Leapfrogging energy system flexibility for integrating ...ewh.ieee.org/conf/sege/2013/Peter-Lund-Talk.pdf · Leapfrogging energy system flexibility for integrating high share of renewable

  • Upload
    donhi

  • View
    220

  • Download
    3

Embed Size (px)

Citation preview

  • Leapfrogging energy system

    flexibility for integrating high

    share of renewable electricity

    Peter D. Lund 1Aalto University, School of Science Espoo-Otaniemi, Finland [email protected]

    IEEE SEGE 2013, Oshawa 28-30 August 2013

  • Global energy & climate nexus

    Sustainable energy transition

    Energy systems innovations

    Cases on high RE share

    Outline

  • Dynamics of the global

    energy system

    Peter Lund 2013

  • The Energy-Climate

    challenge ahead

    in simple terms

    Peter Lund 2013

    I. Fossil fuels >80% of energy, oil>98% of traffic

    II. Coal (power) and oil (traffic) 80% of CO2

    III.Goal: CO2 down by 60% 2050, >80% in industrialized countries

    IV. 65% of energy used in cities(80% in2040)

    V. Energy issues shifting from industrialized countries to emerging economies, e.g. in Asia

  • Current trend: New record in

    human carbon emissions 2012

    Peter Lund 2013 Lhde : IEA, 2012

    1990 2035

    45

    Gt

    20

    22 Gt

    CO2

    20% of population use 80% of all [energy] resources 1/2 of all people earn less than 2$ a day

  • Peter Lund 2013

    Energy technology

    options by 2050 (IEA 2008)

    Ref: IEA, Energy Technology Perspectives, 2008

  • Renewable electricity is

    more than adequate to

    supply 80% of U.S.

    electricity in 2050;

    Increased electric system

    flexibility is needed

    (supply- and demand-side

    options);

    Multiple combinations of

    renewable technologies

    possible.

    U.S. Renewable Electricity

    Futures Study (RE Futures)

    Peter Lund 2013

    Source: NREL: Exploration of High-Penetration Renewable Electricity Futures, 2012

  • Trends in new energy

    - growing markets and falling prices

    Peter Lund 2013

    0.1

    1

    10

    100

    1000

    10000

    100000

    1000000

    1

    10

    100

    1977

    1979

    1981

    1983

    1985

    1987

    1989

    1991

    1993

    1995

    1997

    1999

    2001

    2003

    2005

    2007

    2009

    20

    11

    Cu

    mu

    lati

    ve v

    olu

    me, M

    W

    Pri

    ce

    , $/W

    Progress in solar PV and wind power

    price (PV) price (wind) volume (PV) volume (wind)

  • Take-off of Solar PV?

    Peter Lund 2013

    Ref Lund PD. Fast market penetration of energy technologies in retrospect with application to clean energy futures. Applied Energy (2010), doi:10.1016/j.apenergy.2010.05.024; P.D. Lund:Exploring past energy changes and their implications for the pace of penetration of new energy technologies. Energy 35 (2010) 647656

    PV share of world electricity 2013 < 1%; By 2050: 5% (slowing progress) 25% (fast-track)

