52
Introduction to CMOS VLSI Design Lecture 1: Introduction David Harris, Harvey Mudd College Kartik Mohanram and Steven Levitan University of Pittsburgh

Lecture 1: Introduction - University of Pittsburghkmram/1192-2192/lectures/Introduction.pdfLecture 1: Introduction David Harris, Harvey Mudd College Kartik Mohanram and Steven Levitan

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Lecture 1: Introduction - University of Pittsburghkmram/1192-2192/lectures/Introduction.pdfLecture 1: Introduction David Harris, Harvey Mudd College Kartik Mohanram and Steven Levitan

Introduction to

CMOS VLSI

Design

Lecture 1: Introduction

David Harris, Harvey Mudd College

Kartik Mohanram and Steven Levitan

University of Pittsburgh

Page 2: Lecture 1: Introduction - University of Pittsburghkmram/1192-2192/lectures/Introduction.pdfLecture 1: Introduction David Harris, Harvey Mudd College Kartik Mohanram and Steven Levitan

CMOS VLSI Design0: Introduction Slide 2

Introduction

Integrated circuits: many transistors on one chip.

Very Large Scale Integration (VLSI): very many

Complementary Metal Oxide Semiconductor

– Fast, cheap, low power transistors

Today: How to build your own simple CMOS chip

– CMOS transistors

– Building logic gates from transistors

– Transistor layout and fabrication

Rest of the course: How to build a good CMOS chip

Page 3: Lecture 1: Introduction - University of Pittsburghkmram/1192-2192/lectures/Introduction.pdfLecture 1: Introduction David Harris, Harvey Mudd College Kartik Mohanram and Steven Levitan

Steven Levitan 19-Nov-2007 3

0: Introduction 3

Deconstructing a Computer System

http://www.westchiltington.com/images/computer_dell.jpg

Page 4: Lecture 1: Introduction - University of Pittsburghkmram/1192-2192/lectures/Introduction.pdfLecture 1: Introduction David Harris, Harvey Mudd College Kartik Mohanram and Steven Levitan

Steven Levitan 19-Nov-2007 4

0: Introduction 4

Deconstructing a Computer System

http://www.computerdust.com/images/cpu-clean-dell-computer.jpg

Page 5: Lecture 1: Introduction - University of Pittsburghkmram/1192-2192/lectures/Introduction.pdfLecture 1: Introduction David Harris, Harvey Mudd College Kartik Mohanram and Steven Levitan

Steven Levitan 19-Nov-2007 5

0: Introduction 5

Deconstructing a Computer System

http://www.greenpeace.org.uk/files/images/migrated/MultimediaFiles/Live/Image/7781.jpg

Page 6: Lecture 1: Introduction - University of Pittsburghkmram/1192-2192/lectures/Introduction.pdfLecture 1: Introduction David Harris, Harvey Mudd College Kartik Mohanram and Steven Levitan

Steven Levitan 19-Nov-2007 6

0: Introduction 6

Deconstructing a Computer System

http://freespace.virgin.net/george.gdingwall/images/Circuit-Board_06.jpg

Page 7: Lecture 1: Introduction - University of Pittsburghkmram/1192-2192/lectures/Introduction.pdfLecture 1: Introduction David Harris, Harvey Mudd College Kartik Mohanram and Steven Levitan

Steven Levitan 19-Nov-2007 7

0: Introduction 7

Deconstructing a Computer System

http://members.tripod.com/~ComputerLab/chip.jpg

Page 8: Lecture 1: Introduction - University of Pittsburghkmram/1192-2192/lectures/Introduction.pdfLecture 1: Introduction David Harris, Harvey Mudd College Kartik Mohanram and Steven Levitan

Steven Levitan 19-Nov-2007 8

0: Introduction 8

From Chips to DIPs

Single die

Wafer

From http://www.amd.com

Slicing and Dicing

Page 9: Lecture 1: Introduction - University of Pittsburghkmram/1192-2192/lectures/Introduction.pdfLecture 1: Introduction David Harris, Harvey Mudd College Kartik Mohanram and Steven Levitan

Steven Levitan 19-Nov-2007 9

0: Introduction 9http://eazyvg.wordpress.com/2007/03/07/barcelona-first-native-quad-core-processor/

