91
0| Page Residential smart ventilation: a review Gaëlle Guyot 1 , Max H. Sherman 2 , Iain S. Walker 2 & Jordan D. Clark 2 1 Cerema & Savoie Mont Blanc University 2 Building Technologies and Urban Systems Division September 2017 Funding was provided by the U.S. Dept. of Energy under Contract No. DE-AC02- 05CH11231, the CEC under the Califoarnia Energy Commission contract No. EPC- 15-037 and Aereco SA under Contract No. FP00003428. The contribution of Cerema is funded by the French Ministries in charge of sustainable development, transports and urban planning, and by the Région Auvergne Rhône-Alpes. LBNL 2001056

LBNLSVACH Smart ventilation review · 2020. 1. 4. · 0 | Page Residential smart ventilation: a review Gaëlle Guyot1, Max H. Sherman2, Iain S. Walker2 & Jordan D. Clark2 1 Cerema

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: LBNLSVACH Smart ventilation review · 2020. 1. 4. · 0 | Page Residential smart ventilation: a review Gaëlle Guyot1, Max H. Sherman2, Iain S. Walker2 & Jordan D. Clark2 1 Cerema

0|P a g e

Residential smart ventilation: a review

Gaëlle Guyot1, Max H. Sherman2, Iain S. Walker2 & Jordan D. Clark2 1 Cerema & Savoie Mont Blanc University 2 Building Technologies and Urban Systems Division September 2017

Funding was provided by the U.S. Dept. of Energy under Contract No. DE-AC02-05CH11231, the CEC under the Califoarnia Energy Commission contract No. EPC-15-037 and Aereco SA under Contract No. FP00003428. The contribution of Cerema is funded by the French Ministries in charge of sustainable development, transports and urban planning, and by the Région Auvergne Rhône-Alpes.

LBNL2001056

Page 2: LBNLSVACH Smart ventilation review · 2020. 1. 4. · 0 | Page Residential smart ventilation: a review Gaëlle Guyot1, Max H. Sherman2, Iain S. Walker2 & Jordan D. Clark2 1 Cerema

Disclaimer

ThisdocumentwaspreparedasanaccountofworksponsoredbytheUnitedStatesGovernment.Whilethisdocumentisbelievedtocontaincorrectinformation,neithertheUnitedStatesGovernmentnoranyagencythereof,norTheRegentsoftheUniversityofCalifornia,noranyoftheiremployees,makesanywarranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, orusefulnessofanyinformation,apparatus,product,orprocessdisclosed,orrepresentsthatitsusewouldnot infringe privately owned rights. Reference herein to any specific commercial product, process, orservice by its trade name, trademark,manufacturer, or otherwise, does not necessarily constitute orimply itsendorsement, recommendation,or favoringby theUnitedStatesGovernmentoranyagencythereof, or The Regents of theUniversity of California. The views and opinions of authors expressedhereindonotnecessarilystateorreflectthoseoftheUnitedStatesGovernmentoranyagencythereoforTheRegentsoftheUniversityofCalifornia.

Page 3: LBNLSVACH Smart ventilation review · 2020. 1. 4. · 0 | Page Residential smart ventilation: a review Gaëlle Guyot1, Max H. Sherman2, Iain S. Walker2 & Jordan D. Clark2 1 Cerema

0|P a g e

Acknowledgements

TheauthorswouldliketothankSamuelCaillou(BBRI,Belgium),PilarLinares,andSoniaGarcía

Ortega (CSIC, Spain), and Wouter Borsboom (TNO, the Netherlands) for their help in the

descriptionofthepastandcurrentequivalenceproceduresfordemand-controlledventilation

systems in their countries.Wewouldalso like to thankour colleagueSpencerDutton forhis

technicalreview.

Page 4: LBNLSVACH Smart ventilation review · 2020. 1. 4. · 0 | Page Residential smart ventilation: a review Gaëlle Guyot1, Max H. Sherman2, Iain S. Walker2 & Jordan D. Clark2 1 Cerema

1|P a g e

CONTENTS ABSTRACT................................................................................................................................................2

KEYWORDS..............................................................................................................................................3

1. Introduction.............................................................................................................................42. Backgroundon“Smartventilation”strategies........................................................................6

WhyVentilateBuildings?.........................................................................................................................6

Smartventilationdefinitionandexamples..............................................................................................7

Theoretical background on smart ventilation metrics: Ventilation rate and indoor pollutantconcentrations.......................................................................................................................................13

Current“smarter”ventilationstrategies–DemandControlledVentilation.........................................17

3. Relevantparameters,sensors&controlsstrategies.............................................................18Measurement-basedcontrolstrategies................................................................................................18

Pollutantsofconcerninresidencesfromasmartventilationperspective.......................................18

Odors,CO2andhumidity...................................................................................................................20

Availabilityandreliabilityofpollutant-andoccupancy-sensors............................................................25

Controlstrategyalgorithms...................................................................................................................34

4. EnergyandIAQPerformance-basedmethodsinstandardsandregulationsasopportunitiesforsmartventilationsystems.......................................................................................................37

Overviewofstandardsandregulationsforresidentialbuildingsintegratingsmartventilation...........37

State-of-the-art of existing equivalence principles or performance-based approaches for smartventilationusedinresidentialbuildings................................................................................................37

Currentavailabilityofsmartventilationsystems..................................................................................48

5. Literaturereview:smartventilationperformanceinresidentialbuildings...........................49IAQandenergyperformanceofresidentialsmartventilation..............................................................49

Occupantbehaviorandsuitabilityofautomaticallycontrolledventilationsystems............................67

Suitabilityofamulti-zone–basedapproach..........................................................................................67

6. Furtherdevelopments...........................................................................................................71TowardsanoptimalsolutionintheIAQmetricsforsmartventilation.................................................71

Feedbackfromreal-worldapplicationsandrecommendationsforimplementation...........................73

7. SummaryandConclusions....................................................................................................748. References.............................................................................................................................77

Page 5: LBNLSVACH Smart ventilation review · 2020. 1. 4. · 0 | Page Residential smart ventilation: a review Gaëlle Guyot1, Max H. Sherman2, Iain S. Walker2 & Jordan D. Clark2 1 Cerema

2|P a g e

ABSTRACT

Airventilation isoneofthetopenergyusers inresidentialbuildings.Smartventilationequipmentandcontrolshelptoreducetheamountofenergyuseattributabletoventilationinhomeswhilemaintaininghigh indoor air quality. Ventilation can also beused as a resource for utility grid demand response ifdoneintelligently.Akeycomponentofthesmartventilationconceptistheuseofcontrolstoventilatemorewhendoingsoprovidesanenergyorairqualityadvantageand/oraresourcetothepowergrid,andlesswhenitprovidesadisadvantage.Unlikedemand-controlledventilation,othersmartventilationconcepts involve the addition of several new inputs into control algorithms—namely measured ormodeled concentrations of pollutants and signals from the electricity grid. And, unlike demand-controlled ventilation, smart ventilation uses the “equivalent ventilation” principle in the selection ofthecontrolstrategy,whichallowsanticipationoffutureventilationneedsandretroactivecompensationforpreviousventilationneeds.

Todeterminethebestmeansofcontrollingventilationinresidences,thisstudyfirstreviewedliteraturerelatingtothe:

• Suitability of common environmental variables (pollutants of concern, humidity, odors, CO2,occupancy)foruseasinputvariablesinsmartventilationapplications

• Availabilityandreliabilityofrelevantsensors• Differentcontrolstrategiesusedforasmartventilationapproach.

Resultsofthereviewshowedthatthesuitabilityofeachenvironmentalvariableisspecifictoeachsmartventilationapplication,andalsothatpollutantsensorsarecurrentlynotrobustoraccurateenoughtoberelieduponforresidentialventilationcontrols.

Next,thisresearchassessedtheregulatorycontextinwhichsmartventilationstrategiesmightbeimplementedmosteffectively.Theassessmentshowedthatmanycountriesalreadyhavearegulatorystructurethatisfavorableforthedevelopmentofsmartventilationstrategies.Thesecountrieshaveregulationsandstandardsinplacethatpropose“equivalencemethods”thatofferapathtocomplianceincludingtheuseofsmartventilationstrategies.Thesecompliancepathshaveallowedforthedevelopmentandavailabilityofdemand-controlventilationsystemsinthemarketplace;morethan30suchsystemshavebeenapprovedandareavailableincountriesincludingBelgium,France,andtheNetherlands.Itseemslikelythatthemorecomplexsmartventilationstrategieswouldfollowasimilarpathtomarketacceptance.

Resultsofthereviewofsmartventilationinresidentialbuildingsisusedto:

• Determine and discuss performance of smart ventilation in terms of energy and indoor airquality

• Gatherdataonoccupantbehavior• Assessthesuitabilityofautomaticallycontrolledventilationsystems• Assesstheapplicabilityofamulti-zoneapproachforventilation.

Page 6: LBNLSVACH Smart ventilation review · 2020. 1. 4. · 0 | Page Residential smart ventilation: a review Gaëlle Guyot1, Max H. Sherman2, Iain S. Walker2 & Jordan D. Clark2 1 Cerema

3|P a g e

This meta-analysis of 38 studies of various smart ventilation systems with controls (on either CO2,humidity,combinedCO2andTVOC,occupancy,oroutdoortemperature)showsthatventilationenergysavingsofupto60%canbeobtainedwithoutcompromisingIAQ—andsometimesevenimprovingit.Insomecases,thesmartventilationstrategiesdidnotreduceenergyuse(showinganincreaseinenergyuseofupto26%).

Occupantbehaviorwasalsoexaminedinthereview.Theexaminationshowedthatoccupantsarerarelyawareofthequalityoftheirindoorair,particularlywithregardtohealthissues,anddonotnecessarilyoperatetheventilationsystemswhenrecommendedforoptimalindoorairqualityorenergyefficiency.The applicability of a multi-zone approach is also demonstrated by studies showing a disparity inconcentrations between different rooms of a home, and differences between single-zone andmulti-zonemodelinginresidentialbuildings.

Finally, this report summarizesongoingdevelopments insmartventilationstrategiesandapplications,including research into indoor air quality metrics, feedback on the lack of quality in ventilationinstallations,andsourcecontrol(filtrationandaircleaning)issues.

KEYWORDS

Residential,smart,ventilation,DCV,indoorairquality,health,energy,performance,sensors,pollutants

Page 7: LBNLSVACH Smart ventilation review · 2020. 1. 4. · 0 | Page Residential smart ventilation: a review Gaëlle Guyot1, Max H. Sherman2, Iain S. Walker2 & Jordan D. Clark2 1 Cerema

4|P a g e

1. INTRODUCTION

Ventilation is adriverofboth1) indoorairquality (IAQ) considerations in residentialbuildingsand2)energyuseinresidentialbuildings(conditioningventilationairandfanpowerrequirements).Inordertoprovideboth improved IAQandenergyperformance in residentialbuildings,ventilationmustbecomeawareofwhatishappeninginthespaceanditsownimpact;thatis, itmustbecomesmarter.Smarterventilationprovideshigherperformancewhetherthatperformanceismoreenergy-efficient,conduciveto improved IAQ,or it also takes into consideration theneedsof thepowergridandpotential futurevariablecostsofelectricity.

ThroughupdatestoCaliforniabuildingcodes,Californiaisleadingthewaytoenergy-efficientresidentialbuildings, and isevenon theway tomandating zero-net-energyhomes.This is also the case in someEuropean municipalities, in response to energy performance building directives from the EuropeanParliament (2010).. For these high-performance homes, envelope airtightness treatment becomescrucial(Erhorn,etal.2008)andshouldbecombinedwithefficientventilationtechnologies.Ventilationloads in high performance homes represent a significant and increasing fraction of the spaceconditioningloadandthussmartventilationbecomeanincreasinglyusefulapproach.

Great strides have been made in improving envelope airtightness in residential and commercialapplications,butsometimesatthecostofIAQ.Becausepeoplespend60%—90%oftheirlifeinindoorenvironments (homes, offices, schools, etc.), IAQ is a critical factor affecting public health and smartventilationconceptsofthefuturemusttakeitintoaccount(Klepeis,etal.2001;Europeancommission2003; Brasche and Bischof 2005; Zeghnoun, et al. 2010; Jantunen, et al. 2011). Logue, et al. (2011b)estimatedthatcurrentdamagetopublichealthfrompoorIAQ(excludingsecond-handsmoke(SHS)andradon)wasintherangeof4,000–11,000μDALYperpersonperyear.Bywayofcomparison,thismeansthedamageattributabletopoorIAQissomewherebetweenthehealtheffectsofroadtrafficaccidents(4,000 μDALY/p/yr) and heart disease from all causes (11,000 μDALY/p/yr). According to the WorldHealthOrganization(WHO2014),99,000deathsinEuropeand81,000intheAmericaswereattributabletohouseholdIAQin2012.HealthgainsinEurope(EU-26)attributedtoeffectiveimplementationoftheenergyperformancebuildingdirective,whichincludesIAQrequirements,havebeenestimatedatmorethan300,000disability-adjustedlifeyears(DALY)peryear.(Jones,etal.2015)studiedairchangeratesprovidedbyinfiltrationonlyandshowedthat,inordertolimitnegativehealthconsequences,upto79%ofhomescouldrequireadditionalpurpose-providedventilation.

TighteningbuildingenvelopesmayincreasethelikelihoodofpoorIAQ(PhillipsandLevin2015),buttheriskmaybeexacerbatedbythefactthatairtightenvelopesaresometimescombinedwithpoorqualityventilation installations (Dimitroulopoulou 2012; Stratton, et al. 2012). In the Healthvent project(Seppanen,etal.2012),expertsfrom17Europeancountrieswereinterviewedontheeffectsofthelastupdate of the Energy Performance Building Directive (EPBD). They concluded that tightening ofenvelopes combined with a lack of attention to IAQ concerns in the national energy performanceregulationsmustbeconsideredaseriousrisk.

Page 8: LBNLSVACH Smart ventilation review · 2020. 1. 4. · 0 | Page Residential smart ventilation: a review Gaëlle Guyot1, Max H. Sherman2, Iain S. Walker2 & Jordan D. Clark2 1 Cerema

5|P a g e

Inordertomeetthesometimes-competingdesirestoprovideforproperIAQandreduceenergyuseinbuildings, interest in a new generation of ventilation systems has been growing. The term “smartventilation” usually denotes a ventilation system that uses controls to ventilatemorewhen doing soprovidesanenergyorIAQadvantage(orboth)andlesswhenitprovidesadisadvantage(relativetoanbasecasethatisinsensitivetosuchissues).Themoststudiedsubsetofsmartventilationstrategiesaredemand-controlledventilation(DCV)strategies(Laverge,etal.2011).AlthoughDCVtechniquescanbeapplied to just about any ventilation system, they are particularly useful in allowing relatively simpleventilationsystems(suchasanexhaust)tohaveanenergyperformancethatisclosertomorecomplexsystems(suchasthoseusingenergyrecovery).

