5
Lecture 1 Refresher on Quantum Mechanics © Prof. W. F. Schneider CBE 60547 – Computational Chemistry 1/5 University of Notre Dame Spring 2012 1. Introduction Want to describe “mechanics” of atomic-scale things, like electrons in atoms and molecules. Why? These ultimately determine the shape, the energy, and all the properties of matter. When do we need quantum mechanics? de Broglie wavelength (1924) 34 6.626 J s (Planck's constan ) 0 t 1 h h p mv h λ = × = = Car Electron m = 1000 kg 9.1 × 10 31 kg v = 100 km/hr Typical value on the highway v = 0.01 c Typical value in atom p = 2.8 × 10 4 kg m/s p = 2.7 × 10 24 kg m/s λ = 2.4 × 10 38 m Too small to detect. Classical object! λ = 2.4 × 10 10 m Comparable to size of atom. Must account for wave properties of an electron! How to describe wave properties of an electron? Schrödinger equation (1926?) Kinetic energy + Potential energy = Total Energy Expressed as differential equation (Single particle, non-relativistic): ! ! 2 2m ! 2 ! r, t ( ) + V r, t ( ) ! r, t ( ) = !i! ! !t ! r, t ( ) (,) t Ψ r : wavefunction Steady-state, or time-independent: ! ! 2 2m ! 2 ! r () + V r () ! r () = E! r () ! r, t ( ) = ! r () e !iEt ! E: energy

Lecture 1 Refresher on Quantum Mechanics - CRCwschnei1/courses/CBE_547/Lectures/... · Want to describe “mechanics” of atomic-scale things, like electrons in atoms and molecules

  • Upload
    lamthuy

  • View
    218

  • Download
    0

Embed Size (px)

Citation preview

Lecture 1 Refresher on Quantum Mechanics

© Prof. W. F. Schneider CBE 60547 – Computational Chemistry 1/5 University of Notre Dame Spring 2012

1. Introduction Want to describe “mechanics” of atomic-scale things, like electrons in atoms and molecules. Why? These ultimately determine the shape, the energy, and all the properties of matter. When do we need quantum mechanics? de Broglie wavelength (1924)

346.626 J s (Planck's constan )0 t1

h hp mv

h

λ

=

×=

=

Car Electron

m = 1000 kg 9.1 × 10−31 kg v = 100 km/hr

Typical value on the highway v = 0.01 c

Typical value in atom p = 2.8 × 10−4 kg m/s p = 2.7 × 10−24 kg m/s λ = 2.4 × 10−38 m

Too small to detect. Classical object!

λ = 2.4 × 10−10 m Comparable to size of atom.

Must account for wave properties of an electron!

How to describe wave properties of an electron? Schrödinger equation (1926?)

Kinetic energy + Potential energy = Total Energy

Expressed as differential equation (Single particle, non-relativistic):

!!2

2m!2! r,t( )+V r,t( )! r,t( ) = !i! !

!t! r,t( )

( , )tΨ r : wavefunction

Steady-state, or time-independent:

!!2

2m!2! r( )+V r( )! r( ) = E! r( )

! r,t( ) =! r( )e!iEt!

E: energy

Lecture 1 Refresher on Quantum Mechanics

© Prof. W. F. Schneider CBE 60547 – Computational Chemistry 2/5 University of Notre Dame Spring 2012

2. Postulates of Non-relativistic Quantum Mechanics Postulate I: The physical state of a system is completely described by its wavefunction Ψ. In general,

Ψ is a complex function of the spatial coordinates and time. Ψ is required to be: 1. single-valued 2. continuous and twice-differentiable 3. square-integrable ( dτ∗Ψ Ψ∫ is defined over all finite domains)

For bound systems Ψ can always be normalized such that 1dτ∗Ψ Ψ =∫ .

Postulate II: To every physically observable quantity M there corresponds a Hermitian quantum

mechanical operator M . The only observable values of M are the eigenvalues of M .

Physical quantity Operator Expression

Position x, y, z ˆ ˆ ˆ, ,x y z , ,x y z⋅ ⋅ ⋅

Linear momentum px, … ˆ xp , … ix∂

−∂

h , …

Angular momentum lx, … xl , … i y zz y

⎛ ⎞∂ ∂− −⎜ ⎟∂ ∂⎝ ⎠h , …

Kinetic energy T T 2

2

2m− ∇h

Potential energy V V ( )V r

Total energy E H ( )2

2

2V

m− ∇ + rh

Postulate III: If a particular observable M is measured many times on many identical systems in a state Ψ,

the average value of the result will be the expectation value of the operator M : * ˆ( )M M d= Ψ Ψ∫ τ

Postulate IV: The energy-invariant states of a system are solutions of the equation

H!(r,t) = i! ""t!(r,t), H = T +V

If the system is in a time-independent stationary state, this reduces to the Schrödinger equation: ˆ ( ) ( )H EΨ = Ψr r

Postulate V: (The uncertainty principle.) Operators that do not commute ( ) ( )( )ˆ ˆˆ ˆA B B AΨ ≠ Ψ are called

conjugate. Conjugate observables cannot be specified together to arbitrary accuracy. For example, the error (standard deviation) in the measured position and momentum of a particle must satisfy 2xx pΔ Δ ≥ h .