    10% of world electricity 2050

    20% of world electricity 2050

  • Several studies and scenarios indicate high future market

    shares of renewable energy and electricity

    Peter Lund 2013

    Shifting to sustainable energy

  • Distributed and renewable energy

    generation technologies

    Peter Lund 2013

  • Distributed power topology

    Peter Lund 2013

    http://www.google.fi/imgres?imgurl=http://www.nicholas.duke.edu/thegreengrok/graphics/electricity-graphic/image&imgrefurl=http://nicholas.duke.edu/thegreengrok/smartgridpt1&usg=__bwruLvnZSsedsUdVMyR7tQwbC8U=&h=211&w=600&sz=49&hl=fi&start=0&zoom=1&tbnid=7gix3sE1foPhYM:&tbnh=67&tbnw=190&ei=0MU2TdXEJcSl8QPVpfiCDA&prev=/images?q=distributed+electricity+generation&hl=fi&sa=X&rls=com.microsoft:fi:IE-SearchBox&rlz=1I7SUNA_en&biw=1255&bih=730&tbs=isch:1&prmd=ivns&itbs=1&iact=hc&vpx=727&vpy=451&dur=3485&hovh=133&hovw=379&tx=183&ty=86&oei=0MU2TdXEJcSl8QPVpfiCDA&esq=1&page=1&ndsp=22&ved=1t:429,r:20,s:0http://www.google.fi/imgres?imgurl=http://midwestgreenenergy.com/images/PV-GridSystem2.jpg&imgrefurl=http://midwestgreenenergy.com/howdoespvwork.html&usg=__bF7PFSvqmoTA3b_TgNdfhLvwSwY=&h=275&w=441&sz=19&hl=fi&start=0&zoom=1&tbnid=V86cm7QY3iCgbM:&tbnh=131&tbnw=210&ei=WcY2TeqQN8S48gPLgvyTDA&prev=/images?q=grid+connected+PV&hl=fi&sa=X&rls=com.microsoft:fi:IE-SearchBox&rlz=1I7SUNA_en&biw=1255&bih=730&tbs=isch:1&prmd=ivns&itbs=1&iact=hc&vpx=345&vpy=86&dur=1362&hovh=177&hovw=284&tx=186&ty=101&oei=WcY2TeqQN8S48gPLgvyTDA&esq=1&page=1&ndsp=20&ved=1t:429,r:1,s:0http://www.google.fi/imgres?imgurl=http://www.pvsystem.net/~k.otani/data/bipvphoto/98030827.jpg&imgrefurl=http://www.pvsystem.net/~k.otani/data/bipvphoto-e.htm&usg=__buYzCbD9Cf6HUHQ820pgp9ysz7Q=&h=480&w=640&sz=42&hl=fi&start=0&zoom=1&tbnid=60MFkn4_wslTJM:&tbnh=131&tbnw=174&prev=/images?q=Building+integrated+PV&hl=fi&sa=X&rls=com.microsoft:fi:IE-SearchBox&rlz=1I7SUNA_en&biw=1255&bih=730&tbs=isch:1&prmd=ivns&itbs=1&iact=rc&dur=400&ei=W8A2TYKhKcnA8QO3rc2WBA&oei=LMA2TcWLIoy28QPr95W9Aw&esq=10&page=1&ndsp=25&ved=1t:429,r:10,s:0&tx=132&ty=48http://www.google.fi/imgres?imgurl=http://www.burnsmcd.com/portal/pls/portal/docs/1/196589.JPG&imgrefurl=http://www.burnsmcd.com/portal/page/portal/451B9DA9BEEC304BE040030A1B0D57A7&usg=__EQCvK55pHUHgAYF_cmuxuksJ120=&h=216&w=324&sz=34&hl=fi&start=25&zoom=1&tbnid=FEq3EXJ9xQIVJM:&tbnh=114&tbnw=171&prev=/images?q=Building+integrated+PV&hl=fi&sa=X&rls=com.microsoft:fi:IE-SearchBox&rlz=1I7SUNA_en&biw=1255&bih=730&tbs=isch:1&prmd=ivns&itbs=1&iact=rc&dur=0&ei=pending&oei=LMA2TcWLIoy28QPr95W9Aw&esq=2&page=2&ndsp=26&ved=1t:429,r:0,s:25&tx=133&ty=78

  • RE (PV) resource variability

    on different time scales

    0

    100

    200

    300

    400

    500

    600

    700

    800

    900

    0 5000 10000 15000 20000 25000 30000 35000

    Ho

    url

    y an

    d d

    aily

    glo

    bal

    rad

    iati

    on

    (W

    /m2

    )

    0

    100

    200

    300

    400

    500

    600

    700

    800

    900

    0 20 40 60 80 100 120 140

    Ho

    url

    y an

    d d

    aily

    glo

    bal

    rad

    iati

    on

    (W

    /m2)

    Yearly Daily

    Hourly 0.1 sec

  • Temporal market effects from

    large-scale RE (Germany)

  • (c) Peter Lund 2013

    Spatial effects from RE

    schemes

  • Peter Lund 2013

  • Large-scale RE schemes require

    systemic bridging innovations

    Peter Lund 2013

    Old 100% New 100%

    New 0% Old 0%

    Multi-energy networks Flexible demand

    EV,ICT

    Storage E2T,V2G,E2Gas

    How does the energy system

    work with much renewable energy?