Asanexampleofthegrowinginterestinbetterventilation,theIndoorEnvironmentalQualityResearchRoadmap(LevinandPhillips2011)recommendsthat indoorenvironmentalquality (IEQ)be integratedinto California’s future plans. The roadmap identified ventilation as a priority research topic. Twospecifichigh-priorityresearchtopicswerelisted:

• Identifyandunderstandthebestventilationsystemsforhigh-performancebuildings, includingventilationandaircleaningsystemsthatareseparatefromheatingandcoolingsystems

• DevelopanddemonstrateIEQ-optimizedventilation,heating,andcoolingsystemsfordifferentbuildingtypesanddifferentclimatezonesinCaliforniaforbothnewandretrofitapplications.

Our review begins to work toward these objectives as part of a project called “Smart VentilationAdvanced for Californian Homes” (SVACH) funded by the California Energy Commission, the U.S.Department of Energy, and the Aereco S.A. The project addresses both of these high-priority projectareas for residential buildings first by developing smart ventilation technology approaches, some ofwhich may include the use of air cleaning, and secondly by developing IAQ metrics for optimizingventilation.

Thisreportisananalysisofthestateoftheartinsmartventilation,aspublishedinindustryliterature.Analysispresentedhereisbasedonindustrypublicationsandpublishedmarketsurveys.

Thisreportaddressesseveralaspectsofsmartventilation:

• The definition and description of smart ventilation strategies, including a theoreticalbackground

• The suitability of various environmental variables for use as inputs in smart ventilationapplications

• Theavailabilityandreliabilityofthesensorsusedtomeasurethesevariables

• Adescriptionofrelevantcontrolstrategies

• Anoverviewoftheregulationsandstandardsproposing“equivalencemethods”inordertopromotetheuseofsmartventilationstrategiesandtheavailablesystemsonthemarketindifferentcountries

• A review of smart ventilation as currently used in residential buildings, the associatedenergyandIAQperformanceofthesebuildings,andoccupantbehavior

Page 9: LBNLSVACH Smart ventilation review · 2020. 1. 4. · 0 | Page Residential smart ventilation: a review Gaëlle Guyot1, Max H. Sherman2, Iain S. Walker2 & Jordan D. Clark2 1 Cerema

6|P a g e

• Theapplicabilityofamulti-zoneapproachforventilation.

Finally, a summary of ongoing developments in research areas related to smart ventilation is given,includingIAQmetrics,feedbackfromon-siteimplementations,sourcecontrol,filtrationandaircleaning.

2. BACKGROUND ON “SMART VENTILATION” STRATEGIES

Why Venti late Bui ld ings?

Appropriatebuildingventilationprovidesahealthyandcomfortableindoorenvironment,withattentiontooccupanthealthandcomfort. Indoorpollutant sourcescancome fromoutsideair, fromoccupantsthemselvesandtheiractivities,andfromthefurnishingsandmaterials installed inbuildings. Anyfirstprinciples evaluation of IAQneeds to include a focus on the contaminantswhich are likely to impacthealth.

Therearethousandsofchemicalspeciesintheindoorair—mostofthemarepresentatconcentrationsthatdonotrepresentanysignificanthealththreat.Therearemorespeciesaddedallthetime—manyofwhichhaveverylimiteddataontheirhealthimpacts.Thus,ithasbeendifficulttocreatedefinitiveIAQmetricsforstandardsandregulationsgoverningresidentialbuildings(Borsboom,etal.,2016). Instead,prescribedventilationrateshavebeenused.Thelimitationtothisapproachisthat,thoughitdisplaceshumanbio-effluentsincludingodors,itassumesthatventilationisasufficientmeansofcontrollingothercontaminants (Matson and Sherman 2004). Persily (2006) gives more details. A committee chair ofASHRAEStandard62-1989 (ASHRAE1989)notedthat theminimumventilationrequirementof7.5L/sperpersonwasbasedonbodyodorcontrol(Janssen1989),andthatthisminimumwasincreasedto10L/sperpersoninmanybuildingtypestoaccountforcontaminantsotherthanhumanbio-effluents,suchas thoseemittedbybuildingmaterialsand furnishings.However,nospecificmethodologyarticulatingthejustificationofthisincreaseisnoted.Asaresult,standardsandregulationsgenerallysetventilationratesbasedoncomfortconsiderationsandnotonhealthcriteriaassuggestedintheHealthventproject(Seppanen,etal.2012;Wargocki2012).

Regardlessoftheperformancecriteriaorparticularventilationsystem,aventilationstrategyshouldbeable to dilute and/or remove both the background emissions and the occupant-related emissions inordertopreventunhealthychronicandacuteexposure.Asaresult,currentstandardsandregulations,such asASHRAE62.2-2016 andothers in Europe (Dimitroulopoulou2012), oftenprescribe ventilationstrategiesrequiringthreeconstraintsonairflowrates:

1. Aconstantairflowbasedonaroughestimationoftheemissionsofthebuildings:for instance,one that considers size of the home, the number and type of occupants, or combinationsthereof

2. Minimumairflows(i.e.,duringunoccupiedperiods)3. Provisionsforshort-termforcedairflowstodiluteandremoveasourcepollutantgeneratedby

activities(cooking,showering,housecleaning,etc.).

Page 10: LBNLSVACH Smart ventilation review · 2020. 1. 4. · 0 | Page Residential smart ventilation: a review Gaëlle Guyot1, Max H. Sherman2, Iain S. Walker2 & Jordan D. Clark2 1 Cerema

7|P a g e

Itshouldbenotedthatevenaproperventilationsystemshouldnotbeseenasapanacea:toachievegoodIAQ,sourcereductionmustalsobeconsidered(Mansson,etal.1997;ShermanandHodgson2002;Wargocki 2012; Borsboom, et al. 2016). The history of combustion devices changing from openfireplaces to sealed modern fireplaces is a good illustration of a response to the need for sourcereduction (Matson and Sherman 2004). Public policy that pushes the development of low-emittingbuildingmaterialsandfurnishings isanotherexample (compositewoodproductairbornetoxiccontrolmeasureofCaliforniaEnvironmentalProtectionAgency2011;compulsory labelingofVOCemissionofallconstructionproductsanddecorativeproductsinstalledindoorsofFrenchMinistryforEcology2011).

Smart venti lat ion definit ion and examples

Theconceptofsmartventilationwasdevelopedtoventilateproperlywhilereducingenergyloads,allowfortheprovisionofgridservices,andpromoteassociatedrenewablepower integration(ShermanandWalker2011;Walker,etal.2011;TurnerandWalker2012;Walker,etal.2014).Thegoal is toreducethe amount of energy that ventilation uses and reduce associated energy costs below that of ananalogous continuously operating systemwhilemaintaining or improving IAQ. A secondary goal is toallowresidentialventilationsystemstoeventuallyinteractsymbioticallywiththepowergridbyreducingelectricityuseduringpeakdemandperiodandeventuallyallowingforgridservicessuchasshort-termload shifting. Smart ventilation encompasses some aspects of DCV strategies, which have beenemployed for years, such as themodulation of ventilation in response to occupancy. But in itsmostgeneraldefinition,smartventilationalsoincludessomeothercomponents:

• First, ventilation is provided in response to demand for ventilation rather than in aprescribed, conservative prescription of ventilation rate. InDCV systems, demand ismostoften quantified in terms of occupancy, or some other measureable quantity, which isusuallyintendedtoindirectlyestimateoccupancy(suchasRHorCO2concentrations).Smartventilation can also quantify demand in terms of individual pollutant loads (by sensingindividual pollutants and the allowing a reduction in demand based on thesemeasurements)—a critical and often unaddressed issue. Also, smart ventilation can oftenreduce calculated demand that stems from air infiltration or exhaust due to mechanicalequipmentusedforsourceremoval(i.e.,kitchenhoodsandbathroomfans).

• A second aspect of a smart ventilation strategy is that it can employ the principle ofequivalent ventilation to satisfy demand at times of the day that are not necessarilycoincident with the demand itself. The equivalent ventilation principle allows proper IAQand acceptable levels of exposure to be maintained even if ventilation quantity is notproportionaltoinstantenousdemand.Thisallowsforashiftofventilationfromtimeswhenthecosts (e.g. thermal loads)associatedwithventilationarehigh to thosewhen itwillbelower, extending strategies such as night flushing or pre-ventilating before expectedoccupancyperiods.

• Lastly,smartventilationallowsbuildingmanagersorhomeownerstointegrateinformationfrommanysourcestomakeinformedandintelligentdecisionsaboutefficientandeffectiveventilation. These sources of information may include outdoor conditions such astemperature, humidity, pollutant concentrations, wind speed and wind direction; indoor

Page 11: LBNLSVACH Smart ventilation review · 2020. 1. 4. · 0 | Page Residential smart ventilation: a review Gaëlle Guyot1, Max H. Sherman2, Iain S. Walker2 & Jordan D. Clark2 1 Cerema

8|P a g e

conditions such as occupancy, humidity, pollutant concentrations, and control set points(e.g., staticpressure reset);whole-house conditions suchaspredefined schedulesand theoperation of other mechanical equipment; and global inputs such as community- orregional-scale demand for electricity or the price of electricity. With this information, abuilding manager or homeowner can then make decisions based not just on currentconditionsbut,conceivably,alsopredictfutureconditionsandweightheappropriatenessofvariouscontrolstrategiesbasedonfinancial,energy,andairqualityconsiderations.

One current smart ventilation controller prototype, the Residential Integrated Ventilation-EnergyController(RIVEC)(ShermanandWalker2011;Walker,etal.2011),controlsawhole-houseventilationsystem in real time by continuously calculating pollutant dose and exposure relative to a continuousventilationsystem.Itisableto:

1. Use timers or temperature sensors to provide ventilation when the impact is the smallest—typically shifting ventilation from times of high temperature differences to times of lowtemperature difference. This also results in significant peak-demand reduction (Turner, et al.2015),whichincreasesgridreliability

2. Account for operation of other air-moving equipment such as kitchen and bathroom exhaustfansandclothesdryers

3. Reduceventilationduringunoccupiedtimes4. Ventilatemoreattimestocompensateforothertimeswhenventilationisreduced.

The prototype was field-tested in an occupied house in Moraga, California. Experimental data werecombinedwithamodelingapproachtoestimatetheenergysavingsovertheyear inthreeCalifornianclimatezones(temperate:Oakland;warm:Fresno;coldmountain:Mt.Shasta).Themodelingshowedapotentialof13%—44%annualventilationenergysavings,whilepreservingIAQandeliminating100%ofthe peak power associated with ventilation. RIVEC run-times were 30%—70% of nominal full-timeoperation. Figure 1 shows an example of RIVEC operation, showing time series of relative dose andexposure,togetherwiththeRIVEC-controlledfanoperation.

Additional development (Turner andWalker 2012) led to improvedand simplified control algorithms.Ventilationenergysavingswereestimatedtobeatleast40%bystudyingdiverseclimates(16Californiaclimate zones), various home geometries, and values for envelope airtightness to give a goodrepresentation of themajority of the Californian housing stock. This reflects absolute energy savingsbetween500and7000kWh/yearperhouseholdwithapeakpowerreductionupto2kWina typicalhouse.

More detailed information about LBNL studies on smart ventilation is given in the section Literaturereview:smartventilationperformanceinresidentialbuildings,below.

Page 12: LBNLSVACH Smart ventilation review · 2020. 1. 4. · 0 | Page Residential smart ventilation: a review Gaëlle Guyot1, Max H. Sherman2, Iain S. Walker2 & Jordan D. Clark2 1 Cerema

9|P a g e

Figure1:Simulatedcontrolledwhole-houseventilationfan(continuousexhaust)withRIVECandotherhouseholdfan

operationduringthewinter(ShermanandWalker2011)

Thesmartventilationconceptisnotfixedandhasevolvedconcurrentlywithtechnologicalprogressandscientificknowledge.ThenextgenerationofsmartventilationtechnologywillbethefocusofafutureCEC/LBNLproject,SmartVentilationforAdvancedCalifornianHomes(SVACH),thatwillincludevariationof airflows with indoor pollutant load and the use of air cleaning systems in response to outdoorpollution levels.Table1Error!Referencesourcenotfound.describesthecategoriesofdatathatwereproposedforuseinputsinthealgorithmscontrollingtheoperationofthefanintheSVACHproject.

Page 13: LBNLSVACH Smart ventilation review · 2020. 1. 4. · 0 | Page Residential smart ventilation: a review Gaëlle Guyot1, Max H. Sherman2, Iain S. Walker2 & Jordan D. Clark2 1 Cerema

10|P a g e

Table1:Summarydescriptionoftheadvancedsmartventilationstrategy

Goal Sensor/input Fanoperation1 Shiftventilationtotimesoflowertemperaturedifference Outdoortemperature

sensor/timerACH=ACHMIN(highΔT);

ACHMAX(lowΔT)2 Avoidpeakutilityloads;especiallywhencoolingneedsare

highTimer+Utilitysignal ACH=ACHMIN

3 Reduceventilationinemptyrooms/homes Occupancysensors ACH=ACHMIN4 Avoidoutdoorpollutionpeaks Outdoorpollutant

(PM,O3,HCHO)sensorOrSignals/webconnection(sparetheair.com)

ACH=ACHMIN+aircleaningsystem

5 Adaptventilationratestoindoorpollutantload,calculatinginstantaneousexposureandlong-termdose

Indoorpollutantsensors ACH=f(Ci)

6 Avoidacuteexposure Indoorpollutantsensorsinkitchen(andbaths)

ACH=ACHMAXACH=ACHMIN;never0

7 Takecreditforoperationofotherairsystems(bathfans,clothesdryers,economizers,kitchenrangehoods)

Electricsensors(on/off+speeddetection)

ACH=ACHASHRAE-ACHothers

8 Collectionofdatatoanticipatefutureadjustments Cloud/connectedplatform

9 Takecreditfornaturalinfiltration Weatherandhouseleakage

ACH=ACHASHRAE-ΦACHinfi

A previous Canadian study (Moffat, et al. 1991) proposed a ventilation strategy in an experimentalhousecalled“Helma”thatcouldbeconsideredaprecursortoandbasisforasmartventilationstrategy.ThesixfeaturesofthisstrategyaredescribedinTable2.Onlyadescriptionoftheimplementedsystemwasgivenintheliterature:noquantitativeresultswerefound.

