36
Lecture 26: Angular velocity and acceleration; Rotation with constant angular acceleration

Lecture 26 Angular Velocity and Acceleration; Rotation With Constant Angular Acceleration

Embed Size (px)

DESCRIPTION

Physics; re-up only; not mine

Citation preview

Page 1: Lecture 26 Angular Velocity and Acceleration; Rotation With Constant Angular Acceleration

Lecture  26:  Angular  velocity  and  acceleration;  Rotation  with  constant  angular  acceleration

Page 2: Lecture 26 Angular Velocity and Acceleration; Rotation With Constant Angular Acceleration

Lecture  Objectives  1.  Distinguish  rotational  and  translational  quantities.    2.  Apply  the  rotational  kinematic  relations  in  rotating  objects.        

Page 3: Lecture 26 Angular Velocity and Acceleration; Rotation With Constant Angular Acceleration
Page 4: Lecture 26 Angular Velocity and Acceleration; Rotation With Constant Angular Acceleration
Page 5: Lecture 26 Angular Velocity and Acceleration; Rotation With Constant Angular Acceleration

Rigid  bodyNeglect  deformations  

Perfectly  definite  and  unchanging  size  and  shape

Image  from  http://wiki.blender.org

5

Page 6: Lecture 26 Angular Velocity and Acceleration; Rotation With Constant Angular Acceleration

Describing  rotation

 

 

Page 7: Lecture 26 Angular Velocity and Acceleration; Rotation With Constant Angular Acceleration

Comparing  translational  and  rotational  motions

   

7

Page 8: Lecture 26 Angular Velocity and Acceleration; Rotation With Constant Angular Acceleration

Example:  Earth  undergoes  both  types  of  rotational  motion.    

• It  revolves  around  the  sun  once  every  365  ¼  days.  • It  rotates  around  an  axis  passing  through  its  

geographical  poles  once  every  24  hours.

Rotation  and  Revolution

An  axis  is  the  straight  line  around  which  rotation  takes  place.  • When  an  object  turns  about  an  internal  axis—that  is,  

an  axis  located  within  the  body  of  the  object—the  motion  is  called  rotation,  or  spin.  

• When  an  object  turns  about  an  external  axis,  the  motion  is  called  revolution.  

Page 9: Lecture 26 Angular Velocity and Acceleration; Rotation With Constant Angular Acceleration

Example  The  turntable  rotates  around  its  axis  while  a  ladybug  sitting  at  its  edge  revolves  around  the  same  axis.

Page 10: Lecture 26 Angular Velocity and Acceleration; Rotation With Constant Angular Acceleration

Angular  measurements  

 

10

Page 11: Lecture 26 Angular Velocity and Acceleration; Rotation With Constant Angular Acceleration

Angular  measurements  

11

Page 12: Lecture 26 Angular Velocity and Acceleration; Rotation With Constant Angular Acceleration

•  Kinematics  of  a  rotating  body

12

Page 13: Lecture 26 Angular Velocity and Acceleration; Rotation With Constant Angular Acceleration

Angular  velocity  (rad/s)•  

13

Page 14: Lecture 26 Angular Velocity and Acceleration; Rotation With Constant Angular Acceleration

 

Page 15: Lecture 26 Angular Velocity and Acceleration; Rotation With Constant Angular Acceleration

Given:  t1  =  2.0s  t2  =  5.0s

(a)  Substitute  the  values  of  time  t  into  the  given  equation:  

(b)  The  flywheel  turns  through  an  angular  displacement  of    Δθ  =    θ2  –  θ1  =  250rad  –  16rad  =  234rad.  Since  the  diameter  is  0.36m,  r  =  0.18m.  The  distance  traveled  is  therefore:  

Page 16: Lecture 26 Angular Velocity and Acceleration; Rotation With Constant Angular Acceleration

(c)  The  angular  velocity:

(d)  The  instantaneous  angular  velocity  at  t  =  5.00s

Page 17: Lecture 26 Angular Velocity and Acceleration; Rotation With Constant Angular Acceleration

Curl   (right  hand)   fingers   to  direction  of   rotation,   thumb  points  to  direction  of  angular  quantity

Direction  of  vector  quantities

17

Page 18: Lecture 26 Angular Velocity and Acceleration; Rotation With Constant Angular Acceleration

Angular  acceleration  (rad/s2)

18

Page 19: Lecture 26 Angular Velocity and Acceleration; Rotation With Constant Angular Acceleration

Relative  directions  of  angular  velocity  and  acceleration

Same  direction,  speeding  up  Different  directions,  slowing  down

19

Page 20: Lecture 26 Angular Velocity and Acceleration; Rotation With Constant Angular Acceleration

 

Page 21: Lecture 26 Angular Velocity and Acceleration; Rotation With Constant Angular Acceleration

(a)  Using  the  equation  for  instantaneous  angular  velocity  for  time  2.0s  and  5.0s:

We  will  use  this  to  solve  for  the  average  angular  acceleration:

