Lect - 20 Heat Exchanger Lecture 4 of 4.pptx

Embed Size (px)

Citation preview

  • 8/17/2019 Lect - 20 Heat Exchanger Lecture 4 of 4.pptx

    1/18

    Heat ExchangersDr. Senthilmurugan S. Department of Chemical Engineering IIT Guwahati - CL204 - Part 20

    Effectiveness-NTU method

  • 8/17/2019 Lect - 20 Heat Exchanger Lecture 4 of 4.pptx

    2/18

    5/12/16 | Slide 2

    Need of Effectiveness - NTU method

    The !T" a##roach to heat-exchanger anal$sis is %sef%l &hen the inlet and o%tlet

    tem#erat%res are 'no&n or are easil$ determined(

    The !T" is then easil$ calc%lated) and the heat flo&) s%rface area) or overall heat-

    transfer coefficient ma$ *e determined

    +hen the inlet or exit tem#erat%res are to *e eval%ated for a given heat exchanger)

    the anal$sis fre,%entl$ involves an iterative #roced%re *eca%se of the logarithmicf%nction in the !T"

    n these cases the anal$sis is #erformed more easil$ *$ %tili.ing a method *ased on

    the effectiveness of the heat exchanger in transferring a given amo%nt of heat

    The effectiveness method also offers man$ advantages for anal$sis of #ro*lems in

    &hich a com#arison *et&een vario%s t$#es of heat exchangers m%st *e made for

    #%r#oses of selecting the t$#e *est s%ited to accom#lish a #artic%lar heat-transfer

    o*ective(

    Effectiveness 0

     

  • 8/17/2019 Lect - 20 Heat Exchanger Lecture 4 of 4.pptx

    3/18

    5/12/16 | Slide

     ct%al Heat transfer for 3o%nter flo& H4

    verall enthal#$ *alance

    or 3o%nter lo& H4

    &here c#c 0 s#ecific heat of cold fl%id

    c#h 0 s#ecific heat of &arm fl%id

    3o%nter lo& H4

    Tc*

    Tca

    h cq q=

    ( ) ( )h ph ha hb c pc ca cbq m c T T m c T T  = − = −& &

  • 8/17/2019 Lect - 20 Heat Exchanger Lecture 4 of 4.pptx

    4/18

    5/12/16 | Slide 7

     ct%al Heat transfer for #arallel flo& H4

    or 3o%nter lo& H4

    !axim%m #ossi*le heat transfer is

    ex#ressed as

    The minim%m fl%id ma$ *e either the hotor cold fl%id) de#ending on the mass-

    flo& rates and s#ecific heats(

    3onc%rrent flo&

    ( ) ( )h ph ha hb c pc cb caq m c T T m c T T  = − = −& &

    ( )   ( )max min   inlet inlet   p h C q mc T T  = −&

  • 8/17/2019 Lect - 20 Heat Exchanger Lecture 4 of 4.pptx

    5/18

    5/12/16 | Slide 5

    Effectiveness - NTU method

    or #arallel flo& Heat Exchanger 

    f hot fl%id is fl%id then

    f cold fl%id is fl%id then

      or co%nter flo& Heat Exchanger 

    f hot fl%id is fl%id then

    f cold fl%id is fl%id then

     

    ( )

    ( )

    ( )

    ( )

    h ph ha hb   ha hb

    h h ph ha ca ha ca

    m c T T     T T 

    m c T T T T  

    −   −∈ = =

    − −

    &

    &

    ( )

    ( )

    ( )

    ( )c pc cb ca   cb ca

    c

    c pc ha ca ha ca

    m c T T     T T 

    m c T T T T  

    −   −∈ = =− −

    &

    &

    ( )

    ( )

    ( )

    ( )

    h ph ha hb   ha hb

    h

    h ph ha ca ha ca

    m c T T     T T 

    m c T T T T  

    −   −∈ = =

    − −

    &

    &

    ( )

    ( )( )

    ( )) )c pc ca cb   ca cb

    c

    c pc ha ca ha ca

    m c T T     T T 

    m c T T T T  

    −   −

    ∈ = =− −

    &

    &

  • 8/17/2019 Lect - 20 Heat Exchanger Lecture 4 of 4.pptx

    6/18

    5/12/16 | Slide 6

    Effectiveness - NTU method

    8$ ntegration of heat fl%x across H4   or #arallel flo& Heat Exchanger 

    f cold fl%id is fl%id then

    Enthal#$ *alance

     