Table2:FeaturesofDCVcontrolstrategyinHelmaHouse(Moffat,etal.1991)

Page 14: LBNLSVACH Smart ventilation review · 2020. 1. 4. · 0 | Page Residential smart ventilation: a review Gaëlle Guyot1, Max H. Sherman2, Iain S. Walker2 & Jordan D. Clark2 1 Cerema

11|P a g e

The concept of DCV is a specific subset of smart ventilation. The term DCV is widely used. A cleardefinitionoftheconceptisnecessarytodistinguishitfromandcompareittotherelatedbutdifferentconcept of smart ventilation. The IEA Annex 18 defines DCV as the idea of continuously andautomatically adjusting the ventilation rate in response to the indoor pollutant load (Mansson, et al.1997). Maripuu (2011) defines a DCV system as a ventilation strategy with feedback and/or feed-forwardcontroloftheairflowrateinresponsetoameasureddemandindicator.AIVCTechnicalnote36(Limb,M.J.1992)definesaDCVstrategyas“aventilationstrategywheretheairflowrateisgovernedbyachosenpollutantconcentrationlevel.This level ismeasuredbyairqualitysensors locatedwithintheroomor zone.When thepollutantconcentration level risesaboveapreset level, thesensorsactivatetheventilationsystem.Astheoccupantsleavetheroomthepollutantconcentrationlevelsarereducedand ventilation is also reduced. Commonpollutants are usually occupant dependent, such as, carbondioxide,humidityortemperature.”

This studydefinesDCVmorebroadlyasaventilation strategyable toadjust real-timeairflow,even ifwithasimpleon-offstrategy,asafunctionofsomemeasured(demand)quantity(pollutant,humidity,CO2,occupancy,temperature),accordingtoapresetrelationship.DCVisnotaventilationtechniquebuta strategy that can be applied tomost ventilation techniques. Ventilation based on schedules is notconsideredaDCVstrategy,butitcanbeapartofasmartventilationstrategy.

Hybrid,ornatural ventilation, strategies canalsobe considered smart ventilation strategies.Hybridventilation systemsneed to senseoutdoorand indoorparametersandpossibly ventilation systemairflowsinordertodetermineifthenaturalventilationfromwindpressureandstackeffectissufficient,orifafanmustbeactivated.Thisreviewincludesresultsfromsomehybridventilationstudies(Jreijiry,etal. 2007; Turner andWalker 2013; Less, et al. 2014; Chenari, et al. 2016; Lubliner, et al. 2016) butdoesn’tincludeanextendedreviewofhybridventilationstrategiesinresidentialbuildings.

Threecomplementarycomponentsofsmartventilationinahomecanbedistinguished,assuggestedbySchild(2007)forDCVsystemsandbyWalker,etal.(2014)forsmartventilation:

1. Global demand control,which is called “smartwhole-house strategy” in this report: involvesdetection of global variables such as regional energy demand or price of electricity, outdoorconditions, and home occupancy andmodulation of ventilation airflows in response to thesesignals.

2. Zonaldemandcontrol,whichiscalled“smartroomstrategy”inthisreport:asthenameimplies,responds to variables measured on a per-room or per-zone basis such as occupancy andpollutantconcentration.Inthisstrategy,ventilationshouldstillfirstbeconsideredgloballyandthemassbalanceofairinthehomecontrolled,meaningairflowratesintoandoutofeachroomarenotindependent.

3. Local demand control, or “smart source removal strategy”: when possible, pollutants areremovedat their source (e.g., sources associatedwith activities as cooking, showering, housecleaning,toiletuse,etc.).Severalstudies intheliteraturedescribetheseshort-termemissions,including indoor particle generation by cooking, toasting, smoking, burning of candles andincense, use of hairdryers and vacuums (Ji 2010), chemical pollutants from cleaning products(Singer, et al. 2006), and NO2 emissions during gas cooking (Boulanger, et al. 2012). The

Page 15: LBNLSVACH Smart ventilation review · 2020. 1. 4. · 0 | Page Residential smart ventilation: a review Gaëlle Guyot1, Max H. Sherman2, Iain S. Walker2 & Jordan D. Clark2 1 Cerema

12|P a g e

ventilationsystemmustbeable todetect thesepollutantsandexhaust themfromthehome.Recent studies have, however, demonstrated that such devices have widely varying captureefficienciesandmaycaptureonlyabouthalfoftheemittedpollutants(Singer,etal.2012).

Energysavingsfromtheuseofsmartventilationcanbeofseveraltypes.Theseinclude:

1. Along-term,globaldecreaseintheconstantventilationairflowrateprovidedtothehome.Thissomewhat obvious strategy is applicable when oversized constant-speed fans are specified,whichoccursinsomehomes.

2. Adecreaseinthetotalamountofventilationsuppliedtothehomeoveraday,month,oryearthroughascertainmentofdemandandcontrolofsystemstoprovideonlyasmuchventilationasisrequired.

3. Shiftingofventilationtotimesduringwhich lessheatingorcooling isneeded,thusdecreasingheatingand/orcoolingloads.Thequantificationofthisthirdsourceofenergysavings,reducingheatingandcoolingloadsbyshiftingventilationtimes,stronglydependsonthelocalclimate.

4. Reduction in fan power through any of these strategies by taking advantage of favorable fancharacteristics.Fanbrakehorsepower isroughlyasquarefunctionofflowrate,meaningsmallreductions in flow rate translate to larger reduction in fanenergyuse. Even ifmorepowerfulventilation fans must be used to meet peak airflow requirements (Smart ventilation couldrequirean increaseof34% in fan sizeonaverage (Less, et al. 2014), the fact that thosepeakairflowsareusedonlyifneededleadstoadecreaseintheenergyconsumption.

When thegoal is savingenergy,all typesofenergyefficiencymethodsneed tobeconsidered.This isespecially truewhen smart ventilation is competitivewithbalancedheat recovery systemsemployingconstantairflowratesandwhenelectricityuseispenalizedthroughprimaryenergyfactorshigherthantwo. Previous studies (Turner and Walker 2012) have shown typical combined fan power andconditioningenergysavingsof40%availablewithsmartventilationstrategies.Section5ofthisreport,Literature review: smart ventilation performance in residential buildings, provides other references,mostofthemonDCVstrategies,withestimatesofenergysavingsbetween-26%and+60%.

Peak-demand reduction. Smart ventilation systems canallowmodificationof ventilation strategies toprovidebeneifits to theconsumerandtotheelectricityprovider,whichdon’tnecessarilycome in theformofreducedannualenergyconsumption.Theseinclude:

1. Ability to reducepeakdemandby ventilatingmore at off-peakhours and lessornoneduringpeaktimes.

2. Abilitytointegratemorerenewablesourceseitheratautilitylevelorthatofanindividualhome.This ismadepossiblebyprovidingmoredemand in the formof increasedventilationat timeswhen renewable capacity is greatest and ventilating less when renewable supply is lowest,constrainedbytheneedtoprovideforacceptableIAQ.Theabilityfortheventilationsystemtoreact quickly to changes in price signal or renewable capacity is crucial for realization of thisbenefit.

3. Reductioninthecostofproducingelectricityviathereductionofexpensivepeakloadssavings,whichcanbepassedtoconsumers.

Page 16: LBNLSVACH Smart ventilation review · 2020. 1. 4. · 0 | Page Residential smart ventilation: a review Gaëlle Guyot1, Max H. Sherman2, Iain S. Walker2 & Jordan D. Clark2 1 Cerema

13|P a g e

Theoretical background on smart venti lat ion metrics: Venti lat ion rate and indoor pol lutant concentrat ions

Successful implementation of any smart ventilation strategy requires understanding the relationshipsbetween ventilation rates and indoor pollutant concentrations, whether concerning equilibriumrelationships or temporal response. This necessitates an understanding of how exposures tocontaminantsofconcernimpacthealthandIAQ.

Theconcentrationofapollutantunderatime-varyingventilationairflowratehasbeendescribed inSherman andWilson (1986) and used as the theoretical background of the equivalence principle forsmartventilationdescribedinWalker,etal.(2011)andSherman,etal.(2012)andusedtoquantifythepreliminary air quality implications of passive stack ventilation (Mortensen, et al. 2011; Turner andWalker2012).

Sherman and Wilson (1986) showed that the continuity equation describing the conservation ofpollutant(Equation1)canbesolvedwiththesingle-zoneassumptionbydirectinversion(Equation2).

Equation1

WhereC(t)istheindoorpollutantconcentration,tisthetimevariable,A(t)istheairexchangeratewhichistheratiobetweenthevolumeairflowandthevolume,andS(t)isthepollutantsourcestrengthincludingallsourcesandsinksofthepollutant.

Equation2

Assumingthesourcestrengthisconstant,concentrationcanbeexpressedasaproportionalfunctionoftheinstantaneousturnovertimeτe(t)(Equation3),describedasthecharacteristictimeforthepollutantto reach steady-state (Equation 4). This constant emission assumption should be re-examined if thepollutant canbe stored inmaterials, as for example formaldehyde canbe, so that emission rates areassumedtorespondtoventilationrate.

Equation3

Equation4

ShermanandWilson(1986)demonstratedasimplerecursiverelationshipfordiscretedata inordertocalculate the current value of the effective turnover time from the value at the previous time step(Equation5),whichwillbeusedlatertosimplifytheanalysis

Page 17: LBNLSVACH Smart ventilation review · 2020. 1. 4. · 0 | Page Residential smart ventilation: a review Gaëlle Guyot1, Max H. Sherman2, Iain S. Walker2 & Jordan D. Clark2 1 Cerema

14|P a g e

Equation5

WhereΔtisthetimestepusedinthecontrolalgorithmofthesmartventilationsystem.

Theprincipleofequivalentventilationisbasedontheequivalentdoseassumption,whichstatesthatanyventilationpatternthatproducesthesamedoseasthestandardisequivalenttothestandard.ThiscanbeexpressedaccordingtoEquation6.

Equation6

Where k is a constant of proportionality depending of the specific contaminant, o(t) is a function equal to zero or onedependingonwhetherthespaceisoccupiedornot,Ceqistheequivalentconcentrationwithaconstantventilationrate.

Becausethedoseusedhereistherelativedose,theconstantofproportionalitycanbesetequaltounitywithoutlossofgenerality,andwiththeconstantoccupancyassumptionEquation6canbesimplifiedinordertodefinethesimpleequivalenceprinciple,allowingtheventilationratesandtime-stepstovaryaslongasthelong-termaverageofrelativeexposureisunity.ForaconstantventilationrateAeq,Equation3canbeusedtodefinetheequivalentconcentrationCeq.

Equation7

TherelativeexposureRcanthenbedefinedastheratiobetweenthetime-varyingconcentrationandtheconstantequivalentconcentrationastheproductoftheconstantequivalentventilationrateandtheinstantaneousturn-overtime(Equation9).

Equation8

CombiningEquation5andEquation8,itispossibletoexpressthecurrentvalueoftherelativeexposurefromthevalueattheprevioustimestep.

Equation9

The equivalence principle allows for periods when the relative exposure is above unity if ventilationratescanalsobeincreasedbeyondthoseoftheconstantventilationrateschemeinordertokeepthe

Page 18: LBNLSVACH Smart ventilation review · 2020. 1. 4. · 0 | Page Residential smart ventilation: a review Gaëlle Guyot1, Max H. Sherman2, Iain S. Walker2 & Jordan D. Clark2 1 Cerema

15|P a g e

long-termaveragebelowunity. This also requires that the ventilation fan shouldbe sized larger thanthatofthebasecase.

Inadditiontolong-termdoseit is importanttonotexceedacuteexposurelimits.Logue,etal.(2011a)looked at ratios of acute to chronic exposure limits for residential pollutants of concern. The limitingcasewas found tobe forparticles and theydetermined the instantaneous valueof relativeexposureshouldnotbeallowedtoexceedfive.

ThistheoreticalbackgroundonequivalencehasbeenintegratedintoASHRAE62.2-2016andisdiscussedinmoredetaillater.

With a constant ventilation rate, the concentration of a pollutant emitted at a constant rateindependentofotherconcentrations,inasingle-zonebuilding,canbegreatlysimplifiedinEquation10(FiskandDeAlmeida1998;Nazaroff,etal.1993).Inthisequation,bothchemicalreactionintheindoorairanddepositionphenomenaareneglected.

Equation10

WhereVistheindoorvolume,Coutistheconstantoutdoorconcentration,Gistheconstantindoorpollutantgenerationrate.

It canbesolved togive the transientand thesteadystate (equilibrium)pollutantconcentrations,C(t)andCss,describedbyEquation11andEquation13.

Equation11

where

Equation12

Equation13

In Equation 11, τ is a simplified expression of the instantaneous turnover time and can still beconsidered as the time constant of the system, describing the required time to reach steady state.ApplyingEquation11with a timeequal to1τ, 2τ, 3τ, etc. shows thatduring timesequivalent toone,two,andthreetimeconstants, thepollutantconcentrationwill increaseto63%,86%,and95%of thedifferencebetweentheinitialandthesteady-stateconcentration,respectively.

Page 19: LBNLSVACH Smart ventilation review · 2020. 1. 4. · 0 | Page Residential smart ventilation: a review Gaëlle Guyot1, Max H. Sherman2, Iain S. Walker2 & Jordan D. Clark2 1 Cerema

16|P a g e

Figure2:IndoorCO2ina30m3-zonewithtwopeopleoperatingatalowactivitylevel(G=10m3/s)forairchangerates

rangingfrom0.25to6h-1

Themethodsdescribedabovehavebeenusedintheliterature,forinstancetoestimateventilationratesfromnocturnalCO2concentrations inbedrooms(Figure2,Bekö,etal.2010;Lucas,etal.2009)andtodetermine the air change rates of experimental buildings or chambers with tracer gas techniques(Sherman1990;Persily1997;Labat,etal.2013).

Such results and others concerning indoor air pollutants in general must be analyzed carefully,consideringthefollowingassumptionsmadeintheseequations:

• A pollutant is assumed to be emitted at a constant emission rate and the ventilation rate isassumedtobeconstant

• Themodelisasingle-zonemodel• Chemicalreactionsintheindoorairareneglected• Removalbyaircleaningsystemsordepositionisneglected• The outdoor concentration is assumed to be constant, which can be a poor assumption in a

pollutedurbanarea.

