Lecture 1, 2 Premble and SignalsSystems 0921 Peng1

  • Upload
    liu-wen

  • View
    224

  • Download
    0

Embed Size (px)

Citation preview

  • 7/29/2019 Lecture 1, 2 Premble and SignalsSystems 0921 Peng1

    1/20

    Lecture Notes on Basic Electronicsfor Students in Computer Science

    John Kar-kin Zao and Wen-Hsiao Peng

    Department of Computer Science, National Chiao-Tung Univeristy

    1001 Ta-Hsueh Rd., 30010 HsinChu, Taiwan

    August 2006

  • 7/29/2019 Lecture 1, 2 Premble and SignalsSystems 0921 Peng1

    2/20

    Contents

    1 Preamble 1

    1.1 Goal of This Course . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

    1.2 Content of This Course . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

    1.3 Relationship with Other Disciplines . . . . . . . . . . . . . . . . . . . . . . 1

    I System and Circuit Analysis 2

    2 Signals and Systems 3

    2.1 Basic Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

    2.2 Types of Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

    2.3 Axiomatic Properties of Systems . . . . . . . . . . . . . . . . . . . . . . . . 5

    2.4 Time-Domain Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

    2.4.1 Impulse Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

    2.4.2 Step Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

    2.4.3 Sinusoidal Response . . . . . . . . . . . . . . . . . . . . . . . . . . 10

    2.4.4 Initial Value/Driving Free/Natural Response . . . . . . . . . . . . . 12

    2.4.5 Transient Response . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

    2.4.6 Steady-State Response . . . . . . . . . . . . . . . . . . . . . . . . . 12

    2.5 Frequency-Domain Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 122.5.1 Phasor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

    2.5.2 Spectrum and Fourier Transform . . . . . . . . . . . . . . . . . . . 13

    2.5.3 System Transfer Function Hs() . . . . . . . . . . . . . . . . . . . . 14

    2.5.4 Time Domain versus Frequency Domain . . . . . . . . . . . . . . . 15

    3 Electrical Circuits 16

    3.1 Basic Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

    3.2 Circuit Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

    3.3 Circuit Laws . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

    3.4 Network Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

    ii

  • 7/29/2019 Lecture 1, 2 Premble and SignalsSystems 0921 Peng1

    3/20

    CONTENTS

    3.4.1 One-Port Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

    3.4.2 Two-Port Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

    3.5 Laplace Transforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

    3.6 System Transfer Function in Time and Laplace Domains . . . . . . . . . . 26

    3.7 Bode Plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

    II Devices Diode, BJT, MOSFETs 42

    4 Semiconductor 43

    4.1 Intrinsic Silicon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

    4.2 Doped Silicon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

    5 Diode 485.1 Physical Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

    5.1.1 The pn Junction Under Open Circuit . . . . . . . . . . . . . . . . . 48

    5.1.2 The pn Junction Under Reverse-Bias . . . . . . . . . . . . . . . . . 50

    5.1.3 The pn Junction in the Breakdown Region . . . . . . . . . . . . . . 52

    5.1.4 The pn Junction Under Forward Bias Conditions . . . . . . . . . . 52

    5.2 Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

    5.2.1 Forward Bias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

    5.2.2 Reverse Bias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 565.2.3 Breakdown Region . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

    5.3 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

    5.3.1 Large Signal Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

    5.3.2 Small Signal Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

    5.3.3 Circuit Analysis with Diodes . . . . . . . . . . . . . . . . . . . . . . 62

    5.4 Special Diodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

    5.4.1 Zener diode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

    5.4.2 Switching Controlled Rectifier (SCR) . . . . . . . . . . . . . . . . . 655.4.3 LED/Varactors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