  • Smart infrastructures provide

    spatiotemporal flexibility

    Peter Lund 2013

  • Smart built environment provide

    spatiotemporal flexibility

    Peter Lund 2013

  • Energy systems perspective to

    high-shares of RE power

    Q1: matching supply and demand of electricity with RE sources

    Q2: integrating distributed RE power into the energy system

    Examples of solutions:

    1. RE in urban context

    2. Grid infrastructures

    3. Smart Grids

    4. Electricity markets

    5. Co-generation (CHP)

    6. RE coupled with end-use

    7. Electricity-to-Gas

    8. RE+Gas integration

    9. Demand flexibility

    10.Storage

    Peter Lund 2013

    5 3

    1

    2

    4

    7

    8

    9

    6

    10

    http://www.google.fi/imgres?imgurl=http://www.renewbl.com/wp-content/uploads/2010/12/masdar-city.jpg&imgrefurl=http://www.renewbl.com/2010/12/06/first-masdar-city-building-completed-features-1-mw-solar-rooftop-installation.html&usg=___tbgfcooGcyAElU9bQcuH_acXpU=&h=462&w=600&sz=111&hl=fi&start=120&zoom=1&tbnid=QW3yOqD0TeJfQM:&tbnh=127&tbnw=165&ei=5ME2TZjWNsao8AO2ws2DDA&prev=/images?q=Masdar&hl=fi&sa=X&rls=com.microsoft:fi:IE-SearchBox&rlz=1I7SUNA_en&biw=1255&bih=730&tbs=isch:1&prmd=ivns&itbs=1&iact=rc&dur=0&oei=sME2TcLJHs6s8QOGzMWLDA&esq=6&page=6&ndsp=24&ved=1t:429,r:12,s:120&tx=108&ty=93

  • Peter Lund 2013

    Simple control of large-amounts of RE:

    Ex. Curtailing PV power

    0 %

    20 %

    40 %

    60 %

    80 %

    100 %

    0 % 20 % 40 % 60 % 80 % 100 % Red

    ucti

    on

    in

    so

    lar

    yie

    ld

    Power cut-off limit (% of nominal PV power installed)

  • Peter Lund 2013

    Examples of

    grid extension

    plans in

    Europe

  • Integrated electricity market

    a Nordic system innovation for large-scale use variable renewables

    Nordic electricity market has a common power reserve which can be accessed through the power exchange

    How much wind power is possible without major reserve power increase?

    If wind 10% of all electricity extra cost for reserve power is 1 /MWh

    If 20% 1-7 /MWh (source: H.Holttinen, VTT)

    Vision: 20-25 % of all Nordic electricity wind power by 2030; Norwegian hydropower buffers

    Peter Lund 2013

  • REF IEA 2012

    RE&Gas: better power plant flexibility

    A

    B C

    Ref. Wrtsil, Smart

    Power Generation, 2011

    Ref. IEA, Golden Rules

    for a Golden Age of Gas

  • Final energy in urban environment

    thermal energy forms dominate end-use side

    Final energy use forms in buildings: heating, cooling, electricity

    EU-27household energy:

    Peter Lund 2013

    67 %

    15 %

    14 % 4 %

    Space heating

    Appl&Light

    Hot water

    Cooking

  • Electricity-to-thermal conversion of

    surplus renewable electricity

    Peter Lund 2013

  • Picture: Helsinki Energy Annual Report 2010

    Peter Lund 2013

    How much wind power could

    be utilized in Helsinki?

  • Generating spatiotemporal (load)

    profiles (x,y,t)

    Peter Lund 2013

    Annual load per type

    1 5 9 13 17 21

    Typical hourly load profiles per type

    1 5 9 13 17 21

    Total hourly load profile over a year

    (x,y)-distributions e.g. building type

    Scaled

    profiles Fitted

    profiles

    Spatiotemporal

    loadprofile (x,y,t)

  • Peter Lund 2013

    Electric (left) and District Heating

    Networks and Loads (right) in Helsinki

  • Matching power demand and supply

    each hour of the year!

    Peter Lund 2013

    0 %

    10 %

    20 %

    30 %

    40 %

    50 %

    60 %

    70 %

    80 %

    90 %

    100 %

    Tuu

    livo

    iman

    tu

    nti

    -ja

    viik

    oar

    vot

    [su

    ht.

    teh

    o]

    winter summer autumn

    winter summer autum

    Helsinki power demand Wind power production

    Win

    d p

    ow

    er

    variation

    (re

    l. u

    nits)

  • 486 MW

    How does wind power match demand?