Quad Core Barcelona 2007

Going Back and Zooming In

Page 10: Lecture 1: Introduction - University of Pittsburghkmram/1192-2192/lectures/Introduction.pdfLecture 1: Introduction David Harris, Harvey Mudd College Kartik Mohanram and Steven Levitan

Steven Levitan 19-Nov-2007 10

0: Introduction 10

Going Back and Zooming In

http://www-vlsi.stanford.edu/group/chips_micropro.html

2002 - 221M Transistors 421mm2

Page 11: Lecture 1: Introduction - University of Pittsburghkmram/1192-2192/lectures/Introduction.pdfLecture 1: Introduction David Harris, Harvey Mudd College Kartik Mohanram and Steven Levitan

Steven Levitan 19-Nov-2007 11

0: Introduction 11

Going Back and Zooming In

http://www-vlsi.stanford.edu/group/chips_micropro.html

1998 Pentium(II) 7.5M Transistors 118mm2

Page 12: Lecture 1: Introduction - University of Pittsburghkmram/1192-2192/lectures/Introduction.pdfLecture 1: Introduction David Harris, Harvey Mudd College Kartik Mohanram and Steven Levitan

Steven Levitan 19-Nov-2007 12

0: Introduction 12

Going Back and Zooming In

http://www-vlsi.stanford.edu/group/chips_micropro.html

1989 275K Transistors 80386 46mm2

Page 13: Lecture 1: Introduction - University of Pittsburghkmram/1192-2192/lectures/Introduction.pdfLecture 1: Introduction David Harris, Harvey Mudd College Kartik Mohanram and Steven Levitan

Steven Levitan 19-Nov-2007 13

0: Introduction 13

Going Back and Zooming In

http://www-vlsi.stanford.edu/group/chips_micropro.html

1971 2K Transistor 4004 12mm2

Page 14: Lecture 1: Introduction - University of Pittsburghkmram/1192-2192/lectures/Introduction.pdfLecture 1: Introduction David Harris, Harvey Mudd College Kartik Mohanram and Steven Levitan

Steven Levitan 19-Nov-2007 14

0: Introduction 14

Going Back and Zooming In

ECL 3-input Gate Motorola 1966

© Rabaey, Chandrakasan, Nikolic Digital Integrated Circuits2nd ed

Page 15: Lecture 1: Introduction - University of Pittsburghkmram/1192-2192/lectures/Introduction.pdfLecture 1: Introduction David Harris, Harvey Mudd College Kartik Mohanram and Steven Levitan

Steven Levitan 19-Nov-2007 15

0: Introduction 15

Photomasks to Circuits

0: IntroductionWeste & Harris CMOS VLSI Design Copyright © 2005 Pearson Addison-Wesley. All

rights reserved.

© Rabaey, Chandrakasan, Nikolic Digital Integrated Circuits2nd ed

Page 16: Lecture 1: Introduction - University of Pittsburghkmram/1192-2192/lectures/Introduction.pdfLecture 1: Introduction David Harris, Harvey Mudd College Kartik Mohanram and Steven Levitan

Steven Levitan 19-Nov-2007 16

0: Introduction 16

The “Y” Abstraction Spiral

Gajski & Kuhn

End Here

Start Here

Page 17: Lecture 1: Introduction - University of Pittsburghkmram/1192-2192/lectures/Introduction.pdfLecture 1: Introduction David Harris, Harvey Mudd College Kartik Mohanram and Steven Levitan

Steven Levitan 19-Nov-2007 17

0: Introduction 17

MOS Technology

10umhttp://www.semiconductorblog.com

0.6 um

GATE

© Rabaey, Chandrakasan, Nikolic Digital Integrated Circuits2nd ed

Page 18: Lecture 1: Introduction - University of Pittsburghkmram/1192-2192/lectures/Introduction.pdfLecture 1: Introduction David Harris, Harvey Mudd College Kartik Mohanram and Steven Levitan

Steven Levitan 19-Nov-2007 18

0: Introduction 18

Patterned Materials Create Circuits

Silicon Crystal

N type Doping P type Doping0: IntroductionWeste & Harris CMOS VLSI Design Copyright © 2005 Pearson Addison-Wesley. All

rights reserved.