    5.5 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

    5.5.1 Regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

    5.5.2 Rectifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

    5.5.3 Limiting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

    5.5.4 Clamping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

    5.5.5 Digital Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

    6 MOS Field-Effect Transistors (MOSFETs) 74

    6.1 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

    iii

  • 7/29/2019 Lecture 1, 2 Premble and SignalsSystems 0921 Peng1

    4/20

    CONTENTS

    6.1.1 Physical Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

    6.2 Characteristics (NMOS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

    6.2.1 Regions of Operations . . . . . . . . . . . . . . . . . . . . . . . . . 77

    6.2.2 Saturation (vGS > Vt, vDS > vGS Vt) . . . . . . . . . . . . . . . . 78

    6.2.3 Cut-off Region (vGS < Vt) . . . . . . . . . . . . . . . . . . . . . . . 79

    6.2.4 Body Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

    6.2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

    6.3 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

    6.3.1 Small Signal Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

    6.3.2 Frequency Response . . . . . . . . . . . . . . . . . . . . . . . . . . 80

    7 Bipolar Junction Transistor (BJT) 82

    7.1 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

    7.1.1 PNP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

    7.1.2 NPN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

    7.2 Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

    7.2.1 Forward Biasing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

    7.2.2 Reverse Biasing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

    7.2.3 Early Effect and Voltage . . . . . . . . . . . . . . . . . . . . . . . . 82

    7.3 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

    7.3.1 Small Signal Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

    7.3.2 Frequency Response . . . . . . . . . . . . . . . . . . . . . . . . . . 82

    8 Summary and Comparison 83

    III Analog Circuits 84

    9 Amplifier 85

    10 Single Transistor Amplifier with MOSFET 86

    10.1 Common Source Inverter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

    10.1.1 Characteristic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

    10.1.2 Time Domain Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 86

    10.1.3 Frequency Domain Analysis . . . . . . . . . . . . . . . . . . . . . . 86

    10.2 Common Drain Voltage Follower . . . . . . . . . . . . . . . . . . . . . . . . 87

    10.3 Common Gate Amplifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

    10.4 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

    10.4.1 Differential Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . 87

    iv

  • 7/29/2019 Lecture 1, 2 Premble and SignalsSystems 0921 Peng1

    5/20

    CONTENTS

    11 Single Transistor Amplifier with BJT 88

    11.1 Common Emitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

    11.1.1 Time Domain Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 88

    11.1.2 Frequency Domain Analysis . . . . . . . . . . . . . . . . . . . . . . 88

    11.2 Common Collector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

    11.3 Common Base . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

    11.4 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

    11.4.1 Current Mirror . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

    11.4.2 Power Amplifier with Active Load . . . . . . . . . . . . . . . . . . . 89

    12 Operational Amplifier (OP-AMP) 90

    v

  • 7/29/2019 Lecture 1, 2 Premble and SignalsSystems 0921 Peng1

    6/20

    1Preamble

    1.1 Goal of This Course

    Analysis and design of electronic circuits.

    1.2 Content of This Course

    Electric circuit (Passive Circuit ) analysis.

    Only containing Resistor (R), Capacitor (C), and Inductor (L).

    No signal amplification.

    Electronic circuit (Active Circuit ) analysis.

    Containing transistor.

    Single transistor circuit. Signal amplification.

    Operational amplifier and application.

    1.3 Relationship with Other Disciplines

    1

  • 7/29/2019 Lecture 1, 2 Premble and SignalsSystems 0921 Peng1

    7/20

    Part I

    System and Circuit Analysis

    2

  • 7/29/2019 Lecture 1, 2 Premble and SignalsSystems 0921 Peng1

    8/20

    2Signals and Systems

    2.1 Basic Concepts

    Definition 2.1 System stands for the transformation of signal from one to another. It

    can be viewed as a process in which input signals are transformed by the system or causethe system to respond in some way, resulting in other signals as outputs.

    Formalization

    Systems

    Abstraction

    Decomposition

    Analysis

    Composition

    Synthesis

    Objects

    Systems

    Models

    Components

    System characteristics

    /brhaviors

    Figure 2.1: System from engineering perspective.

    Approach Abstraction

    Representing a real object by its special characteristics; that is, the relation

    between its inputs and outputs, which becomes a system.

    Decomposition

    Dividing a system into several smaller systems (components) and studying

    them to understand the large system.

    Composition

    Putting several systems together to form a larger system and studying it. Model

    3

  • 7/29/2019 Lecture 1, 2 Premble and SignalsSystems 0921 Peng1

    9/20

    Sec 2.2. Types of Systems

    LTI SystemsInputs Outputs

    States

    Relative

    StatesInput Output

    Perspectives

    Time domain.

    Frequency domain.

    2.2 Types of Systems

    Temporal characteristic

    Continuous-Time Systems Inputs/outputs of the systems are functions defined at continuous time.

    Continuous-TimeSystem

    Input x(t) Output y(t)

    t

    Magnitude

    Figure 2.2: Continuous-time systems.

    Discrete-Time Systems

    Inputs/outputs of the systems are functions defined at discrete time.

    Magnitude

    Analog systems

    Inputs/outputs of the system have continuously varying values.