Because of these assumptions, it is important to note clearly that there is no clear evidence thatmeasuringindoorairpollutantscanallowforprecisedeterminationofappropriateventilationairflows.Rather,advancedsmartventilationproposesachangeofparadigm. In thisstrategy,measurementsofindoor air pollutants drive the adjustment of ventilation airflows directly to ensure that the final

Page 20: LBNLSVACH Smart ventilation review · 2020. 1. 4. · 0 | Page Residential smart ventilation: a review Gaëlle Guyot1, Max H. Sherman2, Iain S. Walker2 & Jordan D. Clark2 1 Cerema

17|P a g e

exposure is acceptable, and not to indirectly calculate airflows and check that they comply withstandards.

Current “smarter” venti lat ion strategies – Demand Control led Venti lat ion

ThemostcommonsubsetofsmartventilationtechnologyinthemarketandintheliteratureisDemandControlledVentilation.Theclassificationofthestrategyemployedineachapplicationdependsonmanyvariables, including the type of regulation, the quantity being measured, and the types of controlalgorithms. For instance in Belgium, (Caillou, et al. 2014b;Moniteur, Belge 2015) DCV systems havebeen classified according toquantitymeasured (CO2, RH, occupancy); typeof space(s) (humid and/ordry);localvs.centralizedcontrol;sensorlocation(distributedvs.central)andairflowdirection(exhaustonly,supplyonly,balanced).

BalancedDCVsystemcontrolcanbecentralized(atthefans)ordecentralized ineachroom,eitherbythe use of a supply fan in each dry room, or by the presence of dampers controlling airflow in eachspace.Animportantpointisthatsuchasmartventilationsystemmustbeabletobalancetheexhaustandsupplycontinuously.

Exhaust-only DCV system controls can also be centralized or decentralized as described above. Suchsystems containing only regulated air inlets wouldn’t be interesting (infiltration would counteractdecreased airflow through air inlets). On the other hand, such systems can be centrally regulated bymeasuring CO2, for instance, in dry spaces and adjusting centralized equipment accordingly withoutregulation of the air inlets in these spaces. Other technologies exist, sometimes including additionalexhausts in bedrooms which compensate for under-ventilation due to airtightness. Natural smartventilationsystemsare,bytheirverynature,locallyregulated.

An issue rarely investigated in the literatureon smart ventilation strategies ishowa fan coil unit canreact to a change in airflows. Mortensen and Nielsen (2011) modeled a centralized DCV system formulti-family homes and tested several strategies for controlling a fan-coil unit. They conclude that astrategy based on resetting the static pressure at part-load conditions could reduce yearly electricityconsumptionby20%—30%,comparedtothecommonlyusedcontrolstrategywithfixedstaticpressure.

The type ofmeasurements used can also depend strongly on the quantity beingmeasured (CO2, RH,pollutants,occupancy), the typeofmeasuring technology, the typeof spaces (humidand/ordry), thetypeofairflowcontrol(mechanicalorelectronicinletandoutletcross-sectionvariation,directcontrolofthefanspeed,orcontrolofdampers).Thetypeofcontrolalgorithm(forexamplethevalueoftheset-pointsandtherulesforcontrolbetweenset-points)alsoconstitutesanimportanttopicandcanhavealargeimpactonIAQandenergyperformance.

A later section of this report further describes the types of available sensors and their accuracy, thealgorithmscontrollingtheairflows,andthetypesofavailablesmartventilationsystemsonthemarket.NotethatundertheumbrellaofCO2-basedDCVsystems,orhumidity-basedDCVsystems,orthesmartventilationsystemtherecanbeawidevarietyofsystemsandstrategies.

Page 21: LBNLSVACH Smart ventilation review · 2020. 1. 4. · 0 | Page Residential smart ventilation: a review Gaëlle Guyot1, Max H. Sherman2, Iain S. Walker2 & Jordan D. Clark2 1 Cerema

18|P a g e

3. RELEVANT PARAMETERS, SENSORS & CONTROLS STRATEGIES

Measurement-based control strategies

Althoughappropriatesensorsarenotavailableforallpossiblecontrolinputs—particularlyforindividualpollutants—it is important to consider all possible variables influencing IAQ (pollutants, odors, CO2,temperature, humidity, occupancy) because future sensor development may make some strategiesmoreviable.

Pollutants of concern in residences from a smart venti lation perspective

Asarguedabove,ventilationisnotapanaceacapableofensuringgoodIAQbutshouldbeconsideredamethodtodiluteremainingpollutantsoncetheyhavebeenreducedattheirsource.Withthisinmind,itisimportanttoseparatefromamongthemanypollutantsofconcerninresidentialbuildings.Fromthisperspective, the recent AIVC technical note 68 “Residential ventilation and health” (Borsboom, et al.2016) proposes that tobacco smoke and radon should not be considered in establishing ventilationstandards.Although theywereclearlypointedout inacumulative riskassessment study (WHO2011)andinanimpactassessmentofchronicresidentialexposure(Logue,etal.2011b),thesepollutantsaremore impacted by home characteristics (such as the depressurization of subfloors for radon) andoccupant behavior than by ventilation strategies (Borsboom, et al. 2016). It is possible that carbonmonoxide is, similarly, not a pollutant suitable for control by ventilation as shown by the results inEmmerich,etal.(2005)inwhichadjustingthestovehadabiggerimpactthanchangesinairflows.

AIVCtechnicalnote68consideredexistingguidelinesandstandards,hazardassessment,cumulativeriskassessment and impact assessment exposure studies, and proposed a selection of high-prioritypollutants for residentialventilationstandards.Forchronicexposure, they identify the followinghigh-prioritypollutants, rankedbypopulation impact:1-particles,2-moldandmoisture,3-formaldehyde,4-acrolein. For acute exposure, theypropose the followingpollutantswithout ranking thembecauseofthe lack of information in the literature: acrolein, chloroform, carbonmonoxide, formaldehyde, NO2,PM2.5 (Logue,etal.2011a).Also,even ifhumidity itself isnotapollutant, itmustbeconsidered inanexposureandhealthanalysisinhomesbecauseofmolddevelopmentrisks.

Table3:Selectionofpollutantsinresidentialventilationstandards(Borsboom,etal.2016)

High-prioritypollutantsforchronicexposure(rankedbypopulationimpact)

High-prioritypollutantsforacuteexposure

1. Particulatematter2. Moldandmoisture3. Formaldehyde4. Acrolein

AcroleinChloroformCarbonmonoxideFormaldehydeNO2PM2.5

The conclusions of IEA Annex 18 “Demand-controlled ventilating systems” (Mansson, et al. 1997),definedtheimportantpollutantsorindicatorsfromaDCVperspective,definedasrequiringthehighest

Page 22: LBNLSVACH Smart ventilation review · 2020. 1. 4. · 0 | Page Residential smart ventilation: a review Gaëlle Guyot1, Max H. Sherman2, Iain S. Walker2 & Jordan D. Clark2 1 Cerema

19|P a g e

ventilationrateinordertomaintaintheirconcentrationbelowacceptablethresholds.Then,theuseofDCV is justified if the driving pollutants emission rates: 1) are significantly transient (e.g., variableoccupancy),2)haveaknownmaximumpollutionemission,and3)areunpredictable:timeandlocationofsourcescannotbescheduled.FiskandDeAlmeida(1998)addedthefollowingconditiontomaketheuseofDCVstrategiesrelevant:thatthebuildinghasonedrivingpollutantatthemost.

InareportfromthissameIEAAnnex18(Raatschen1990),authorscontendthatparticlescannotdriveventilation control approaches. They suggest managing their concentrations through complementaryfiltrationsystems—eitherbyfilteringindoorairwithhighefficiencyfilterstreatingrecirculationairorbyfiltrationofoutdoorair.Thissuggestion isconfirmedbySherman,etal. (2012)citingapreviousstudy(Weisel,etal.2005)thathadshownthat,in100housesinthreecitiesintheUnitedStates,onlyhalfofthe homes had indoor PM2.5 concentrations greater than outdoor concentrations. This shows thatadditionalventilationmayincreasePM2.5exposure(e.g.,throughopenwindows).

Nevertheless, other research on envelope filtration and deposition shows that extra outdoor air canenter the space at lower-than-outdoor concentrations. In themost popular ventilation system in theUnited States, which includes exhaust-only ventilation control and no trickle ventilator, outdoor airenters thehome through leaks in the envelope. This can lead to an significant infiltrationof outdoorparticleswithpenetrationfactorshighlydependentonenvelopeleakage,thesizeoftheparticles,andthesizeoftheleaks(LiuandNazaroff2001,2003;StephensandSiegel2012),withtypicalpenetrationvaluesforatightnewhomeofonlyafewpercent(roughlyequivalenttoamoderateorMERV8/9HVACsystem filter). Such results are unexpected in most new European homes, which are equipped withtrickleventilators.

In homes equipped with a balanced ventilation system and/or a recirculating air system, the use ofefficientfilterscanalsodecreaseparticleconcentrationsinthehome.ThisissuehasbeenrecognizedinAddendumkof the current versionofASHRAE62.2,which allows for a dwelling unit ventilation ratereductionofupto20%forgoodfilterswithminimumcleanairdeliveryrates.TheEN779:2012standardrequires class F7 filters on supply ducts. This EN779 classification is based on the requirement thatfiltrationeffectiveness for0.4µmparticlesmustbe in the80%—90%range foranaveragevalueandhigherthan35%asaminimumvalue.Thequestionoftheeffectivenessofthosefiltersonceinstalledisanissueofconcernnotaddressedinthisreport.

Mansson,etal.(1997)suggeststhatindividualVOCsareinappropriateforDCVapplicationsbecause:

1. ThesensitivityofhumanstoVOCsisunknown(exceptforselectfew,suchasformaldehydeandacrolein)

2. Theconcentrationsinnon-industrialbuildingsareoftenwellbelowhygieniclimitvalues3. SusceptibilitytoVOCsdependsontheindividual4. ThecompositionofVOCsvariesfrombuildingtobuilding.

The authors instead recommend minimizing emission rates of such chemicals in buildings. Thesepreviousrecommendationsshouldbeconsideredcarefullybecausethecontexthaschangedsincetheirpublication in theearly1990s. Specifically, thedevelopmentofbuildingmaterials and furnishingshas

Page 23: LBNLSVACH Smart ventilation review · 2020. 1. 4. · 0 | Page Residential smart ventilation: a review Gaëlle Guyot1, Max H. Sherman2, Iain S. Walker2 & Jordan D. Clark2 1 Cerema

20|P a g e

resulted in increased VOC emissions and VOC concentrations measured in non-industrial buildings(Logue,etal.2011a).

Fisk and De Almeida (1998) recommend using VOC sensors in conjunction with CO2 sensors. TheyunderlinedthedifficultiesofdoingthisresultingfromthehighvariabilityintoxicityofdifferentVOCsaswellasthelackofdataonacceptablelevelsformixturesofVOCs.Nevertheless,theyconsiderthatVOC-basedDCVstrategiescouldatleastavoidpeakexposureduringscheduledactivitiessuchaspaintingorinstallationofcarpeting.Morethan300VOCshavebeenmeasuredinindoorair;thetotalVOC(TVOC)concentration is often used in literature and sensor technologies to simply characterize the totalconcentrationwithasingleparameter.Severalauthorshavehighlightedthelackofaprecisedefinitionforthisvariableandofastandardizedprocedureforitscalculation(Mølhave,etal.1997).

Asynthesisof the literaturereviewsuggests thatthefollowingpollutantscanbeconsideredthemostrelevant in a smart ventilation approach, disregarding the availability and the accuracy of thecorrespondingsensors(Table4).

Table4:Selectionfromtheliteratureofrelevantpollutantforsmartventilationstrategies

Relevantpollutants(chronicexposure) Relevantpollutants(acuteexposure)1. Particulatematter2. Moldandmoisture3. Formaldehyde4. Acrolein

AcroleinChloroformFormaldehydeNO2

PM2.5

Odors, CO2 and humidity

IAQhas also been subjectively evaluatedby assessingoccupant satisfaction (CEN2007; Fanger, et al.1988).Indoorairvariablessuchasodors,temperature,CO2,andhumiditystronglycorrelatetooccupantactivities, and can also be important to consider in smart ventilation approaches. CO2 and relativehumidity are the most commonly used parameters in DCV systems. Research on their ability torepresentoverallIAQ,includingtheircorrelationwithothertypesofindoorpollutants,isonlyminimallyavailableintheliterature.

CO2 isoftenusedinDCVstrategies,nottopreventnegativehealtheffectsdirectlyattributedtoit,butbecauseitcanberepresentativeofotherparameterssuchasconcentrationsofbioeffluentsandotherindoorairpollutantsorventilationrates.

SeveralstudieshaveshownthathealtheffectsdirectlyattributabletoCO2areminimalatconcentrationsobservedinindoorenvironments,whicharecommonlyintherangeof350ppm—2000ppm,butwhichhavebeenmeasuredatvaluesof6000ppminbedroomsduringnightperiodsbetween2amand5am(Kirchner,etal.2006).TheAmericanConferenceofGovernmentalIndustrialHygienistsconsiders5000ppmthethresholdforan8-hourexposureinindoorenvironments(ACGIH2011).TheFrenchAgencyforFood, Environmental andOccupationalHealth Safety published results of an analysis of availableCO2epidemiologic and toxicology studies, and of studies on CO2’s effects on health, performance, andcomfort (ANSES 2013). Results concluded that the only health threshold on which several studies

Page 24: LBNLSVACH Smart ventilation review · 2020. 1. 4. · 0 | Page Residential smart ventilation: a review Gaëlle Guyot1, Max H. Sherman2, Iain S. Walker2 & Jordan D. Clark2 1 Cerema

21|P a g e

converge is an exposure of 10,000 ppm for 30minutes, corresponding to a respiratory acidosis for ahealthyadultwithamodestamountofphysicalload.

The analysis does mention an experimental study (Satish, et al. 2012) of 22 human subjects thatsuggested an effect on psychomotricity performance above 1,000 ppmattributable to CO2 butwhichmust still be further investigated according to the authors. The recent study of Zhang, et al. (2016)showsdifferentresults.Twenty-fivehumansubjectswereexposedfor255minutesfirsttoonlyCO2(ateither1,000ppmor3000ppm)andthentobioeffluentsandcorrespondingCO2levels(ofeither1,000ppm or 3,000 ppm). No statistically significant effects were observed in the first case; the secondshowed an increase in reported headaches, fatigue, sleepiness, and difficulty in thinking clearly. Theauthors conclude thatmoderate concentrations of bioeffluents, but not CO2,will affect occupants attypicalindoorexposurelevels.Thiscanalsobeseenasastudyofdose-responserelationshipsbetweenhumanbioeffluents, includingCO2,and indicatorsofhealth,wellbeing,andperformance.Theauthorsconcludedthatcomplementarystudiesshouldstillbeperformedonsensitivegroupssuchastheelderlyandinfants.