Page 19: Lecture 1: Introduction - University of Pittsburghkmram/1192-2192/lectures/Introduction.pdfLecture 1: Introduction David Harris, Harvey Mudd College Kartik Mohanram and Steven Levitan

CMOS VLSI Design0: Introduction Slide 19

Silicon Lattice

Transistors are built on a silicon substrate

Silicon is a Group IV material

Forms crystal lattice with bonds to four neighbors

Si SiSi

Si SiSi

Si SiSi

Page 20: Lecture 1: Introduction - University of Pittsburghkmram/1192-2192/lectures/Introduction.pdfLecture 1: Introduction David Harris, Harvey Mudd College Kartik Mohanram and Steven Levitan

CMOS VLSI Design0: Introduction Slide 20

Dopants

Silicon is a semiconductor

Pure silicon has no free carriers and conducts poorly

Adding dopants increases the conductivity

Group V: extra electron (n-type)

Group III: missing electron, called hole (p-type)

As SiSi

Si SiSi

Si SiSi

B SiSi

Si SiSi

Si SiSi

-

+

+

-

Page 21: Lecture 1: Introduction - University of Pittsburghkmram/1192-2192/lectures/Introduction.pdfLecture 1: Introduction David Harris, Harvey Mudd College Kartik Mohanram and Steven Levitan

CMOS VLSI Design0: Introduction Slide 21

p-n Junctions

A junction between p-type and n-type semiconductor

forms a diode.

Current flows only in one direction

p-type n-type

anode cathode

Page 22: Lecture 1: Introduction - University of Pittsburghkmram/1192-2192/lectures/Introduction.pdfLecture 1: Introduction David Harris, Harvey Mudd College Kartik Mohanram and Steven Levitan

CMOS VLSI Design0: Introduction Slide 22

nMOS Transistor

Four terminals: gate, source, drain, body

Gate – oxide – body stack looks like a capacitor

– Gate and body are conductors

– SiO2 (oxide) is a very good insulator

– Called metal – oxide – semiconductor (MOS)

capacitor

– Even though gate is

no longer made of metal

n+

p

GateSource Drain

bulk Si

SiO2

Polysilicon

n+

Page 23: Lecture 1: Introduction - University of Pittsburghkmram/1192-2192/lectures/Introduction.pdfLecture 1: Introduction David Harris, Harvey Mudd College Kartik Mohanram and Steven Levitan

CMOS VLSI Design0: Introduction Slide 23

nMOS Operation

Body is commonly tied to ground (0 V)

When the gate is at a low voltage:

– P-type body is at low voltage

– Source-body and drain-body diodes are OFF

– No current flows, transistor is OFF

n+

p

GateSource Drain

bulk Si

SiO2

Polysilicon

n+

D

0

S

Page 24: Lecture 1: Introduction - University of Pittsburghkmram/1192-2192/lectures/Introduction.pdfLecture 1: Introduction David Harris, Harvey Mudd College Kartik Mohanram and Steven Levitan

CMOS VLSI Design0: Introduction Slide 24

nMOS Operation Cont.

When the gate is at a high voltage:

– Positive charge on gate of MOS capacitor

– Negative charge attracted to body

– Inverts a channel under gate to n-type

– Now current can flow through n-type silicon from

source through channel to drain, transistor is ON

n+

p

GateSource Drain

bulk Si

SiO2

Polysilicon

n+

D

1

S

Page 25: Lecture 1: Introduction - University of Pittsburghkmram/1192-2192/lectures/Introduction.pdfLecture 1: Introduction David Harris, Harvey Mudd College Kartik Mohanram and Steven Levitan

CMOS VLSI Design0: Introduction Slide 25

pMOS Transistor

Similar, but doping and voltages reversed

– Body tied to high voltage (VDD)

– Gate low: transistor ON

– Gate high: transistor OFF

– Bubble indicates inverted behavior

SiO2

n

GateSource Drain

bulk Si

Polysilicon

p+ p+

Page 26: Lecture 1: Introduction - University of Pittsburghkmram/1192-2192/lectures/Introduction.pdfLecture 1: Introduction David Harris, Harvey Mudd College Kartik Mohanram and Steven Levitan