Lecture 1 Refresher on Quantum Mechanics

© Prof. W. F. Schneider CBE 60547 – Computational Chemistry 3/5 University of Notre Dame Spring 2012

3. Note on constants and units Resource on physical constants: http://physics.nist.gov/cuu/Constants/ Resource for unit conversions: http://www.digitaldutch.com/unitconverter/ Unit converter available in Calc for Gnu emacs

Atomic units common for quantum mechanical calculations Atomic unit SI unit Common unit

Charge e = 1 1.6021×10−19 C

Length a0 = 1 (bohr) 5.29177×10−11 m 0.529177 Å

Mass me = 1 9.10938×10−31 kg

Angular momentum ħ = 1 1.054 572×10−34 J s

Energy Eh (hartree) 4.359744×10−18 J 27.2114 eV

Electrostatic force 1/(4πε0) = 1 8.987552×109 C-2 N m2

Boltzmann constant 1.38065×10−23 J K−1 8.31447 J/mol K

(see http://en.wikipedia.org/wiki/Atomic_units)

Energy units

1 eV = 1.60218×10−19 J = 96.485 kJ/mol = 8065.5 cm−1 = 11064 K kB

4. Example: Energy states of an electron in a box 3D box → 3 degrees of freedom

0, 0 , ,( )

, , , 0, , ,x y z L

Vx y z x y z L

< <⎧= ⎨

∞ ≤ ≥⎩r

Schrødinger eq

( ) ( )

( )

2 2 2 2

2 2 2 , , , ,2

, , 0, , , 0, , ,e

x y z E x y zm x y y

x y z x y z x y z L

ψ ψ

ψ

⎛ ⎞∂ ∂ ∂− + + =⎜ ⎟

∂ ∂ ∂⎝ ⎠

= ≤ ≥

h

Second-order linear partial differential equation Boundary value (eigenvalue) problem Separable ( ) ( ) ( ) ( ), ,x y z X x Y y Z zψ =

z

x

y

L

L

L

e−

Lecture 1 Refresher on Quantum Mechanics

© Prof. W. F. Schneider CBE 60547 – Computational Chemistry 4/5 University of Notre Dame Spring 2012

2 2 2 2

2 2 2

1 ( ) 1 ( ) 1 ( ) 0 , ,2 ( ) ( ) ( )e

X x Y y Z z E x y z Lm X x x Y y y Z z z

⎛ ⎞∂ ∂ ∂− + + = < <⎜ ⎟

∂ ∂ ∂⎝ ⎠

h

ftn x + ftn y + ftn z = constant → each term must be constant

( ) ( )2 2

2

2 22

2

( ) ( ) 0 02

( ) sin , 1,2,3,...

2x

xe

xx

xn

e

X x E X x X X Lm x

nX x nL

nEm

x

L

π

π

∂− = = =

= =

=

h

h

function that twice differentiated returns itself

Solutions called eignefunctions/wavefunctions and eigenvalues Characterized by quantum number, one for each degree of freedom Normalization – require that wavefunction square integrates to 1

C 2 sin2nx! xL0

L

! dx "C 2 Xnx X nx =1 #C = ± 2L

Xnx =2Lsinnx! xL, 0 < X < L

Dirac notation

Note increasing nodes with increasing energy

2

1E nE

n

n

E

Δ ∝

See Ho, JPC B 2005, 109, 20657.

Lecture 1 Refresher on Quantum Mechanics

© Prof. W. F. Schneider CBE 60547 – Computational Chemistry 5/5 University of Notre Dame Spring 2012

3 dimensional solution

( ) ( ) ( ) ( )

( )

3/2

2 2 2 2 2

2

s2, ,

, 1,2

in sin

, ,2

3

sin

,

yx

x y zx y z

e

x y z

znn nL L L

n n

yx

nE E E E

m Ln

zx y z X x Y y Z zL

nn

ππ πψ

π

⎛ ⎞= = ⎜ ⎟

⎝ ⎠

=

+ += + + =

h

K

One quantum number for each dof

Degeneracy Symmetry Energy levels – depend on volume à pressure!!

2 222 eL

E mπ⎛ ⎞⎜ ⎟⎝ ⎠

h

(1,1,1)

(2,1,1) (1,2,1) (1,1,2)

(2,2,1) (1,2,2) (2,1,2)

(3,1,1) (1,3,1) (1,1,3)

(2,2,2)

0

5

10

15

20

(3,2,1) (2,3,1) (1,2,3) (3,1,2) (2,1,3) (1,3,2)

(4,1,1) (1,4,1) (1,1,4)(3,2,2) (2,3,2) (2,2,3)

zero  point  energy