Other studies of specific applications such as bomb shelters, submarines (deGids andHeijnen 2011),and high-risk industrial facilities and homes (French Ministry For Ecology 2007) have used higherthreshold values for CO2. They confirm that CO2 is not dangerous by itself at the levelsmeasured inresidences.AllthesethresholdvaluesaresummarizedinTable5.

Table5:CO2concentrationsthresholdsintheliterature

Effects CO2threshold(ppm)

Comments Source

Comfort 1000 Topreventodorsfrombioeffluents

(VonPettenkofer1858)

Noeffect 3000for255min PureCO2 (Zhang,etal.2016)Increasingintensityofreportedheadache,fatigue,sleepiness,anddifficultyinthinkingclearly

3000for255min MetabolicCO2+bio-effluents

(Zhang,etal.2016)

Hygienistthresholdinindoorenvironments

5000 For8hourexposure

(ACGIH2011)

Respiratoryacidosisforahealthyadultwithamodestamountofphysicalload

10.000 For30minutes Severalstudiesreviewedin(ANSES2013)

Bombshelters 20.000 (deGidsandHeijnen2011)Submarine 30.000 (deGidsandHeijnen2011)Irreversibleeffects 50.000 (FrenchMinistryForEcology2007)Mortalitylevel 1%lethaleffectsthreshold

100.000 (deGidsandHeijnen2011)(FrenchMinistryForEcology2007)

5%lethaleffectsthreshold 200.000 (FrenchMinistryForEcology2007)

Nevertheless, several authors agree that CO2 is a good indicator of occupant emissions includingbio-emissions andodors (VonPettenkofer1858;Cain andBerglund1979;Cain, et al. 1983; Fanger, et al.1988)aswellassomeVOCandparticleemissionsfromofficeequipmentusedbyoccupants(Emmerich

Page 25: LBNLSVACH Smart ventilation review · 2020. 1. 4. · 0 | Page Residential smart ventilation: a review Gaëlle Guyot1, Max H. Sherman2, Iain S. Walker2 & Jordan D. Clark2 1 Cerema

22|P a g e

andPersily2001;FiskandDeAlmeida1998;Mansson,etal.1997).VonPettenkofer (1858)proposed1,000 ppm, assuming that the outside concentration was 500 ppm, as a threshold for CO2 level topreventodorsfrombioeffluents.TherecentstudyofZhang,etal.(2016)suggeststhatindicatorsbasedon CO2 are a good basis for IAQ standards and ventilation requirements where the most importantsourcesofpollutionaretheoccupantsandtheiractivities.

Recent studies (ANSES 2013; Ramalho, et al. 2015) have demonstrated that CO2 concentrations inhomes were significantly correlated with concentrations of other pollutants such as acetaldehyde,formaldehyde,benzene,acrolein,PM2.5,andPM10butthatthecorrelationswereweak(sometimesveryweak). Moreover, in these field studies, CO2 was measured every 10 minutes while other pollutantmeasurementswerepassivelyperformedoversevendays.Theseconclusionsshouldalsobeconsideredcarefully inthecontextofsmartventilationstrategies.ResearchonthisfieldneedstobeconsolidatedbeforeconcludingwithahighdegreeofconfidencethatCO2concentrationsaresignificantlycorrelatedwithotherindoorairpollutantsforsmartventilationapplications.

Inhis reviewonDCV,Raatschen (1990)affirmsthat,accordingto theanalyzed literature,“there isnodoubtthatCO2isthebestgastouseinaventilationsystemwhenabuildingisoccupiedandnootherlargepollutionsourcessuchassmokersarepresent.”Tenyearslater,intheirreviewonCO2-basedDCV,Emmerich and Persily (2001) underline the limitation of using CO2 because of its inadequacy as anoverall indicator of IAQ, especially for pollutant emission from sources other than occupants such asbuildingmaterialsand furnishings.This isconfirmedbyotherauthors in the literature (RaatschenandTrepte 1987; Emmerich, et al. 1994; Fisk and De Almeida 1998). Nevertheless, Emmerich and Persily(2001) justify the use of CO2 as an indicator of ventilation rate per person based on regulations orstandards.Indeed,thesecontrolshavelargelybeenbasedonCO2,andthethresholdof1000ppm(VonPettenkofer1858)andtherelationshipbetweenindoorCO2concentrationandventilationrates iswellunderstoodanddescribedin(Persily1997;PersilyandDols1990),asdiscussedearlierinthisreport.

Humidity is oneof theprioritizedpollutantsof concern identified in Table 3.UnlikeCO2, humidity is,itself,interestingasaninputvariableforcontrollingsmartventilationsystems.Variablesassociatedwithhumidityare relativehumidityandabsolutehumidity.Relativehumidity is the ratioofwatervapor intheairatagiventemperaturetothewatervapor insaturatedairat thesametemperature.Absolutehumidity is the amount ofwater vapor in the air per unitmass of air. Relative humidity is themostcommonly measured parameter. Relative humidity is more difficult to work within the context of acontrol strategy, as IAQ concerns necessitate controlling both the value (recommended 30%—70%)(CEN2007)andthetimeitremainsaboveathreshold.Thethresholdvaluedependsonclimateandcanbefixedatvaluesaslowas45%,asisdoneinNordiccountriesinordertopreventgrowthofhousedustmites (Nielsen 1992). Moreover, from a health perspective, only a metric combining humidity, timeabovea limit,andtemperaturecanadequatelyquantifythecondensationrisk.Finally,fromacomfortperspective, a metric combining temperature and humidity must be used, as shown by the Mollierdiagram.CEN(2007)recommendsthatabsolutehumiditystaysbelow12g/kg.

This research also set out to answer the related question of whether relative humidity can berepresentativeofotherparameters,suchasoccupant-relatedemissions.Theliteraturereviewshowedthat some studies found a positive correlation andother studies found a negativeone. Themoisture

Page 26: LBNLSVACH Smart ventilation review · 2020. 1. 4. · 0 | Page Residential smart ventilation: a review Gaëlle Guyot1, Max H. Sherman2, Iain S. Walker2 & Jordan D. Clark2 1 Cerema

23|P a g e

buffering effect and the dependence of relative humidity on temperature and air moisture contentreduces the relationship between moisture and occupancy. As a result, several studies (Anon 1983;Barthez and Soupault 1984; Sheltair Scientific, Ltd. 1988; Parekh and Riley 1991) show a poorrelationshipbetween relativehumidity and theoccupant load in a room.Fisk andDeAlmeida (1998)confirmed that other residential pollutants are not correlatedwith humidity. A two-weekmonitoringstudyofahousereportedbyMansson(1993)showednocorrelationbetweenthevaluegivenbyanRHsensorandamixedgassensorinthelivingroom.

On a related note, Van den Bossche, et al. (2007) showed that taking into account the moisturebufferingeffectsinmodelingstudiesoftheefficiencyofhumidity-controlledventilationsystemswouldvery slightly (by 0.75%) lower the energy performance of those systems. Woloszyn, et al. (2009)confirmed that taking into account the buffering effect does not affect the global performance ofhumidity-basedDCVsystems,butthatitispossible,bythecombinedeffectofventilationandbufferingbywood,tokeepindoorRHataverystablelevel(between43%and59%).

In contrast, the Performance Project (Air, H. 2010; Bernard 2009) highlighted a strong correlationbetween CO2 concentrations and the relative humidity levels measured in 31 apartments over thedurationofmorethantwocompleteheatingseasons.Toquantifythiscorrelation,theauthorsplottedtheaveragedegreeofopeningofhumidity-controlledairinletsagainstCO2concentrationsbetween300ppm and 2000 ppm, and observed a clear correlation between degree of inlet opening andconcentrationofCO2 inbedrooms.Theseresultsconfirmpreviousones from26apartmentsequippedwithhumidity-controlledventilation inFrance,Belgium,andtheNetherlands(Mansson1993).Moffat,etal.(1991)observedinonehousethatCO2levelsandrelativehumiditytendtotrackeachother,butthatCO2peaksoccurredthreehourslater.ThiswasconfirmedbyresearchbyParekhandRiley(1991).RaatschenandTrepte(1987)showedthat, inathree-occupant living-room,airchangeratesnecessarytoremovemoisturearehigherthanthosenecessarytokeepCO2concentrationsbelow1000ppm.Theyshowedalso that in anunoccupiedbathroom thehourly air change rateneeded to removemoisturewas higher than the one needed to remove formaldehyde; the opposite was observed in the livingroom.Inresidentialbuildings,RaatschenandTrepteconcludethattheneedforventilationinoccupiedroomsisdominatedbymoisture;inunoccupiedroomstheneedtoventilateforformaldehydecontrolismoreimportantandmustbeconsideredwhensettingminimumairflows.

The correlation between absolute humidity and CO2might be stronger than the correlation betweenrelative humidity and CO2; however, it has a lag time due to sorption characteristics of the buildingmaterialsandfurnitureinthehome(Moffat,etal.1991;SavinandJardinier2009).

Odor,whendefinedasexcludingolfactoryirritation,isregardedmoreascomfortparameterratherthana health impact. Because occupant sensitivity to odors is much lower for an “acclimated” occupant(Olesen2007),thisparameterisconsideredlessimportantforresidentialventilationapplications(Figure3). Moreover, design requirements such as the presence of an exhaust device in the bathroom andkitchen caneasily control odor to avoiddiscomfort, and, unlikemostotherpollutants, occupants caneasily senseodors.Nevertheless, Sherman,et al. (2012) contend thatbodyodors constitutea specialissuebecausetheyarediffuseinthehomeandsuggestthattherelativeexposureshouldstaybelowavalueRocc,afunctionofoccupantdensityper100m²(Occ,Equation14).InBelgium,odorsaretakeninto

Page 27: LBNLSVACH Smart ventilation review · 2020. 1. 4. · 0 | Page Residential smart ventilation: a review Gaëlle Guyot1, Max H. Sherman2, Iain S. Walker2 & Jordan D. Clark2 1 Cerema

24|P a g e

account in DCV performance evaluation through the modeling of tracer gas emission in bathrooms(Caillou,etal.2014b).

Equation14

Figure3:Relationshipbetweenventilationrateandodordissatisfactionforvisitorsandoccupants(Mansson,etal.1997)

Temperature has been recognized as the primary parameter for quantifying comfort (Fanger 1974).Because of its impact on relative humidity and on indoor pollutant concentrations such asformaldehyde,temperatureisclearlyaparameterofinterestwhenconsideringventilation.Researchershave investigated temperatureas a suitable variable for controlling ventilation inhomes.HomodandSahari (2013)developedamodel to study theperformanceof natural andhybrid ventilation systemscontrolledby indoor temperatures andPredicitedMeanVote (PMV) in a single-family house inKualaLumpur,Malaysia.Byturningofftheairconditioningwhenitisnotneeded,24hourcoolingneedswerereduced at least 8% in the cross-flow strategy and at least 28% in the optimized hybrid strategy.Nevertheless,indoortemperature-controlledventilationisnotfurtherinvestigatedhere,becausesmartventilationisclearlynotfocusedoncomfortonly.

Occupancy

Because CO2 or relative humiditymeasurements are often considered indicators of occupancy in theliterature, somewish to use it to directlymeasuring occupancy.Moffat, et al. (1991) concludes thatpassiveinfraredactivitysensorshadapoorshort-termcorrelationwithCO2butanexcellentlong-termcorrelation.

Page 28: LBNLSVACH Smart ventilation review · 2020. 1. 4. · 0 | Page Residential smart ventilation: a review Gaëlle Guyot1, Max H. Sherman2, Iain S. Walker2 & Jordan D. Clark2 1 Cerema

25|P a g e

Astrategybasedonoccupancysensinginbathroomshasbeenrecognizedasthemostefficientwaytoremoveshortemissionsinsucharoomattheirsource(Caillou,etal.2014b).Theseauthorsshowedalsothatusingoccupancysensorsinalldryrooms(bed-andliving-rooms)cansaveapproximately33%lessenergy thana strategybasedonmonitorinCO2 indry rooms,but20%moreenergy thana referencesystem.

Avai labi l i ty and rel iabi l i ty of pol lutant-and occupancy-sensors

In smart ventilation strategies, sensorsneed tohavea real-timeoutput signal to allow the system toreactandadjust theairflow.Thechoiceof sensorcoulddependon theexistingventilationsystem. In2005,State-of-theartinsensortechnologyfordemand-controlledventilationwaspublishedbyWonandYang,whichincludedpreviousstudiesbyFahlen,etal.(1991);Mansson,etal.(1997);DeAlmeidaandFisk (1997); and Emmerich and Persily (2001). This extensive review of the state of the art includedsensors for CO2, humidity, VOCs, formaldehyde,NO2, SO2, ozone, particulatematter (PM) and radon.WonandYangrecommendedthatselectionofsensorsforDCVapplicationsconsiderthreecriteria:

1. Performance: whether the performance range can cover the typical IAQ range or guidelinethresholds,whetherresolutioncanmeetthesuggestedlevel,andifthecalibrationfrequencyisnotmorethanonceayear

2. Cost:ifthesensorisaffordable3. IAQ: if, forthispollutant,there isagreaterriskthattypical indoor levelsexceedIAQguideline

thresholds.

Won and Yang’s report was updated in 2011 with modifications to sections on sensors forformaldehyde,radon,andVOCs,titledCommercialIAQSensorsandtheirPerformanceRequirementsforDemand-ControlledVentilation.Thefollowingsectionssummarizethecontentofthatreportand:

1. Giveanoverviewasitrelatestoresidentialbuildings2. AddtoitadiscussionofproductsavailableinotherpartsoftheworldsuchasinEurope3. Review recent studies including Real-time sensors for indoor air quality monitoring and

challengesaheadindeployingthemtourbanbuildings(Kumar,etal.2016)4. IncludesomedynamicIAQsensors,whichcouldbeimplementedinsmartventilationsystemsin

theshort,medium,orlongterm.

The word “sensor” can refer to a single direct sensor or several components (filters, amplifiers,modulatorsofothersignals)(Bishop2002).Manyfactorscanaffectsensorperformanceandshouldbeconsideredinthechoiceofasensorforsmartventilationapplications(Table6),alongwithotherfactorssuchassize,extentofsignalconditioning,reliability,robustness,maintainability,andcost(Bishop2002).