CMOS VLSI Design0: Introduction Slide 26

Power Supply Voltage

GND = 0 V

In 1980’s, VDD = 5V

VDD has decreased in modern processes

– High VDD would damage modern tiny transistors

– Lower VDD saves power

VDD = 3.3, 2.5, 1.8, 1.5, 1.2, 1.0, …

Page 27: Lecture 1: Introduction - University of Pittsburghkmram/1192-2192/lectures/Introduction.pdfLecture 1: Introduction David Harris, Harvey Mudd College Kartik Mohanram and Steven Levitan

CMOS VLSI Design0: Introduction Slide 27

Transistors as Switches

We can view MOS transistors as electrically

controlled switches

Voltage at gate controls path from source to drain

g

s

d

g = 0

s

d

g = 1

s

d

g

s

d

s

d

s

d

nMOS

pMOS

OFFON

ONOFF

Page 28: Lecture 1: Introduction - University of Pittsburghkmram/1192-2192/lectures/Introduction.pdfLecture 1: Introduction David Harris, Harvey Mudd College Kartik Mohanram and Steven Levitan

Steven Levitan 19-Nov-2007 28

0: Introduction 28

Transistors as Switches

Input voltage on the CMOS

gate controls the current

through the source/drain

path

This provides output

voltage to drive next

circuit.

Series / Parallel paths

provide “and” and “or”

logic functions

GS

D

N Switch

GS

D

N Switch

GS

D

GS

D

Page 29: Lecture 1: Introduction - University of Pittsburghkmram/1192-2192/lectures/Introduction.pdfLecture 1: Introduction David Harris, Harvey Mudd College Kartik Mohanram and Steven Levitan

Steven Levitan 19-Nov-2007 29

0: Introduction 29

From Switches to Boolean Functions...

Use the switching functions to provide paths to Vdd or GND

Vdd is the source of all Truth (Vdd = = 1)

GND is the source of all Falsehood (GND == 0)

P-channel N-channel

0

0

1

1

Page 30: Lecture 1: Introduction - University of Pittsburghkmram/1192-2192/lectures/Introduction.pdfLecture 1: Introduction David Harris, Harvey Mudd College Kartik Mohanram and Steven Levitan

Steven Levitan 19-Nov-2007 30

0: Introduction 30

The Inverter

True to False / False to True Converter

1/0 0/1

Page 31: Lecture 1: Introduction - University of Pittsburghkmram/1192-2192/lectures/Introduction.pdfLecture 1: Introduction David Harris, Harvey Mudd College Kartik Mohanram and Steven Levitan

CMOS VLSI Design0: Introduction Slide 31

CMOS Inverter

A Y

0

1

VDD

A Y

GNDA Y

Page 32: Lecture 1: Introduction - University of Pittsburghkmram/1192-2192/lectures/Introduction.pdfLecture 1: Introduction David Harris, Harvey Mudd College Kartik Mohanram and Steven Levitan

CMOS VLSI Design0: Introduction Slide 32

CMOS Inverter

A Y

0

1 0

VDD

A=1 Y=0

GND

ON

OFF

A Y

Page 33: Lecture 1: Introduction - University of Pittsburghkmram/1192-2192/lectures/Introduction.pdfLecture 1: Introduction David Harris, Harvey Mudd College Kartik Mohanram and Steven Levitan

CMOS VLSI Design0: Introduction Slide 33

CMOS Inverter

A Y

0 1

1 0

VDD

A=0 Y=1

GND

OFF

ON

A Y

Page 34: Lecture 1: Introduction - University of Pittsburghkmram/1192-2192/lectures/Introduction.pdfLecture 1: Introduction David Harris, Harvey Mudd College Kartik Mohanram and Steven Levitan

Steven Levitan 19-Nov-2007 34

0: Introduction 34

Series/Parallel Circuits => Logic

A B Y

0 0 1

0 1 1

1 0 1

1 1 0

CMOS NAND (not AND) Gate

A

BY

Truth TableY = A•B = A + B

+Vdd

Page 35: Lecture 1: Introduction - University of Pittsburghkmram/1192-2192/lectures/Introduction.pdfLecture 1: Introduction David Harris, Harvey Mudd College Kartik Mohanram and Steven Levitan

CMOS VLSI Design0: Introduction Slide 35

CMOS NAND Gate

A B Y

0 0

0 1

1 0

1 1

A

B

Y

Page 36: Lecture 1: Introduction - University of Pittsburghkmram/1192-2192/lectures/Introduction.pdfLecture 1: Introduction David Harris, Harvey Mudd College Kartik Mohanram and Steven Levitan