    Digital systems

    Inputs/outputs of the system have discrete values.

    4

  • 7/29/2019 Lecture 1, 2 Premble and SignalsSystems 0921 Peng1

    10/20

    Lecture 2. Signals and Systems

    Discrete-TimeSystem

    Input x[n] Output y[n]

    t

    Magnitude

    0 1 2 3 4 5

    6 7 8 9

    Figure 2.3: Discrete-time systems.

    Digital System

    Input x(t) Output y(t)

    t

    Magnitude

    Figure 2.4: Digital system.

    2.3 Axiomatic Properties of Systems

    Linearity

    If an input consists of the weighted sum of several signals, then the output is

    the superposition of the responses of the system to each of those signals.

    y1(t) = H{x1(t)}

    y2(t) = H{x2(t)} (2.1)a y1(t) + b y2(t) = H{a x1(t) + b x2(t)}

    Time-Invariant

    The behavior and characteristics of the system are fixed over time.

    For example, the magnitudes of resistors and capacitors of a circuit are un-

    changed over time.

    y(t) = H{x(t)}

    y(t ) = H{x(t )} (2.2)

    5

  • 7/29/2019 Lecture 1, 2 Premble and SignalsSystems 0921 Peng1

    11/20

    Sec 2.4. Time-Domain Analysis

    Systemx(t)

    y(t)

    Inverse

    System

    x(t)

    Figure 2.5: Inverse system.

    Causality

    The output of the system depends only on the inputs at the present time and

    in the past.

    For example, y(t) =

    Zt0

    x()d.

    Invertability

    Distinct inputs of the system lead to distinct outputs, and an inverse system

    exists.

    For example, a system which is y(t) = 2x(t), for which the inverse system is

    y(t) = 12

    x(t).

    Stability

    If the input of the system is bounded, then the output must be bounded.

    2.4 Time-Domain Analysis

    Definition 2.2 The analysis of a LTI system that is based on the relationship between

    time-varying inputs and their corresponding time-varying outputs.

    Inputs/outputs are time functions (waveforms).

    2.4.1 Impulse Response

    Output of the system with a fictitious input of Direc-Delta function (t).

    For LTI systems, the system characteristic in time domain is the system impulse response.

    Direc-Delta function (t).

    (t) =

    (0 if t 6= 0

    if t = 0. (2.3)

    ZTT

    (t)dt = 1, T > 0. (2.4)

    Signal sampling using Direc-Delta function.

    x() =

    Z

    x(t)(t )dt (2.5)

    6

  • 7/29/2019 Lecture 1, 2 Premble and SignalsSystems 0921 Peng1

    12/20

    Lecture 2. Signals and Systems

    t

    Magnitude

    -T/2 T/2

    1/T

    t0

    Magnitude

    Figure 2.6: Direc-Delta function

    t

    )(tx

    2

    T 2

    T+

    T

    1 )(x

    )( t

    )(1

    )(lim)()(0

    xT

    T

    xdtttxT

    ==

    Figure 2.7: Sampling using Direc-Delta function.

    Signal reconstruction: any real time-functions can be represented by using theintegrals of Delta functions as in Eq. (2.6).

    x(t) =

    Z

    x()( t)d (2.6)

    Magnitude

    t

    1

    )()( 11 tx

    )(tx

    )()( 22 tx

    2

    Figure 2.8: A time function represented by a set of delta functions.

    Convolution

    Outputs of the LTI system is the convolution of the input and the system

    7

  • 7/29/2019 Lecture 1, 2 Premble and SignalsSystems 0921 Peng1

    13/20

    Sec 2.4. Time-Domain Analysis

    impulse response.

    y(t) = x(t) h(t) =

    Z

    x()h(t )d (2.7)

    Magnitude

    t

    1

    )()( 11 tx

    )(tx

    )()( 22 tx

    2

    LTISystem

    )(th

    0

    Magnitude

    t

    Impulse Response

    t

    )()( 11 thx

    Time-Invariant

    1

    1

    2

    Linearity

    t

    1 2

    )(ty

    )()( 22 thx

    Figure 2.9: Continuous time convolution operation.

    2.4.2 Step Response

    Output of the system w.r.t. an input x(t) of step function.