Page 29: LBNLSVACH Smart ventilation review · 2020. 1. 4. · 0 | Page Residential smart ventilation: a review Gaëlle Guyot1, Max H. Sherman2, Iain S. Walker2 & Jordan D. Clark2 1 Cerema

26|P a g e

Table6:SensorSummary(WonandYang2005)from(Bishop2002)

CO2 sensor technologies are not new; DCV strategies have existed formore than 30 years. Availabletechnologiesaremostlynon-dispersiveinfraredsensors(calledalsophotometricCO2sensors),butalsoincludephotoacousticCO2sensors.

The first extensive study validating the performance of such sensors in residences was published byFahlen,etal.(1991).TheytestedtwoCO2sensors,ninehumiditysensors,andfivemixed-gassensorsinlabtestsundervariableenvironmentalconditions.CO2sensorperformancewasfoundtobeacceptablefor ventilation applications. The authors identified problems due to the time-consuming calibrationprocessandthesensitivitytohumidityatlowCO2levels.TheneedforperiodiccalibrationofCO2sensorswasstressedintheliterature,whichcontainsseveralaccountsofsensordriftovertime(Fisk,etal.2006;Kesselring,etal.1993).

Next,Fisk(2010)studiedtheaccuracyof208single-locationCO2sensorsin34commercialbuildings.For90of thesesensors, theaccuracywascheckedatmultipleCO2concentrationsusingprimarystandardcalibrationgases.Eveniftheaverageerrorsweresmall(i.e.,26ppmand9ppm,respectively,at760and1,010ppm), they foundoccasional respectiveabsoluteoferrorsof118at760ppm (16%)and138at1,010ppm(14%).At760ppm,47%ofthesensorshaderrormagnitudesgreaterthan75ppmand37%greaterthan100ppm.At1,010ppm,19%ofsensorshaderrorsgreaterthan200ppmand13%greaterthan 300 ppm. Authors showed that there were also statistically significant differences betweendifferent technologies and manufacturers, and that sensor age was not statistically significant.

Page 30: LBNLSVACH Smart ventilation review · 2020. 1. 4. · 0 | Page Residential smart ventilation: a review Gaëlle Guyot1, Max H. Sherman2, Iain S. Walker2 & Jordan D. Clark2 1 Cerema

27|P a g e

Complementary laboratorytestingofninesensorswith largemeasurementerrorscouldnotprovethecauses of sensor failures. These observations were confirmed by another study by the Iowa EnergyCenter(ShresthaandMaxwell2009),whichtestedtheaccuracyof15modelsofnew,single-locationCO2sensors. They reported numerous errors greater than 75 ppm; cases of errors greater than 200 ppmwerenotuncommon.

More recently, semiconductor-based (metal oxide) sensors are being developed, though not yetcommercialized(Barsan,etal.2007;Presmanes2015).

Unlikeotherpollutantsensors,CO2sensorscanbeconsideredquiteeasytocalibrate,sincegasmixtureswithnecessaryCO2concentrationscanbeaccuratelyandreadilymanufacturedusingpureCO2.

IntheBelgianregulationforDCVstrategies,aCO2-basedDCVsystemmust includeCO2sensorswithamaximumuncertaintyof40ppm+5%ofthetargetvalue,inthe300ppm—1,200ppm]range(MoniteurBelge 2015). The non-residential requirements of California’s Title 24 regulations state that "the CO2sensorsmustbe factory certified tohaveanaccuracyofno less than75ppmover a five-yearperiodwithoutrecalibrationinthefield."

The2005marketsurvey(WonandYang,2005)gavepreciseproductreferenceswithpricesaround$500CAD(~$400US,~350EUR)forsensorsintherange[0ppm—2,000ppm]withanaccuracyof±50ppm,oftenwithaself-calibrationsystem.Responsetimeswerefoundtobebetween1and2minutes.AddingtemperatureandRHsensorsincreasethepricetomorethan$2,000CAD.Costswereevaluatedin2011(Mortensen2011)andfoundtobeapproximately3000DKK$(~$450US,~400EUR).

Humiditysensorsarenotneweither,assuchDCVstrategieshavebeenusedat largescale,notably inFrance,formorethan30years.

WonandYang’sreview(2005)referstoapreviousstudy(Roveti2001)thatreviewsthewidevarietyofsensors available on the market. Formerly, mechanical methods used the dimensional change incharacteristicsoffiberssuchashair,plastics,orwoodtoquantifyhumidity.WonandYangnotethat,inmostcases,mechanicalmethodsofmeasuringhumidityhavebeenreplacedbyelectronicRHsensors,thanks toprogress insemiconductor technologies.According toWonandYang, suchRHsensorshavegreater accuracy; this is not confirmed by other authors in the literature, as described below. Otheravailable technologies include capacitive sensors, resistivehumidity sensors, and thermal conductivitysensors(measuringtheabsolutehumidity)andarealsopresentedinWonandYang’sreviewwiththeirlimits.WonandYangalsodiscussesdew-pointsensorsthatareusedtoquantifytheabsolutehumidity.

In France, for more than 30 years, the market has largely been dominated by humidity-based DCVsystems with mechanically variable inlet and outlet cross-sections (Savin, et al. 2014). Advancedmaterials are used, such as polyamidic fibre, which varies in length with the relative humidity.Polyamidic fibres are not classical sensors, but they could be described as “sensor-actuators”—worthwhile in a whole house ventilation strategy, but not interesting just as sensors. The properoperation of this type of inlet/outlet has been deomonstrated in laboratories and the field by theprojectPerformance (Air,H.2010;Bernard2009), throughmeasurementsover twocompleteheatingseasonsin31newoccupiedapartments.Ananalysisofthecorrelationbetweentheareaofeachoutlet

Page 31: LBNLSVACH Smart ventilation review · 2020. 1. 4. · 0 | Page Residential smart ventilation: a review Gaëlle Guyot1, Max H. Sherman2, Iain S. Walker2 & Jordan D. Clark2 1 Cerema

28|P a g e

andtherelativehumidityoftheroomwasperformed,ateach1-minutetime-step.Themeasurementsshowed good performance when compared to the tolerances given by themanufacturer and to themeasurementsperformed in the laboratory.Dependingonthemanufacturer, lifetimescouldbeupto30years,includingawarrantyofapproximately10years,withoutneedforrecalibration.TheseproductsareusednotonlyinFrancebutalsoinotherEuropeancountriessuchasSpain,Poland,andGermany.

Classicalhumiditysensorsarealreadyusedforairconditioningapplicationsinresidentialbuildingsandarecommerciallyavailableforusewithsmartventilationstrategieswithanaccuracyof±3%(Walker,etal.2014).BelgianregulationsforDCVstrategiesstatethatarelativehumidityDCVsystemmustincluderelativehumiditysensors,eachwithamaximumuncertaintyof5%ofthetargetvalue,inthe10%—90%RHrange(MoniteurBelge2015).

Intheirmarketsurvey,WonandYang(2005)foundthathumiditysensorswereusuallycombinedwithtemperaturesensors.Theaveragemeasurementrangewasfoundtobebetween0%and90%withanaccuracy of +-2%—3%. A majority were thin film capacitive sensors, with a cost below that of CO2sensors($500CAD,~$400US,~350EUR).Dew-pointsensorcostwasfoundtobeintherange$100—$5,000CAD,dependingon the technology.A sensor requiringcalibrationevery1-2years cost$100—$250CAD.Thehumiditysensor-actuatorsdescribedabovearenotreportedinthismarketsurvey.Theyareverylow-costwithalongwarranty(10years)1.

Particlesensorsareusedtocontrolventilationratesinbuildingsorroomswithhighparticleemissions(e.g., smokingrooms).Thetechnologybehindthemconsistsofopticalparticlecounters,workingonalight scattering principle,with laser power useddepending on the size of the particle being counted.Faulkner, et al. (1996) tested suchaPM2.5 sensor in a clean room, at a timewhenanoptical particlecountercosting2,500USDwasconsidered“low-cost.”Thepriceofsuchexistingsensorscanbeuptoseveralthousanddollarsforlargeresidentialapplications(Coeudevez2016;FiskandDeAlmeida1998;WonandYang2005)buttheirpricemaydecreasewithrecenttechnologicaldevelopments.Semple,etal.(2013)recentlyvalidateda“low-cost”(400USD)PM2.5opticalcounter,monitoringwithatime-stepof oneminute over 24 hours in 34 homes, comparing resultswith those of anothermore expensivesensor (3,000 USD). Semple underlined the necessity for such a photometric device to be calibratedagainstagravimetricreferencestandard.Themostpowerfullasersareusedtocountparticlesunder0.1µm(WonandYang2005)with costs startingat10,000USD.Kumar,etal. (2016) further investigatednanoparticlesensors.

VOCsensing indemand-controlledventilationisrelativelynewbecause,untilrecently,VOCscouldnotbemeasuredseparately;multi-gassensorswereusedinstead.VOCsensorshavenotablybeenusedinthecarindustrytomonitorcabinair,andtheyareprogressivelybeingusedmoreinbuildings.Availabletechnologiesincludeelectrochemical,infrared,catalyticbead,photoionization,solidstate,andsurfaceacoustic wave sensors (detailed in Won and Yang 2005). Won and Schleibinger (2011) noted cross-sensitivity(alsoreferredtoasspecificityor interference)asamajor issueforVOCsensors.Datasheets

1 http://www.e-novelec.fr/303-entrees-d-air

Page 32: LBNLSVACH Smart ventilation review · 2020. 1. 4. · 0 | Page Residential smart ventilation: a review Gaëlle Guyot1, Max H. Sherman2, Iain S. Walker2 & Jordan D. Clark2 1 Cerema

29|P a g e

publishedbymanufacturersallowquantificationofthiscross-sensitivityissue.Theyproposeaprojecttocalculate cross-sensitivity requirements for formaldehyde and toluene sensors. Common technologiesareeithersemiconductingmetaloxide(SMO)sensorsorinfra-redopticalsensors(GalatsisandWlodarsk2006),whichareusedforbetterselectivitybetweenpollutants.

TheselectivityissuewithSMOsensorshasalsobeenhighlightedby(Barsan,etal.2007).Fundamentaltheory behind SMO sensorswas described in Yamazoe and Shimanoe (2009). A semi-conductor VOCsensorwastestedinahouse(Moffat,etal.1991)andappearedtobeagoodindicatorofoverallIAQforDCV applications. The authors point out the need to periodically flush the sampling chamber in thesensor to zero. In their laboratory testing, Fahlen, et al. (1991) found various levels of performanceamongthefivesensorstested.Theywereallfoundtobesensitivetohumidity.ATotalVolitileOrganicCompound (TVOC) sensor and a formaldehyde sensor were tested to evaluate a DCV strategy in alecture room inHongKongandhad accuraciesof 10%of the readingor 20ppb in themeasurementrange0ppb—999ppband10µppm in the rangeof 0ppm—2ppm (Chao, et al. 2004). Caron, et al.(2016)experimentallyvalidatedtwoSMOsensorswithdecaytestsofpuretoluene,o-xylene,acetone,acetaldehyde,andformaldehyde.Theydrewpositiveconclusionsaboutthesensors’abilitytodescribesingle VOC concentrations compared to analytical measurements, but underlined the problem withmixedVOCconcentrations.

In theirmarketsurvey,WonandYang (2005) foundthat themostcommonlyusedsensorswereSMOsensorsandphotoionizationdetectors(PID),butthattheywerestillnotcompletelyadaptedtobuildingventilation applications. They consider the SMO sensors less expensive ($600—$1200 CAD, ~$480—$960USD,~420—840EUR)withbetterselectivityof individualVOCsbutwithan inadequaterangeofmeasurement (1ppm—10,000ppmforTVOCsor5ppm—5,000ppmforan individualVOC).ThePID-basedsensorshavesomeadvantages in the0.02ppm—20ppmmeasurement range,even if theyareconsideredlessselective,andaremuchmoreexpensive($5000CAD—$7000CAD).Thishighpriceisalsoexplainedbythefactthattheyincluderelativehumidity,temperatureand/orCO2-monitoringcapability.Six years later, the same researchers found same level of performance for lower-priced PID-basedsensors ($1,500—$5,000 CAD) and better performance for SMO-sensors with a detection range of 0ppm—50ppm,againforlowerprices(WonandSchleibinger2011).Theyfoundthatthosesensorshavea response timeof aroundoneminutewitha resolution still about a factorof20different from thatrequired(100ppbatbestfora5ppbrequirement).TheyconcludedthatnocommercialVOCsensorwasyetpreciseandspecificenoughforventilationapplications.

Kumar, et al. (2016) reviewed compact, light-weight, inexpensive sensorsup to$500USD,with someunder $100USDmeasuring carbonmonoxide, benzene, andVOCs.Advanced technologieshavebeenreviewed (Kumar, et al. 2016), including a miniaturized gas chromatography system for monitoringsinglevolatilecompoundsinindoorair(Zampolli,etal.2005).

InBelgium,thosewishingtoemployaVOCsensorinbathroomsinaDCVsystemmustprovethatthereis a correlation between the measured signal and human occupancy (Moniteur Belge 2015). Beforebeginning to study implementationof sucha sensorona large scale,Caillou,etal. (2014b) consultedseveral international experts in the field. In 2014, VOC-sensing technology was considered matureenoughtobe integrated intoDCVtechnologies.Acommonlycitedproblemis thedifficultyassociatedwithdirectlycontrollingandcalibratingsuchasensor,asopposedtoaCO2sensor,forinstance.

Page 33: LBNLSVACH Smart ventilation review · 2020. 1. 4. · 0 | Page Residential smart ventilation: a review Gaëlle Guyot1, Max H. Sherman2, Iain S. Walker2 & Jordan D. Clark2 1 Cerema

30|P a g e

Formaldehyde sensorswereexamined in an importantpart of theWonandYang’s review (2005), asformaldehydehasbeenspecifically identifiedasaprioritypollutant (Table3).Theydescribedthat themostappropriatemethodisphotoelectricphotometry.Theyreportadetectionlimitof0.05ppmwithinasamplingtimeoffiveminutes,withnointerferencefromvariousaldehydesandotherVOCs. Intheirmarketanalysis,theyfoundthreeavailabletechnologies:SMO,electrochemical,andphotoelectric.Thelastoneprovidedthebestsensitivity(0ppm—0.06ppmor0ppm—1ppm)atrelativelylowcost($1200CAD, ~$960USD, ~840 EUR). Six years later, they believed electrochemical sensors and photoelectricphotometrysensorsmaybeapplicableforDCVapplications(WonandSchleibinger2011),withasimilardetection range 0—5 ppb or 0—10 ppb. Interference was found to be lower than photoelectricphotometrysensors,butwiththedisadvantageofreplacingthecoloringtapeortabeverymonth.Suchsensorshadacostbetween$1,000CADand$7,000CAD.