CMOS VLSI Design0: Introduction Slide 36

CMOS NAND Gate

A B Y

0 0 1

0 1

1 0

1 1

A=0

B=0

Y=1

OFF

ON ON

OFF

Page 37: Lecture 1: Introduction - University of Pittsburghkmram/1192-2192/lectures/Introduction.pdfLecture 1: Introduction David Harris, Harvey Mudd College Kartik Mohanram and Steven Levitan

CMOS VLSI Design0: Introduction Slide 37

CMOS NAND Gate

A B Y

0 0 1

0 1 1

1 0

1 1

A=0

B=1

Y=1

OFF

OFF ON

ON

Page 38: Lecture 1: Introduction - University of Pittsburghkmram/1192-2192/lectures/Introduction.pdfLecture 1: Introduction David Harris, Harvey Mudd College Kartik Mohanram and Steven Levitan

CMOS VLSI Design0: Introduction Slide 38

CMOS NAND Gate

A B Y

0 0 1

0 1 1

1 0 1

1 1

A=1

B=0

Y=1

ON

ON OFF

OFF

Page 39: Lecture 1: Introduction - University of Pittsburghkmram/1192-2192/lectures/Introduction.pdfLecture 1: Introduction David Harris, Harvey Mudd College Kartik Mohanram and Steven Levitan

CMOS VLSI Design0: Introduction Slide 39

CMOS NAND Gate

A B Y

0 0 1

0 1 1

1 0 1

1 1 0

A=1

B=1

Y=0

ON

OFF OFF

ON

Page 40: Lecture 1: Introduction - University of Pittsburghkmram/1192-2192/lectures/Introduction.pdfLecture 1: Introduction David Harris, Harvey Mudd College Kartik Mohanram and Steven Levitan

CMOS VLSI Design0: Introduction Slide 40

CMOS NOR Gate

A B Y

0 0 1

0 1 0

1 0 0

1 1 0

A

BY

Page 41: Lecture 1: Introduction - University of Pittsburghkmram/1192-2192/lectures/Introduction.pdfLecture 1: Introduction David Harris, Harvey Mudd College Kartik Mohanram and Steven Levitan

CMOS VLSI Design0: Introduction Slide 41

3-input NAND Gate

Y pulls low if ALL inputs are 1

Y pulls high if ANY input is 0

Page 42: Lecture 1: Introduction - University of Pittsburghkmram/1192-2192/lectures/Introduction.pdfLecture 1: Introduction David Harris, Harvey Mudd College Kartik Mohanram and Steven Levitan

CMOS VLSI Design0: Introduction Slide 42

3-input NAND Gate

Y pulls low if ALL inputs are 1

Y pulls high if ANY input is 0

A

B

Y

C

Page 43: Lecture 1: Introduction - University of Pittsburghkmram/1192-2192/lectures/Introduction.pdfLecture 1: Introduction David Harris, Harvey Mudd College Kartik Mohanram and Steven Levitan

Steven Levitan 19-Nov-2007 43

0: Introduction 43

From Logic to Binary Math

Truth tables for binary addition/subtraction etc.

A 0 1 0 1

B 0 0 1 1

Sum 0 1 1 0

Carry 0 0 0 1

Sum = A xor B

Carry = A and B

Are these Amino Acids?

A

B

Carry

SumXOR

AND

Page 44: Lecture 1: Introduction - University of Pittsburghkmram/1192-2192/lectures/Introduction.pdfLecture 1: Introduction David Harris, Harvey Mudd College Kartik Mohanram and Steven Levitan

Steven Levitan 19-Nov-2007 44

0: Introduction 44

F = ^(AB + AC + BC) => Carry

10 1

+ 0 11 0

C =A =B =

Cout

Page 45: Lecture 1: Introduction - University of Pittsburghkmram/1192-2192/lectures/Introduction.pdfLecture 1: Introduction David Harris, Harvey Mudd College Kartik Mohanram and Steven Levitan

Steven Levitan 19-Nov-2007 45

0: Introduction 45

Chip Photomask “Layout”

Page 46: Lecture 1: Introduction - University of Pittsburghkmram/1192-2192/lectures/Introduction.pdfLecture 1: Introduction David Harris, Harvey Mudd College Kartik Mohanram and Steven Levitan

Steven Levitan 19-Nov-2007 46

0: Introduction 46

Latches for State

Cross coupled, charge storage, etc. Save logic values, change under temporal control

(clocks)

Set

Reset Q

QB

Are these (folded) proteins?