    1 1ln   hb cb o o

    ha ca c pc h ph

    T T U A

    T T m c m c

       −= − + ÷ ÷ ÷−      & &

    1  c pco o

    c pc h ph

    m cU A

    m c m c

     −= + ÷

    ÷  

    &

    & &

    exp 1  c pchb cb o o

    ha ca c pc h ph

    m cT T U A

    T T m c m c

     − −= + ÷ ÷−    

    &

    & &

    ( )

    ( )cb ca

    ha ca

    T T 

    T T 

    −∈=

    ( )c pc

    ha ca cb cb

    h phhb cb

    ha ca ha ca

    m cT T T T  m cT T 

    T T T T  

    − − −−

    =− −

    &

    &

    ( )c pc

    hb ha ca cb

    h ph

    m cT T T T  

    m c

     = − − ÷ ÷

     

    &

    &

  • 8/17/2019 Lect - 20 Heat Exchanger Lecture 4 of 4.pptx

    7/18

    5/12/16 | Slide 9

    Effectiveness - NTU method

    ( )c pc

    ha ca cb cb

    h phhb cb

    ha ca ha ca

    m c

    T T T T  m cT T 

    T T T T  

    − − −−=

    − −

    &

    &

    ( ) ( ) ( )1 1

    c pc

    ha ca ca cb ca cb

    h ph c pchb cb

    ha ca ha ca h ph

    m c

    T T T T T T  m c m cT T 

    T T T T m c

    − − − + −  −= = − + ∈ ÷ ÷− −  

    &

    & &

    &

    ( )

    ( )cb ca

    ha ca

    T T 

    T T 

    −∈=

    1 1 exp 1c pc c pchb cb o o

    ha ca h ph c pc h ph

    m c m cT T U A

    T T m c m c m c

     − −= − + ∈= + ÷ ÷ ÷ ÷−    

    & &

    & & &

  • 8/17/2019 Lect - 20 Heat Exchanger Lecture 4 of 4.pptx

    8/18

    5/12/16 | Slide :

    Effectiveness - NTU method

    f cold fl%id is fl%id then

    or co%nter flo& Heat Exchanger; f hot fl%id is fl%id then term and are

    interchanged s a conse,%ence) the effectiveness is %s%all$ &ritten

     

    1 exp 1

    1

    c pco o

    c pc h ph

    c pc

    h ph

    m cU A

    m c m c

    m cm c

     −− + ÷ ÷   ∈=

     + ÷ ÷  

    &

    & &

    &&

    1 1 exp 1c pc c pco o

    h ph c pc h ph

    m c m cU A

    m c m c m c

     −− + ∈= + ÷ ÷

    ÷ ÷  

    & &

    & & &

    min

    min max

    min

    max

    1 exp 1

    1

    o oU A C C C 

     −− + ÷   ∈=

     + ÷

     

  • 8/17/2019 Lect - 20 Heat Exchanger Lecture 4 of 4.pptx

    9/18

    5/12/16 | Slide <

    Effectiveness - NTU method

    or co%nter flo& Heat Exchanger 

    Term is called as n%m*er of transfer

    %nits =NTU> since it is indicative of thesi.e of the heat exchanger 

     

    3a#acit$ ?atio

    min

    min max

    min min

    max min max

    1 exp 1

    1 exp 1

    o o

    o o

    U A   C 

    C C 

    U AC C C C C 

     −− − ÷

      ∈=

     −− − ÷  

  • 8/17/2019 Lect - 20 Heat Exchanger Lecture 4 of 4.pptx

    10/18

    5/12/16 | Slide 1@

    or 8oling and condensation

    n *oiling or condensation #rocess the

    fl%id tem#erat%re sta$s essentiall$

    constant) or the fl%id acts as if it had

    infinite s#ecific heat(

    n these cases C min /C maxA@ and all the

    heat-exchanger effectiveness relationsa##roach a single sim#le e,%ation)