The formaldehydesensorsunderdevelopmentseemtobe improving (Chung,etal.2013)butarestillrarelytestedintypicalindoorairenvironmentwithhundredsofothercompounds.

NO2sensorshavebeencommonlyused,combinedwithCO-sensors,fornon-residentialapplicationsuchas ventilating parking areas. Won and Yang (2005) reported that three available technologies areavailable: electrochemical, chemiluminescence, and colorimetric-sensors. Electrochemical technologywas found to be the cheapest ($500 CAD—$1,000 CAD, ~$400—$800 USD, ~350—$700 EUR) whileofferingalargedetectionrangeof0-20ppm.Thetwotechnologieshavemuchhighercosts(morethan$10,000 CAD) but offer detection ranges of 0-5 ppb and 50 ppb, respectively. Calibration isrecommended every six months with a pure standard gas and costs $200 CAD—$500 CAD. Recentresearch showed a cross-sensitivity issue for the electrochemical sensors with the NO compound(Viricelle,etal.2016).

Other emerging sensors, such asmicroelectronicmechanical sensors (MEMS) andnanosensors,werealsodescribedinWonandYang’smarketsurvey(2005)andarepromisingforfuturesmartventilationapplications. Notably, they report that nanosensors tested for formaldehyde andNO2measurementswith rapid response at extremely low concentration (20 ppb) and recovery time less than severalminutes(Shi,etal.2005).TheyciteotherstudiesshowingthatnanosensorscouldbepromisingforVOCmeasurements. Yamazoeand Shimanoe (2009) further investigatedMEMSand concluded thatmicro-platformswithMEMS techniqueswere almost ready to be used in gas sensors. Kumar, et al. (2016)furtherinvestigatedtheemergingsensortechnologiesthathavebeendevelopedsince.

Multiple-parameter sensorswere also recognized as promising inWon and Yang’s report (2005) andhaveexperiencedsubstantialdevelopmentsince. In theClear-upproject,UlmerandHerberger (2011)developedmetaloxidesemiconductorsensorscombiningCO2andVOCsensors.BymonitoringairflowratesinHVACorventilationsystemsandmeasuringinvariousplacesduringcorrelatedemissionsofCO2and VOCs, theywere able to develop an empirical algorithm able to capture not only the occupant-generatedCO2eventsbutalsoallothereventsgeneratingVOCinadefinedmetric.Theyguaranteetheperformanceoftheirsensorformorethan50,000operatinghours.

Othertypesofsensorssuchaselectronicnose,ozone,sulfurdioxide,andradonweredescribedinWonandYang’smarketsurvey(2005)andarenotreportedhere.

Page 34: LBNLSVACH Smart ventilation review · 2020. 1. 4. · 0 | Page Residential smart ventilation: a review Gaëlle Guyot1, Max H. Sherman2, Iain S. Walker2 & Jordan D. Clark2 1 Cerema

31|P a g e

The following two tables give the characteristics of pollutant sensors used for smart ventilationstrategiesandavailable sensors from the2005Canadian review (WonandYang2005).Fisk andDeAlmeida(1998)werethefirsttoprovidesuchatable,recommendingthat:1)sensorminimumdetectionthresholdsshouldbeequaltothelowerconcentrationsexpectedinsidebuildings,2)sensorresolutionandmaximumdriftbetweencalibrationsshouldbelessthan10%ofatypicalindoorconcentration,and3)30minutesisatypicalventilationtimeconstantandacceptablesensorsshouldreflectthis.

Table7:SuggestedperformancelevelsofsensorsforDCV(WonandYang2005)

Page 35: LBNLSVACH Smart ventilation review · 2020. 1. 4. · 0 | Page Residential smart ventilation: a review Gaëlle Guyot1, Max H. Sherman2, Iain S. Walker2 & Jordan D. Clark2 1 Cerema

32|P a g e

Table8:Generalspecificationsofcommercialsensors(WonandYang2005)

Concerningoccupancydetection,Chenari,etal. (2016)mentionthatoccupancyscheduleshavetodaybeenreplacedbymoresophisticatedoccupancy-detectionstrategiessuchasmotionsensors, infrared,video,orcameraoccupantcounters. Inthisreport,onlymotionsensorsare investigatedbecausetheyaremoreoftenusedinresidentialbuildingsthanoccupantcounters.Occupantcountinghasbeentestedfor DCV applications in non-residential buildings with mixed results in regards to accuracy (Fisk andSullivan2010).

Infrared technology is used most often, detecting occupants’ heat signatures. Another technologyfunctionsbyemittingabeamofultrasoundwavesanddetectinganymovingobjectsorpeople.Somesensorsuseacombinationofthesetwotypesoftechnologies inordertogivemorereliabledetection(FiskandDeAlmeida1998).

Amotionsensorshouldcovertheentirespaceduringtheentireperiodofuse.Theyare, for instance,verywell-adaptedtobathrooms.Analternativesolution forbathroomsmightbe tocombinethe lightand fan switches (Caillou, et al. 2014b), but this strategy would be relevant only for rooms withoutsufficientlightfromawindow.

The adequacy of the precision of such infrared sensors for DCV applications was investigated byBernard,etal.(2003),whodevelopedalaboratorymethodtotestreliabilityofdetectionusingasetofpredeterminedmovementsbyarobot.Theytestedsomesensorsfortheirabilitytodetectforcedentryinto the house and found them unreliable. Even the best sensors failed to detect some smallmovements, even at very close range (0.6 m). Large and small movements could be detected onlysporadicallyuptoa2-metersensor-occupantdistance.Moffat,etal.(1991)consideredpassiveinfrared

Page 36: LBNLSVACH Smart ventilation review · 2020. 1. 4. · 0 | Page Residential smart ventilation: a review Gaëlle Guyot1, Max H. Sherman2, Iain S. Walker2 & Jordan D. Clark2 1 Cerema

33|P a g e

activitysensorsreliableintheirfieldtesting.Infra-reddetectorcostswereestimatedbyDeAlmeidaandFisk(1997)intherange$50USD—$200USDandbyMortensen(2011)intherange400DKK—800DKK(~$60USD—$120USD,~55EUR—110EUR).

Othertypesofoccupancysensinghavebeensuggestedandstudied.Walker,etal.(2014)proposedtheuse of personal electronic devices (PEDs) for determining occupant presence in homes. Schild (2007)looked at the ability to quantify occupancy by sensing the locking of doors in a reference building inStockholm.

An alternative strategy developed by Federspiel (1996); Ke and Mumma (1997); and Wang and Jin(1998) involved detecting occupancy quickly by analyzing the indoor CO2 generation rateEven undertransientconditions,usingawell-mixedsinglezonemodelallowsthemtoestimatethisparameter,evenif the inadequacies of this strong assumption are not discussed elsewhere in the literature. Lu, et al.(2010) have further investigated this type of approachwith amodeling and experimental study in asportstrainingcenterinFinland.Theirresultsshowthatthisnewstrategycouldsavebetween26%and34%moreenergythanstrategieswithairflowsproportionallycontrolledbyCO2-concentrations.

Data transmission is also a subject of interest. Kumar, et al. (2016) mention in their review that anumberofsensorswithincorporatedcommunicationprotocolsareavailable,allowingthetransmissionof data via Bluetooth orWi-Fi to a remote platform such as a PC or smartphone for viewing. Suchtechnologiesmaybeextendedtosmartventilationapplications.Otherdevices,suchasalarmsdetectingoutdoorpollution,areavailableonthemarket,withapplicationssuchasdetectionofchemicalhazardsonindustrialplatforms,evenifapplicationsinresidentialbuildingsarerare(WalkerandSherman2013).

Thetypeofcontrol,eithercentralizedorper-zone,isalsoworthdiscussing.Centralcontrolalwaysgiveslowerperformancethanlocalcontrolsinceairflowsinroomsofinterestarelesssensitivetomeasuredparameters in these rooms. ForCO2-basedDCVsystems, localdetectionandcorresponding control inlivingroomsandbedroomscansave20%moreenergythancentralizedregulation(Caillou,etal.2014b).

Location and number of sensors can strongly impact performance. For obvious reasons, a smartventilation strategy based on only one sensor in one room, or one location within a network ofductwork,isnotlikelytoperformwellfromeitheranenergyoranIAQperspective.Someauthorshavequantified variation in performance with location and number of sensors. Caillou, et al. (2014b)estimated theenergydemandof aCO2-DCV systembasedonlyona single sensor in the living room.They founda15% increase inenergydemandwithpoor IAQ results. Theseauthorsalso showed thatsystemswithasmallnumberofstrategicallyplacedCO2sensors(e.g.,onlyinthebedrooms,oronlyinthemainbedroomandinthelivingroom)couldbeinteresting,eveniftheydonotperformaswellassthosewithsensorsineverydryroom(Table9).

Another recent studyof 62homes in theNetherlands (vanHolsteijn and Li 2014) showed that if CO2measurementsarenotmadeatthemechanicalsupplyand/orexhaustservingtheroomofinterestandlinked to themeasurementmade in that room,or if the room sensor is locatedoutside the roomofinterest inaconnectedspace,resultingIAQisthesameorworsethanthatofcommonsystemswhichhavenoCO2-sensors.Nevertheless,RackesandWaring(2016)concludethatoneaccuratesensorinthereturnductcangiveresultsbetterthanseveralless-accuratesensorsthroughoutaroom.

Page 37: LBNLSVACH Smart ventilation review · 2020. 1. 4. · 0 | Page Residential smart ventilation: a review Gaëlle Guyot1, Max H. Sherman2, Iain S. Walker2 & Jordan D. Clark2 1 Cerema

34|P a g e

Inaroom,thebestlocationforpollutantsensorsisinthepre-definedbreathingzone.Asitisnotalwayspossibletodothisinpractice.Correlationfactorsmaybeusedwhichrelateconcentrationsatthisidealplace to a more practical place: either on the wall, in a duct, or in a grille. Chao, et al. (2004)compensatedforCO2andozonelevelsmeasuredattheairreturnductusingsuchcorrectionfactorsintheirDCVsystem.

Schelland Inthout (2002)suggest that thebestsolution is locatingasensor ineachroomandpassingthe greatest measured concentration to the air handler. Feedback on the use of such a strategy inresidentialbuildingsisstillmissing.

Control strategy algorithms

Sherman, et al. (2012) points out that, in a smart ventilation strategy, the controllermust know thetargetairflowandthecurrentairflow,andbeabletoadjustapieceofventilationequipmentevery10minutes.DeAlmeidaandFisk(1997)identifiedthefollowingthreemechanismsavailableforcontrol:

• Cyclingfansonandoff• Modulatinginletandoutletdampers• Continuouslyvaryingfanspeed.

Suchcontrolstrategiesarealreadyusedinhybridventilationsystems.Suchsystemssenseoutdoorandindoorparametersinordertodetermineifnaturalventilationissufficient,orifafanmustbeactivated(Jreijiry,etal.2007;BuonomanoandSherman2009;TurnerandWalker2013;Chenari,etal.2016).

AcommoncontrolstrategyusedinCO2-basedDCVsystemsistofixasetpoint,1,000ppmforinstance,andtominimizeventilationaslongasthisthresholdisnotreached.Apurgebeforeoccupancyperiodscanimprovethiscontrolstrategy(Emmerich,etal.1994;Knoespel,etal.1991).Inthosestrategies,CO2

sensorshaveoftenbeenplacedinthereturnairduct.

Moreadvancedcontrolledstrategieshavebeendevelopedandare largelyused inEuropeancountriessuch as Belgium. Air outlets generally have associated minimum and maximum airflows, andintermediate airflows follow either a linear function of demand, a step change, or a more complexrelationship.Inthesesystems,thesetpointcanbefixedat500ppm,800ppm,1000ppm,or1200ppm(Caillou,etal.2014b).

Asdiscussedpreviouslyinthisreport,commonhumidity-basedDCVsystemsusemechanicallyvariablecross-sectionsininletsandoutlets.SuchsensorsarewidelyusedinFrance,andalsoinothercountriessuchasPolandandGermany.Theseairoutletsgenerallyhaveaminimumairflowofaround10m3/h,amaximum airflow between 50m3/h and 75m3/h depending on the type of room considered, and amodulationof airflowbetween theseextremeswhich followsa linear functionof relativehumidity intherange30%—35%to70%—80%,asshowninFigure4.

Page 38: LBNLSVACH Smart ventilation review · 2020. 1. 4. · 0 | Page Residential smart ventilation: a review Gaëlle Guyot1, Max H. Sherman2, Iain S. Walker2 & Jordan D. Clark2 1 Cerema

35|P a g e

Figure4:RelationshipbetweenairflowandrelativehumidityforairoutletsusedinninecurrenthumidityDCVsystemsinBelgium(Caillou,etal.2014b)

SomeothersystemssuchasRensoC+evo,DucoComfort,andThermelecGLCusesuchoutletsbutwithhysteresis(Caillou,etal.2014b).YetothersystemssuchasZehnderComfoplan,RensonC++EVOII,andRensonC+Cubeusemorecomplexalgorithmstocontrolairflowsinresponsetonotonlythemeasuredrelativehumidityintheroombutalsotherateofchangeinhumidity(Caillou,etal.2014b).

Onlyafunctionofbothhumidityandtimespentatahighhumiditycanquantifythecondensationrisk.Theliteraturereviewforthisresearchdidnotrevealsuchacontrolstrategyinthemarket.

Otherstrategiesbasedonalimitednumberofpresetairflowscanalsobeusedtocontrolventilation.One example includes setting three airflow rates: a minimum, used to dilute pollutants emitted bymaterials and furnishings during unoccupied periods qmin, a basic rate to dilute pollutants emittedconstantlybyoccupantsqbase,andahighratetodiluteorremovepollutantsduringpeakactivitiessuchascooking,showering,orhousecleaningqforced.Inmulti-familyhomes,theairflowratiosqforced/qbaseandqbase/qmin shouldbe identical inorder to limit thenumberof thepredefinedpositionsof thedampers,andtosimplifythewholecontrolstrategy(MortensenandNielsen2011).

Inapassivehousecontext,SzkarłatandMróz(2014)studiedvariableairvolumecontrolsasafunctionof sensible heat balance calculated via temperature sensors, latent heat balance calculated via RHsensors,andCO2balance.Theylookedatdefiningcontrolparametersandalgorithmsforhighheatgainsin passive houses. They studied classical controllers and fuzzy controllers, concluding that continuousPID2controlmustbeused togetherwithparameters thatarepreciselycontrolledwith theuseof, forexample, fuzzy logical controllers. Fuzzy logical controllers give more stable results; however, theysometimesrespondmoreslowly.