S R Q QB

0 0 Q QB

0 1 0 1

1 0 1 0

1 1 0 0

hold

Illegal

Inputs Outputs

Latch Control (Clock)

DATANDATAN+1

Page 47: Lecture 1: Introduction - University of Pittsburghkmram/1192-2192/lectures/Introduction.pdfLecture 1: Introduction David Harris, Harvey Mudd College Kartik Mohanram and Steven Levitan

Steven Levitan 19-Nov-2007 47

0: Introduction 47

Finite State Machines

FSM’s capture processes

Inputs, outputs, state

Out = F((in), Staten)

Staten+1 = F(in, Staten)

Like a “Markov process”

S1

S2

S5

S3

If (state = 1) and (input = A) then state <= 4, output <= 15

Current State Latch

Next State

&

Output Calculation

Input

Output

Is this a

regulatory process?

Page 48: Lecture 1: Introduction - University of Pittsburghkmram/1192-2192/lectures/Introduction.pdfLecture 1: Introduction David Harris, Harvey Mudd College Kartik Mohanram and Steven Levitan

Steven Levitan 19-Nov-2007 48

0: Introduction 48

(Re) Composing …

Page 49: Lecture 1: Introduction - University of Pittsburghkmram/1192-2192/lectures/Introduction.pdfLecture 1: Introduction David Harris, Harvey Mudd College Kartik Mohanram and Steven Levitan

Steven Levitan 19-Nov-2007 49

0: Introduction 49

Computer Micro-Architecture

Basic operation on “triples”

A <= B + C;

R[2] <= R[1] op R[0]

1. Data from Register File

2. Operations done by Arithmetic

and Logic Unit

3. Data returned to Register File

Op ={add, sub, shift, and, or, etc}

CC = {zero, neg, overflow, etc}

Register File

ALU

SRC1SRC2DEST

Op

Instr

uction R

egis

ter

CC

Page 50: Lecture 1: Introduction - University of Pittsburghkmram/1192-2192/lectures/Introduction.pdfLecture 1: Introduction David Harris, Harvey Mudd College Kartik Mohanram and Steven Levitan

Steven Levitan 19-Nov-2007 50

0: Introduction 50

Instruction Set

OP Code Src1 Src2 Destination

Op Code Memory Address

Three (four) types of instructions:1. Move Data – to / from Memory locations, I/O and temporary registers

2. Compute – Logical, fixed point, floating point, string, bits

3. Program Flow – Branch, Jump, Subroutines

4. Mode Control – Privileged modes, interrupts, memory mapping

Four addresses (explicit/implicit)Source1, Source2, Destination, Next (PC)

B+C => A (and do next instruction)

Instruction set and micro-architecture

define the complete computing system

Page 51: Lecture 1: Introduction - University of Pittsburghkmram/1192-2192/lectures/Introduction.pdfLecture 1: Introduction David Harris, Harvey Mudd College Kartik Mohanram and Steven Levitan

Steven Levitan 19-Nov-2007 51

0: Introduction 51

von Neumann Architecture

Memory

Accumulator

PC IR

MBRMAR

Control

CPUI/O

Fetch/Execute Cycle MAR <- PC MBR <- MEM[MAR] Increment PC IR <- MBR Interpret instruction in IR

(now called “5-stage pipeline”)

Done as a FSM in “Control Unit” Is this just like EIS.. Is this a ribosome?

Page 52: Lecture 1: Introduction - University of Pittsburghkmram/1192-2192/lectures/Introduction.pdfLecture 1: Introduction David Harris, Harvey Mudd College Kartik Mohanram and Steven Levitan

CMOS VLSI Design0: Introduction Slide 52

Summary

MOS Transistors are stack of gate, oxide, silicon

Can be viewed as electrically controlled switches

Build logic gates out of switches

Draw masks to specify layout of transistors

Now you know everything necessary to start

designing schematics and layout for a simple chip!