(b)  The  instantaneous  acceleration  at  time  t  =  5.0s  is:

Page 22: Lecture 26 Angular Velocity and Acceleration; Rotation With Constant Angular Acceleration

Comparing  translational  and  rotational  motion    

22

Page 23: Lecture 26 Angular Velocity and Acceleration; Rotation With Constant Angular Acceleration

Constant  angular  acceleration

   

Problems  to  be  considered:  acceleration  =  constant

23

Page 24: Lecture 26 Angular Velocity and Acceleration; Rotation With Constant Angular Acceleration

Sample  Problem:    Rotation  with  constant  acceleration  You  have  just  finished  watching  a  movie  on  DVD  and  the  disc  is  slowing  to  a  stop.  The  angular  velocity  of  the  disc  at  t  =  0  is  27.5rad/s  and  its  angular  acceleration  is  constant  at  -­‐10.0rad/s2.    A  line  PQ  on  the  surface  of  the  disc  lies  along  the  +x-­‐axis  at  t  =  0.  (a) What  is  the  disc’s  angular  velocity  at  t  =  0.300s?  (b) What  angle  does  the  line  PQ  make  with  the  x-­‐axis  at  

this  time?

Given:    ω0    =  27.5rad/s  Constant  α  =  -­‐10.0rad/s2  (a) ω  at  t  =  0.30s  (b)  angle  at  t  =  0.30s

Page 25: Lecture 26 Angular Velocity and Acceleration; Rotation With Constant Angular Acceleration

(a)  Substitute  ω0  ,  α  and  t  to  the  equation:

Given:    ω0    =  27.5rad/s  Constant  α  =  -­‐10.0rad/s2

(b)  To  get  the  angle,  first  calculate  the  angular  displacement:

Converting    into  angle:

Page 26: Lecture 26 Angular Velocity and Acceleration; Rotation With Constant Angular Acceleration

Seatwork

26

Page 27: Lecture 26 Angular Velocity and Acceleration; Rotation With Constant Angular Acceleration

•  Seatwork  1

27

Page 28: Lecture 26 Angular Velocity and Acceleration; Rotation With Constant Angular Acceleration

•  

28

Seatwork  2

Page 29: Lecture 26 Angular Velocity and Acceleration; Rotation With Constant Angular Acceleration

Seatwork  3  and  4:  The  figure  shows  a  graph  of  ωz  and  αz  versus  time  for  a  particular  rotating  body.  SW  3:  During  which  time  intervals  is  the  rotating  body  speeding  up?  (a)  0  <  t  <  2s  (b)  2s  <  t  <  4s  (c)  4s  <  t  <  6s  SW4:  During  which  time  is    the  rotation  slowing  down?  (a)  0  <  t  <  2s  (b)  2s  <  t  <  4s  (c)  4s  <  t  <  6s

Page 30: Lecture 26 Angular Velocity and Acceleration; Rotation With Constant Angular Acceleration

Seatworks  5,  6,  7,  8  and  9

Arc  length:  s  =  rθ  (with  θ  in  radians)  To  convert  in  radians  use:  πrad  =  180o

If  angular  velocity  is  constant:  θ-­‐θo  =  ωt

Page 31: Lecture 26 Angular Velocity and Acceleration; Rotation With Constant Angular Acceleration

Seatwork  answers

31

Page 32: Lecture 26 Angular Velocity and Acceleration; Rotation With Constant Angular Acceleration

•  Seatwork  1

32

Page 33: Lecture 26 Angular Velocity and Acceleration; Rotation With Constant Angular Acceleration

•  

33

Seatwork  2

Page 34: Lecture 26 Angular Velocity and Acceleration; Rotation With Constant Angular Acceleration

Seatwork  3  and  4:  The  figure  shows  a  graph  of  ωz  and  αz  versus  time  for  a  particular  rotating  body.  SW  3:  During  which  time  intervals  is  the  rotating  body  speeding  up?  (a)  0  <  t  <  2s  (same  sign:  both  positive)  (b)  2s  <  t  <  4s  (c)  4s  <  t  <  6s  (same  sign:  both  negative)  SW4:  During  which  time  is    the  rotation  slowing  down?  (a)  0  <  t  <  2s  (b)  2s  <  t  <  4s  (opposite  sign)  (c)  4s  <  t  <  6s

Page 35: Lecture 26 Angular Velocity and Acceleration; Rotation With Constant Angular Acceleration

Seatworks  5,  6,  7,  8  and  9

Arc  length:  s  =  rθ  (with  θ  in  radians)  To  convert  in  radians  use:  πrad  =  180oIf  angular  velocity  is  constant:  θ-­‐θo  =  ωt

Page 36: Lecture 26 Angular Velocity and Acceleration; Rotation With Constant Angular Acceleration

Seatwork 5 to 9: s  =  rθ  (with  θ  in  radians)  πrad  =  180o

 

 

 

 

 

Since  angular  velocity  is  constant:  θ-­‐θo  =  ωt