in GAssociative (x + y) + z = x + (y + z) Identity 0 + x = x = x + 0Inverses x + (-x) = 0 = (-x) + xCommutative x + y = y + x

Page 10: Lecture 4:  Addition  (and free vector spaces)

GroupClosure x, y in G implies x y is in GAssociative (x y) z = x (y z) Identity 1 x = x = 1x Inverses x (x-1) = 1 = (x-1) x

Examples of a group under multiplication:

R – {0} = set of real numbers not including zero.

Q – {0} = set of rational numbers not including zero.

Z2– {0} = {1}

Page 11: Lecture 4:  Addition  (and free vector spaces)

Note that Z – {0} is not a group under multiplication.

GroupClosure x, y in G implies x y is in GAssociative (x y) z = x (y z) Identity 1 x = x = 1x Inverses x (x-1) = 1 = (x-1) x

Page 12: Lecture 4:  Addition  (and free vector spaces)

Field Addition MultiplicationClosure x, y in G x+ y in G closureAssociative (x + y) + z = x + (y + z) (x y) z = x (y z) Identity 0 + x = x = x + 0 1 x = x = 1x Inverses x + (-x) = 0 = (-x) + x x (x-1) = 1 = (x-1) xCommutative x + y = y + x (x y) z = x (y z) Distributive x ( y + z ) = x y + x z

F is a field if (1) F is an abelian group under addition (2) F – {0} is an abelian group under multiplication(3) multiplication distributes across addition.

Examples of a field: R = set of real numbersQ = set of rational

numbersZ2 = {0, 1}

Page 13: Lecture 4:  Addition  (and free vector spaces)

A free vector space over the field F generated by the elements x1, x2, …, xk consists of all elements of the form

n1x1 + n2x2 + … + nkxk

where ni in F.

Examples of a field: R = set of real numbers Q = set of

rational numbers Z2 = {0, 1}

Addition:(n1x1 + n2x2 + … + nkxk) + (m1x1 + m2x2 + … + mkxk)

= (n1 + m1) x1 + (n2 + m2)x2 + … + (nk + mk)xk

Page 14: Lecture 4:  Addition  (and free vector spaces)

A free abelian group generated by the elements x1, x2, …, xk consists of all elements of the form

n1x1 + n2x2 + … + nkxk

where ni are integers.

Z = The set of integers = { …, -2, -1, 0, 1, 2, …} = the set of all whole numbers (positive, negative, 0)

Addition:(n1x1 + n2x2 + … + nkxk) + (m1x1 + m2x2 + … + mkxk)

= (n1 + m1) x1 + (n2 + m2)x2 + … + (nk + mk)xk

Page 15: Lecture 4:  Addition  (and free vector spaces)

A free vector space over the field Z2 generated by the elements x1, x2, …, xk consists of all elements of the form

n1x1 + n2x2 + … + nkxk

where ni in Z2. Example: Z2[x1, x2] = {0, x1, x2, x1 + x2}

4x1 + 2x2 = 0x1 + 0x2 = 0 mod 2

1x1 + 0x2 = x1 mod 2

0x1 + 1x2 = x2 mod 2

kx1 + nx2 mod 2

Z2 = The set of integers mod 2 = {0, 1}

Page 16: Lecture 4:  Addition  (and free vector spaces)

Addition:(n1x1 + n2x2 + … + nkxk) + (m1x1 + m2x2 + … + mkxk)

= (n1 + m1) x1 + (n2 + m2)x2 + … + (nk + mk)xk

Example: Z2[x1, x2] = {0, x1, x2, x1 + x2}

1x1 + 1x1 = 2 x1 = 0 mod 2

(x1 + x2) + (x1 + 0x2) = 2 x1 + x2 = x2 mod 2

(1x1 + 0x2) + (0x1 + 1x2) = x1 + x2 mod 2

Page 17: Lecture 4:  Addition  (and free vector spaces)

v = vertex e = edge

Example 2 from lecture 3:

4 vertices + 5 edges4v + 5e

Page 18: Lecture 4:  Addition  (and free vector spaces)

v = vertex e = edge

0 vertices + 1 edges mod 20v + 1e = e mod 2

Example 2 from lecture 3:

Page 19: Lecture 4:  Addition  (and free vector spaces)

v = vertex e = edge

0 vertices + 1 edges mod 20v + 1e = e mod 2

Example 2 from lecture 3:

Page 20: Lecture 4:  Addition  (and free vector spaces)

v1 + v2 + v3 + v4 + e1 + e2 + e3 + e4 + e5

in Z2[v1, v2, , v3, v4, e1, e2, , e3, e4, e5]

e2e1

e5e4

e3

v1

v2

v3

v4

Page 21: Lecture 4:  Addition  (and free vector spaces)

v1 + v2 + v3 + v4 in Z[v1, v2, , v3, v4]

e1 + e2 + e3 + e4 + e5 in Z[e1, e2, , e3, e4, e5]

e2e1

e5e4

e3

v1

v2

v3

v4

Page 22: Lecture 4:  Addition  (and free vector spaces)

Note that e3 + e5 + e4 is a cycle.