    0

    t

    )t(

    1

    8

  • 7/29/2019 Lecture 1, 2 Premble and SignalsSystems 0921 Peng1

    14/20

    Lecture 2. Signals and Systems

    Magnitude

    n

    ][]0[ nx

    ][nx

    ]2[]2[ nx

    LTISystem

    ][nh

    0

    Magnitude

    n

    Impulse Response

    43

    21

    1 2 3

    0

    ]1[]1[ nx

    ]3[]3[ nx

    1 2 3

    4

    54

    3

    0

    1612

    84

    1 2 3

    ][]0[][]0[ nhxnx

    0 1 2 3 4

    ]1[]1[]1[]1[ nhxnx

    2015

    105

    ]2[]2[]2[]2[ nhxnx

    0 1 2 3 4 5

    1612

    84

    0 1 2 3 4 5 6

    129

    63 ]3[]3[]3[]3[ nhxnx

    0 1 2 3 4 5 6

    16

    =k

    knhkxny ][][][

    32

    3938

    22

    10 3

    n

    Output

    Input

    n

    n

    n

    n

    Figure 2.10: Discrete time convolution operation.

    9

  • 7/29/2019 Lecture 1, 2 Premble and SignalsSystems 0921 Peng1

    15/20

    Sec 2.4. Time-Domain Analysis

    x(t) = u(t) =

    (0 if t < 0

    1 if t 0. (2.8)

    du(t)

    dt = (t). (2.9)

    2.4.3 Sinusoidal Response

    Output of the system w.r.t. sinusoidal function input x(t).

    x(t) = cos(2t) with = 2f (2.10)

    f is frequency.

    = 2f is the angular frequency. T = 1

    fis period.

    52.50-2.5-5

    1

    0.5

    0

    -0.5

    -1

    t

    x(t)=cos(t)

    t

    x(t)=cos(t)

    Figure 2.11: Sinusoidal waveform.

    For a real LTI system with a sinusoidal input function, the output is also a

    sinusoidal function but with changes in both magnitude and phase.

    x(t) = cos th(t) y(t) = kH()k cos(t +]H()) ,

    where H() =Z

    h()ej

    d = kH()k ej]H()

    (2.11)

    Advanced Topics

    Proof.

    x(t) = cos th(t) y(t) = kH()k cos(t +]H())

    10

  • 7/29/2019 Lecture 1, 2 Premble and SignalsSystems 0921 Peng1

    16/20

    Lecture 2. Signals and Systems

    y(t) = x(t) h(t)

    =

    Z

    x()h(t )d

    = Z

    cos()h(t )d

    =1

    2

    Z

    (ej + ej)h(t )d

    =1

    2

    Z

    ejh(t )d +1

    2

    Z

    ejh(t )d

    By defining 0

    = t , the equation above can be written as follows:

    y(t) =1

    2 Z

    ej(t0

    )h(0

    )d0 +1

    2 Z

    ej(t0)h(0)d0

    Define H() =

    Z

    ej0

    h(0

    )d0 = kH()k ej]H() as a complex function of . Its

    complex conjugate is H() =

    Z

    ej0

    h

    (0

    )d0 = kH()k ej]H().Since h(t) is a real

    function, h

    (0

    ) = h(0

    ). Thus, y(t) can be formulized as follows:

    y(t) =1

    2ejt

    Z

    ej0

    h(0

    )d0 +1

    2ejt

    Z

    ej0

    h(0)d0

    =1

    2ejt kH()k ej]H() +

    1

    2ejt kH()k ej]H()

    = kH()k cos(t +]H())

    More generally, it is the output of the system w.r.t. complex exponential function

    input x(t).

    x(t) = ejt

    = cos(t) +j sin(t) (2.12)

    Complex exponential function ejt is the eigenfunction of any LTI systems.

    x(t) = ejth(t) y(t) = H()ejt (2.13)

    = kH()k cos(t +]H()) +j kH()k sin(t +]H())

    H() =

    Z

    h(t)ejtdt.

    11

  • 7/29/2019 Lecture 1, 2 Premble and SignalsSystems 0921 Peng1

    17/20

    Sec 2.5. Frequency-Domain Analysis

    LTI

    System

    )(th

    )(tx

    = dthxty )()()(

    Input time function Output time function

    LTI

    System

    )(th

    tjetx =)( d tethHety tjtj === )()(,)(

    LTI

    System

    )(th

    tjeXtx )()( = )()(',')( XHety tj ==

    Figure 2.12: The output of a LTI system with exponential complex function.

    2.4.4 Initial Value/Driving Free/Natural Response

    Output y(t) w.r.t. null input x(t) = 0 and possibly non-zero initial system states.