    Barallel flo& Heat Exchanger 

    min

    min max

    min

    max

    min

    1 exp 1

    1

    1 exp

    o o

    o o

    U A   C 

    C C 

    C C 

    U A

     −− + ÷

      ∈=

     + ÷  

    −= −  

      1 e

      NTU −∈= −

  • 8/17/2019 Lect - 20 Heat Exchanger Lecture 4 of 4.pptx

    11/18

    5/12/16 | Slide 11

    Heat-exchanger effectiveness relations

  • 8/17/2019 Lect - 20 Heat Exchanger Lecture 4 of 4.pptx

    12/18

    5/12/16 | Slide 12

    Effectiveness Cs Heat-Transfer ?ates

    High effectiveness at a certain flo&

    config%ration does not mean that it &ill

    have a higher heat-transfer rate than at

    some lo& effectiveness condition(

    High val%es of ε corres#ond to small

    tem#erat%re differences *et&een the hotand cold fl%id) &hile higher heat-transfer

    rates res%lt from larger tem#erat%re

    differences that leads to higher driving

    #otential

  • 8/17/2019 Lect - 20 Heat Exchanger Lecture 4 of 4.pptx

    13/18

    5/12/16 | Slide 1

    Berformance nal$sis and Si.ing anal$sis

    Performance nal!"i"

    3alc%late the ca#acit$ ratio 3r 0 3min/3max and NTU 0 U/3min from in#%t data

    "etermine the effectiveness from the a##ro#riate charts or e-NTU e,%ations for the

    given heat exchanger and s#ecified flo& arrangement(

    +hen ∈ is 'no&n) calc%late the total heat transfer rate 3alc%late the o%tlet tem#erat%re(

    Si#ing nal!"i"

    +hen the o%tlet and inlet tem#erat%res are 'no&n) calc%late ∈( 3alc%late the ca#acit$ ratio 3r 0 3min/3max 

    3alc%late the overall heat transfer coefficient) U

    +hen ∈ and 3 and the flo& arrangement are 'no&n) determine NTU from the e-NTU e,%ations(

    +hen NTU is 'no&n) calc%late the total heat transfer s%rface area(

    NTU method

  • 8/17/2019 Lect - 20 Heat Exchanger Lecture 4 of 4.pptx

    14/18

    5/12/16 | Slide 17

    m#ortant factors to *e considered

    Heat-transfer re,%irements

    3ost

    Bh$sical si.e

    Bress%re-dro# characteristics

    "esign of heat exchanger 

  • 8/17/2019 Lect - 20 Heat Exchanger Lecture 4 of 4.pptx

    15/18

    5/12/16 | Slide 15

    Bress%re "ro# in Heat Exchangers3orrelation for t%*e side #ress%re dro#

    &here)

      DBt)f  0 total #ress%re dro# in the *%ndle of t%*e

      f 0 friction factor =can *e fo%nd o%t from !ood$s chart>

      gf  0 mass velocit$ of the fl%id in the t%*e

      0 t%*e length

      n 0 no of t%*e #asses

      g 0 gravitational acceleration

      Ft 0 densit$ of the t%*e fl%id

      dt 0 inside diameter of the t%*e 

    m 0@(17 for ?e G 21@@

      @(25 for ?e 21@@

    Due to frictional losses

  • 8/17/2019 Lect - 20 Heat Exchanger Lecture 4 of 4.pptx

    16/18

    5/12/16 | Slide 16

    Bress%re "ro# in Heat Exchangers

    Bress%re losses d%e to the change in direction is called

    ret%rn-loss

    &here n 0 no of t%*e #ass

     vt 0 velocit$ of the t%*e fl%id

     Ft 0 densit$ of the t%*e fl%id

     Therefore, the total tube side pressure drop will be,

    Δpt = ΔPt,f  + ΔPt,r 

    3orrelation for t%*e side #ress%re dro#

  • 8/17/2019 Lect - 20 Heat Exchanger Lecture 4 of 4.pptx

    17/18

    5/12/16 | Slide 19

    Bress%re "ro# in Heat Exchangers

    or an %n*affled shell)

    or a *affled shell)

    &here

    0 shell length

    ns 0 no of shell #ass

    n* 0 no of *affles

    Fs  0 shell side fl%id densit$

    gs  0 shell side mass velocit$

    "h  0 h$dra%lic diameter of the shell

    "si  0 inside diameter of shell

    f s  0 shell side friction factor 

    nt 0 n%m*er of t%*es in the shelldo 0 o%ter diameter of the t%*e

    3orrelation for shell side #ress%re dro#

  • 8/17/2019 Lect - 20 Heat Exchanger Lecture 4 of 4.pptx

    18/18