Note that e1 + e2 + e3 is a cycle.e2e1

e5e4

e3

v1

v2

v3

v4

Page 23: Lecture 4:  Addition  (and free vector spaces)

ei

In Z[e1, e2, e3, e4, e5] Objects: oriented edges

– ee

But in Z2, 1 = -1. Thus e = – e

Page 24: Lecture 4:  Addition  (and free vector spaces)

ei

In Z[e1, e2, e3, e4, e5] Objects: oriented edges

– ee

– ee =

But in Z2, 1 = -1. Thus e = – e

Page 25: Lecture 4:  Addition  (and free vector spaces)

ei

In Z[e1, e2, e3, e4, e5] Objects: oriented edges

– ee

But in Z2, 1 = -1. Thus e = – e

– ee =

Page 26: Lecture 4:  Addition  (and free vector spaces)

ei

In Z[e1, e2, e3, e4, e5] Objects: oriented edges

– eiei

ei

In Z2[e1, e2, e3, e4, e5] Objects: edges

Page 27: Lecture 4:  Addition  (and free vector spaces)

(e1 + e2 + e3) + (–e3 + e5 + e4) = e1 + e2 + e5 + e4

e2e1

e5e4

e2e1

e5e4

e3

In Z[e1, e2, e3, e4, e5]

Page 28: Lecture 4:  Addition  (and free vector spaces)

(e1 + e2 + e3) + (e3 + e5 + e4) = e1 + e2 + 2e3 + e5 + e4

= e1 + e2 + e5 + e4 .

e2e1

e5e4

e2e1

e5e4

e3

In Z2[e1, e2, e3, e4, e5]

Page 29: Lecture 4:  Addition  (and free vector spaces)

e1 + e2 + e3 + e1 + e2 + e5 + e4 = 2e1 + 2e2 + e3 + e4 + e5

= e3 + e4 + e5

e1 + e2 + e5 + e4 + e1 + e2 + e3 = e3 + e4 + e5

e2e1

e5e4

e3

v1

v2

v3

v4

e2e1

e5

e3

v1

v2

v3

v4

Page 30: Lecture 4:  Addition  (and free vector spaces)

The boundary of e1 = v2 – v1e2e1

e5e4

e3

v1

v2

v3

v4

In Z[e1, e2, e3, e4, e5]

Page 31: Lecture 4:  Addition  (and free vector spaces)

The boundary of e1 = v2 + v1e2e1

e5e4

e3

v1

v2

v3

v4

In Z2[e1, e2, e3, e4, e5]

Page 32: Lecture 4:  Addition  (and free vector spaces)

The boundary of e1 = v2 + v1

The boundary of e2 = v3 + v2

The boundary of e3 = v1 + v3

e2e1

e5e4

e3

v1

v2

v3

v4

The boundary of e1 + e2 + e3

= v2 + v1 + v3 + v2 + v1 + v3 = 2v1 + 2v2 + 2v3 = 0

In Z2[e1, e2, e3, e4, e5]

Page 33: Lecture 4:  Addition  (and free vector spaces)

e2e1

e5e4

e3

v1

v2

v3

v4

Add an oriented face

e2e1

e5e4

e3

v1

v2

v3

v4

In Z[f]

Page 34: Lecture 4:  Addition  (and free vector spaces)

e2e1

e5e4

e3

v1

v2

v3

v4

Add an oriented face

e2e1

e5e4

e3

v1

v2

v3

v4

But with Z2

coefficients +1 = -1 so f = -f .

Page 35: Lecture 4:  Addition  (and free vector spaces)

e2e1

e5e4

e3

v1

v2

v3

v4

Add a face

In Z2[f]

Page 36: Lecture 4:  Addition  (and free vector spaces)

v2

e2e1

e3

v1 v3

2-simplex = face = {v1, v2, v3} Note that the boundary

of this face is the cycle

e1 + e2 + e3

= {v1, v2} + {v2, v3} + {v1, v3}

1-simplex = edge = {v1, v2} Note that the boundary

of this edge is v2 + v1 ev1 v2

0-simplex = vertex = v

Building blocks for a simplicial complex using Z2 coefficients

Page 37: Lecture 4:  Addition  (and free vector spaces)

3-simplex = {v1, v2, v3, v4} = tetrahedron

boundary of {v1, v2, v3, v4} ={v1, v2, v3} + {v1, v2, v4} + {v1, v3, v4} + {v2, v3, v4}

n-simplex = {v1, v2, …, vn+1}

v4

v3v1

v2

Building blocks for a simplicial complex using Z2 coefficients