    Equivalently, it is solution of Homogeneous System Equation.

    2.4.5 Transient Response

    The part of system output that will disappear (die down) as time progress.

    yT(t) 0 as t . (2.14)

    For Linear Time-Invariant (LTI) circuits, yT(t) = impulse response (with nec-

    essary scaling and time-shifting).

    2.4.6 Steady-State Response

    The part of system output that will remain after transient response dies down.

    yS(t) = y(t) yT(t). (2.15)

    For Linear Time-Invariant (LTI) circuits, yT(t) = impulse response (with nec-

    essary scaling and time-shifting).

    2.5 Frequency-Domain Analysis

    Definition 2.3 Determination of system output(s) w.r.t complex sinusoidal inputs at dif-ferent frequencies and with specific initial system state. Results are often displayed along

    12

  • 7/29/2019 Lecture 1, 2 Premble and SignalsSystems 0921 Peng1

    18/20

    Lecture 2. Signals and Systems

    frequency axis or expression as functions of angular frequency ().

    Input X and Output Y are complex functions of angular frequency.

    LTI Systems

    Output

    States

    )(x )(y Input

    2.5.1 Phasor

    An electrical-engineering representation of sinusoidal signals in frequency domain.

    A constant complex number that encodes the magnitude and the phase of thesinusoidal signals.

    Example 2.4 Given sinusoidal signal x(t) = Kcos(t + ),Phasor X = Kej, whereX = K and phase]X = . x(t) =

  • 7/29/2019 Lecture 1, 2 Premble and SignalsSystems 0921 Peng1

    19/20

    Sec 2.5. Frequency-Domain Analysis

    X() is a complex function of angular frequency , which expresses the values

    of the signal phasor in different frequencies.

    X() = kX()k ej]X(). (2.17)

    kX()k is called magnitude spectrum, specifying the magnitude for differ-

    ent sinusoidal components.

    ]X() is called phase spectrum, specifying the phase for different sinu-

    soidal components.

    X() can be obtained by taking the Fourier Transform of x(t).

    Definition 2.5 Givenf(t), its Fourier Transform, which is defined as follows, is a com-

    plex function of the angular frequency .

    F() =[f(t)] =

    Z

    f(t)ejtdt. (2.18)

    Fourier Transform of f(t) is the projection of f(t) on the basis functions ejt.

    Definition 2.6 Correspondingly, the Inverse Fourier Transform is as follows:

    f(t) =1[F()] =1

    2 Z

    F()ejtd. (2.19)

    2.5.3 System Transfer Function Hs()

    A ratio between the spectra of input and output signals of a linear time-invariant

    circuit.

    It is also known as the frequency response of a LTI system.

    Hs() Y()

    X()

    = kY()k ej]Y()

    kX()k ej]X()

    =kY()k

    kX()kej(]Y()]X()) (2.20)

    = kHs()k ej]Hs()

    kHs()k = kY()k / kX()k is the magnitude response of the system.

    ]Hs() = ]Y()]X() is the phase response of the system.

    From Eq. (2.13) and Eq. (2.16), each sinusoidal component X()ejt produces an

    output signal ofY()ejt = X()H()ejt, as shown in Figure 2.13. Thus, y(t) can

    14

  • 7/29/2019 Lecture 1, 2 Premble and SignalsSystems 0921 Peng1

    20/20

    Lecture 2. Signals and Systems

    LTISystem

    )(th

    )(tx

    = dthxty )()()(

    LTISystem

    )(th

    deXtx tj= )(21

    )(

    deHXty tj= )()(21

    )(

    LTI

    System

    )(H

    )(X )()()( XHY =

    Input time function Output time function

    Input Spectrum Output Spectrum

    Time-Domain Analysis

    Frequency-Domain Analysis

    Figure 2.13: Relationship between time-domain analysis and frequency-domain analysis.

    be written as follows.

    y(t) =1

    2 Z

    Y()ejtd =1

    2 Z

    X()H()ejtd. (2.21)

    The system transfer function Hs() = H(), which is the Fourier Transform of the

    system impulse response h(t).

    2.5.4 Time Domain versus Frequency Domain

    The frequency response of a LTI system is the Fourier transform of the system

    impulse response.

    H() = = {h(t)} (2.22)

    The convolution of two signals in time domain is equivalent to the multiplication of

    their representations in frequency domain.

    y(t) = x(t) h(t)= H()X() (2.23)