    Wind = power and heat demand 1349 MW wind power = 71% of electricity per year (2% of heat)

    Ref: R. Niemi, J. Mikkola, P.D. Lund: Urban energy systems with smart multi-carrier energy networks and renewable energy generation. Renewable Energy, 2012. Ref: Lund, P. : Large-scale urban renewable electricity schemes - integration and interfacing aspects. Energy Conversion and Management, 2012

    Wind power supply

    Heat demand

    Electricity demand

    1349 MW

    Wind = power demand 486 MW wind power = 25% of yearly electricity in Helsinki

    Worst day for wind power: Feb 6

    Peter Lund 2013

  • Peter Lund 2013

    Mismatch between PV and electricity

    demand case Shanghai

    Different levels of PV

    Ref: Lund, P. : Large-scale urban renewable electricity schemes - integration

    and interfacing aspects. Energy Conversion and Management, 2012

    Smart energy may 2-3 x feasible PV capacity in Shanghai Base case (PV peak equals to electric load): 31% daily energy share, 25% of yearly electricity share Advanced case (PV peak equals to total load: 50-70% of daily energy demand (40-55% of yearly electricity)

  • Example of power distributions with

    large PV schemes in Shanghai

    Peter Lund 2013

    Niemi, R., Mikkola, J., Lund P., Urban energy systems with smart

    multi-carrier energy networks and renewable energy generation,

    Renewable Energy 48 (2012) 524-536.

  • Pushing the share of RE power

    2-3-fold beyond the traditional limit

    Peter Lund 2013

    Electricity-to-Thermal strategy: RE system is oversized, surplus turned into and stored as thermal energy (heat or cold) ; or curteiled

    Ref: Lund,P.: Large-scale urban renewable electricity schemes - integration and interfacing aspects. Energy Conversion and Management, 2012

    0 20 40 60 80 100

    Shanghai, China (solar)

    Dhahran, Saudi-Arabia (solar)

    Helsinki, Finland (wind)

    Share of renewable energy,%/a

    4 RE provides 100% of daily cooling demand during peak RE conditions

    3 RE provides 100% of daily heat demand during peak RE conditions

    2 RE matches hourly demand of electricity and heat during peak RE conditions

    1 RE matches hourly demand of electricity during peak RE conditions

    1 2

    3 4

    Base case

  • Electrified vehicles providing

    electricity servives (E2V, V2G)

    Peter Lund 2013

    Tesla Motors - Model S lithium-ion battery pack

    Source IEA

  • Key parameters for the simulation:

    battery capacity10 kWh

    electricity consumption 0.2 kWh/km

    charging efficiency 0.9

    power coefficient @ home: kW

    power coefficient @ work: kW

    sockets: plenty (no queuing)

    socket power limit 7.4 kW

    battery recharge limit: 1-hour 0100%

    EV & PV & Grid

    Case Helsinki Metropolitan region Area (1 million people)

    Peter Lund 2013

  • Maximum PV power overflow at peak conditions:

    on consumption

    and evenly

    100% of PV placed

    based on load

    100% of PV evenly

    placed

    0 EVs 50,000 EVs (a 10kWh) 100,000 EVs

    Large-scale PV+EV case for Helsinki:

    2 GWp PV (1/3 of yearly demand, 6x min. summer demand)

  • EXTRA

    Peter Lund 2013

  • How to build your own

    power plant in 1 minute ?

    Peter Lund 2013

    http://vimeo.com/66544428

    http://vimeo.com/66544428http:///http://vimeo.com/66544428

  • Peter Lund 2013

    1 wind turbine = 3-10 GWh electricity

    (ca1000-3000 households)

  • Peter Lund 2013

    Wind power: now 3 % of world electricity, 25% in 2050 ? Costs may drop by

    Solar electricity (PV) : % of world electricity ($100 B business), 5-25% in 2050; Price

  • Mass-production (roll-to-roll) of

    solar cells

    Peter Lund 2013

    Source: Janne Halme

  • Fuel

    Electrochemical conversion of fuel to electricity

    Fuel Cell (solid oxide fuel cell)

    electrolyte

    O2 + 4e- = 2 O2-

    2 O2- + 2 H2 = 2 H2O + 4 e-

    4 e-

    anode

    cathode

    O2-

    Courtesy Bin Zhu

    Oxidant

    Peter Lund 2013