Parameters can be selected that have the greatest influence on DCV performance. Caillou, et al.(2014b)highlightedthatthemostinfluentialparametersforDCVcontrolsare:

2 A PID controller is a proportional–integral–derivative controller. It continuously calculates the difference between a setpoint and a measured variable and its control signal is a function of the difference, integral and derivative.

Page 39: LBNLSVACH Smart ventilation review · 2020. 1. 4. · 0 | Page Residential smart ventilation: a review Gaëlle Guyot1, Max H. Sherman2, Iain S. Walker2 & Jordan D. Clark2 1 Cerema

36|P a g e

• Ahighmaximumairflow forahighconcentration (e.g.,100%ofairflow forCO2>950ppmorRH>70%)

• Aminimumairflow lowenoughwhenconcentration is low(e.g.,<40%ofairflowforCO2<400ppmorRH<35%)butnotlessthan10%oftheairflow

• Ahighenoughminimumairflowingivenconditions(e.g.,30%ofairflowifCO2orRHistheonlycontrolparameter,or25%ofairflowwhenRH>50%).

Other control strategies are at least as important as sensor-based control strategies from a smartventilation perspective. For instance, as discussed in this report, Sherman and Walker (2011)demonstrated 1000 kWh energy savings during the course of a year in a California house using aconstantairchangeratestrategy.Thiswasaccomplishedbytakingintoaccountknowntimesofgreatestenergyrequirementstoconditionventilationairandexogenousairtransfersviatheuseofanadvancedcontrolstrategy,butincludednoadditionalsensors.

FiskandDeAlmeida(1998)firstmentionedtheuseofenergymanagementsystemstocontrolloadsinresponsetoreal-timeprices,andsuchsystemshavemadeagreatdealofprogressthe last fewyears,eveninresidentialbuildings.Eventuallyconsumerscouldparticipateinprogramstodecreasethepeakelectricityload.Thiscouldbeaccomplishedviaanemail,orthroughphoneorInternetsystems.Someofthese systems have been developed to directly turn off devices such as air-conditioning appliances,washingmachines,anddryers.

For such applications, controllers are available on the market such as those sold by Honeywell andAprilaire (predominantly used for central-fan integrated supply systems), Tamarack (for controllingexhaust fans),orDavisEnergygroupwithNightbreeze(ventilativecoolingand/orevaporativecooling)(Walker, et al. 2011). Such a smart ventilation strategy can be used to avoid outdoor peak pollutantconcentrationswhenoutdoor concentrations are themain sourceof indoorpollutants, as is the casewithozone(WalkerandSherman2013).

Page 40: LBNLSVACH Smart ventilation review · 2020. 1. 4. · 0 | Page Residential smart ventilation: a review Gaëlle Guyot1, Max H. Sherman2, Iain S. Walker2 & Jordan D. Clark2 1 Cerema

37|P a g e

4. ENERGY AND IAQ PERFORMANCE-BASED METHODS IN STANDARDS AND

REGULATIONS AS OPPORTUNITIES FOR SMART VENTILATION SYSTEMS

Overview of standards and regulat ions for residentia l bui ld ings integrat ing smart venti lat ion

Anumberofventilationstandardsandnationalregulationshaveprogressivelyintegratedanallowancefor smart ventilation strategies and/or DCV systems in residential buildings. Simultaneously, anincreasingnumberofenergyperformanceregulationsincludetheopportunitytoclaimcreditinenergycalculations for savings from such systems. A 2004 federal technology alert circulated by the U.S.government suggested that the HVAC systems in buildings should use DCV to tailor the amount ofventilationairtotheoccupancylevelforbothenergyandIAQreasons(FederalTechnologyAlert2004).Some years later, ASHRAE 62.2 (ANSI/ASHRAE 2016) added a section to allow the use of smartventilation technologiesusing real-timecontrols.Research for thispaperdidnot revealevidence thatsmartventilationsystemsreceivecredit instateenergycodes in theUnitedStatesor inenergyratingsystems. In Europe, ventilation codes in several countries enable the use of DCV systems, includingBelgium, France, Spain, Poland, Switzerland,Denmark, Sweden, theNetherlands, andGermany (Savinand Laverge 2011; Kunkel, et al. 2015; Borsboom 2015). More recently, energy regulations in someEuropeancountrieshavealsobeguntoincludeDCV.

In those countries, smart ventilation and/or DCV systems must generally prove their equivalence toconstant rate ventilation systems in maintaining the IAQ, in order to comply with the ventilationregulationandgetacreditintheenergy-performanceregulatorycalculation.

In Europe, two recently published directives (n°1253/2014 regarding the ecodesign requirements forventilation units and n°1254/2014 regarding the energy labeling of residential ventilation units)(European Parliament and the Council 2014) are moving toward a generalization of low-pressuresystems,DCVsystems,andbalancedheatrecoverysystemsonthe2018horizon.CentralandlocalDCVsystemswillbelabeledaccordingtothesedirectives.Suchlabeledsystemswillbeallowedtousea15%and 35% reduction (for central and local systems, respectively) in ventilation energy consumptioncalculations.

State-of-the-art of exist ing equivalence principles or performance-based approaches for smart venti lat ion used in residentia l bui ld ings

The motivation behind the ventilation equivalence concept is the requirement that, compared toconstant-ratesystemsprescribed incurrentregulationsandstandards,an innovativesmartventilationsystemshouldsaveenergywithoutdegradingIAQ.Inpractice,thisequivalenceconceptcanbeusedinmanyways,andisoftencombinedwithaminimumairflowrateforunoccupiedperiods.Thecommonthread in all of thesemethods is that they are more performance based than analogous prescribedconstantrateapproaches,andtheyuse,ataminimum,theexposuretoapollutantgeneratedindoors(veryoftentheCO2)andcondensationrisktodeterminethenecessaryventilation.

Page 41: LBNLSVACH Smart ventilation review · 2020. 1. 4. · 0 | Page Residential smart ventilation: a review Gaëlle Guyot1, Max H. Sherman2, Iain S. Walker2 & Jordan D. Clark2 1 Cerema

38|P a g e

In the United States and Canada, the equivalence principles in ventilation and IAQ described bySherman(2004)andSherman,etal.(2012)havebeenpartiallyintegratedintothecurrentversionoftheventilation standard ASHRAE 62.2 2016. Some state building regulations, such as Title 24 energy-performance regulations in California, require compliance with this ASHRAE standard. The standardgivesamethodtocalculatetheminimumconstantairflows for residentialbuildings. Italsoallowstheuseofvariablevolumemechanicalventilation,whichcouldbe:

1. Ventilationaveragedovershortperiods2. Scheduledventilation3. Ventilationcontinuouslycontrolledinrealtime.

Inthefirststrategy,totalairflowrateequivalenceisrequiredoveranythree-hourperiod.Thisallowsforswitchingoff theventilationsystemduringshortperiods ifhighairflowratescanbeprovided later. Inanyofthethreecases,theequivalentventilationprincipleisrequired:theannualexposuremustnotbehigher than that produced by constant airflow systems. In other words, the annual average relativeexposure must be less than one. The calculation must use single-zone modeling, with a constantpollutant emission rate, and a time-step no longer than one hour. At each time step i, the relativeexposureRiiscalculatedfromEquation15andEquation16,andshallnotexceedavalueof5inordertoavoidpeakexposure.Themanufacturer,specifier,ordesignershouldcertifythatthecalculationmeetstherequirements.

Equation15

Equation16

Equation17WhereQtotistheminimumconstantventilationratecalculatedaccordingtosection4.1oftheASHRAE62.2,Qiisthereal-timeairflowinthevariablemechanicalventilationsystemattimestepi,Δtisthetime-stepusedinthecalculation,Vspaceisthevolumeofthespace.

InFrance,manufacturersmustfollowacomplianceprocedureforDCVtoensureadequateventilation.Onceasystemreceivescertificationofcomplianceviathisprocedure,called“Avistechnique,”itcanbeused inhomesaccording to its specifications. Theagreement is adocumentof at least 30—60pagesthatspecifieshowthesystemmustbedesigned,howallthecomponentsofthesystem(includinginlets,outlets, and ducts) must be installed, and precisely how the system must be commissioned andmaintained. For each type and size of home, the agreement gives references thatmust be used forselectingair inletsandoutletsandtheinputdataforenergycalculations.Theprocedure(CCFAT2015)describes the common scenarios used to evaluate the DCV systems through a multi-zone software,MATHIS(Demouge,etal.2011).Notably,eachroomofthehomeismodeledassinglezone,withatime-

Page 42: LBNLSVACH Smart ventilation review · 2020. 1. 4. · 0 | Page Residential smart ventilation: a review Gaëlle Guyot1, Max H. Sherman2, Iain S. Walker2 & Jordan D. Clark2 1 Cerema

39|P a g e

stepof15minutes.Thisprocedureisbasedontheevaluationofhumidity-basedDCVsystemsthathavebeenusedformorethan30years,andthusmustbeadaptedforotherinnovativetypesofDCVsystems.Typicalinputdata,whicharegivenintheprocedure,include:

• External data: calculation period (October 1st-May 20th), outdoor CO2 concentration,meteorologicaldataandwindeffectsparameters

• Thehomes:geometryoftherepresentativehomes(14housesand10apartments),airtightnessofthehomes,anditsdistributiononthedifferentfacades

• Theoccupancyscenario:metabolicemission ratesofCO2andhumidity,numberofoccupants,occupancyschedules,activitylevel,andassociatedmoistureemissionrates

• The ventilation components: trickle ventilator positioning, aerodynamic characteristics ofhygrovariableair inletsandoutlets(effectsofexternalandinternaltemperaturesontheinletsand outlets are taken into account aswell), schedules for bathroom (toilet and shower), andtoiletexhaustsandkitchenexhausts.

As part of the compliance procedure, an “IAQ calculation” and an “Energy calculation” must beperformed.First,thecumulativeCO2exposureindicatorE2000(Equation18)mustbecalculatedandmustbeunder400,000ppm-h ineach room.This threshold is supposed to represent themeancumulativeexposureunderaconstantventilationstrategy,althoughtheexactsourceofthisnumberisnotreadilyavailableintheliterature.

Equation18

Where istheabsoluteconcentrationintheroomatttime-step,ifitishigherthan2000ppm.

Second, thenumberof hourswhen relative humidity is higher than75%, TRH>75%,must be calculated.Thisvalueisrepresentativeofthecondensationrisk(Equation19).

Equation19

Once the IAQ calculation has been performed and both IAQ requirements are fulfilled, the energycalculation must be performed. The procedure specifies the input data to be used in the energyperformance (EP) calculation,which is a setof single-zonemodeling calculations specific toeachnewhomedesign.Foreachhome,themeanequivalentexhaustedairflow(m3/h)andthetotalairinletmeanarea (m²) are calculated. This detailed performance-based approach is performed once for each newDCVsystem,andthenaveragedtobelatertakenintoaccountineachhomeEP-calculationasaveragevalues.Typicalenergysavingsareabout40%compared toaconstantairflow. InFrance, switchingoffthe ventilation system during unoccupied periods is not permitted and trickle ventilators cannot beclosed.Theminimumairflowissetbetween10m3/hand35m3/hdependingonthenumberofroomsinthebuilding.TheDCVsystemisgenerallycertifiedforathree-yearperiod,inordertotakeintoaccountpossibleupdatesinregulations,agreementprocedure,andavailableknowledgeandtechnologies.

Page 43: LBNLSVACH Smart ventilation review · 2020. 1. 4. · 0 | Page Residential smart ventilation: a review Gaëlle Guyot1, Max H. Sherman2, Iain S. Walker2 & Jordan D. Clark2 1 Cerema

40|P a g e

Spain has a similar approach to France’s procedure: a performance-based approach that will beimplemented in the future IAQ regulations. Because current regulations are expressed as constantventilation flows,DCV systemsmustpass through a complianceprocedure.Oncea system receives acertificate of compliance, called a Documento de Idoneidad Técnica (DIT), it can be used in homesaccordingtoitsspecifications.

The DIT is a document of about 30 pages that specifies how the system must be designed, howcomponentsofthesystemsuchasairintakes,exhausts,andductsmustbeselectedandinstalled,andpreciselyhowthesystemmustbecommissionedandmaintained.Foreachtypeofhomeandclimate,the DIT gives input data for energy calculations in the form of an equivalent reduction of constantventilation flow rates that is specified in the current regulations. The DIT is adopted for a five-yearperiod and subject to yearly reviews. The compliance assessment involves analysis of referencescenarios. In these scenarios, each room of the home ismodeled as single-zonewith themulti-zonesoftwareCONTAM(WaltonandEmmerich1994),withatime-stepof40seconds(forhygroventilationsystems; other systems may have a different time-step). Standardized input data are given, whichinclude:

• Externaldata:calculationperiod(allyear),outdoorCO2concentration,meteorologicaldata• Thehomes:geometryofthestandardhomes(14),airinfiltrationisnotconsidered• Theoccupancyscenario:metabolicemission ratesofCO2andhumidity,numberofoccupants,

occupancyschedules,ascheduleoftheiractivitiesandassociatedmoistureemissionrates• The ventilation components: trickle ventilator positioning, aerodynamic characteristics of

hygrovariableinletsandexhausts,schedulesfortoiletexhausts.

Asaresult,ifthefollowingIAQindicatorscanbeachieved,theannuallyaveragedequivalentventilationairflowcanbeimplementedintheEP-calculation:

• AnnuallyaveragedCO2concentrationmustbelowerthan900ppm• Yearly cumulative CO2 exposure over 1600 ppm E1600 (see Equation 18) must be lower than

500,000ppm-hineachroom.

Futurechangestothebuildingcodearebeingreviewed(Linares,etal.2014;GarciaandLinares2015;Linares,etal.2015).Thechangesaimtoimplementaperformance-basedapproachwithrespecttoIAQrequirementsatthedesignstageofabuilding,whichshallbeusedforallsortsofventilationsystems,includingDCVsystems.TheproposedIAQrequirementsarethesameonesthatareusedinthecurrentprocedureforDCV.Theywouldalsobecalculatedusingamulti-zonecodelikeCONTAM,withprescribedinput data concerning human CO2 generation, proposed occupancy schedules, and occupancy rateselected according to the national population and 2011 housing census. Theminimumairflowduringunoccupiedperiodswillbesetto1.5l/sineachroom.

InBelgium,theprocedureforresidentialbuildingswassimilartotheFrenchandtheSpanishapproachuntil2015.Before2015,togetacreditintheenergycalculation,eachnewsystemhadtopassthroughan IAQequivalenceprocedurebefore receivinganagreement, called“ATG-E,”deliveredbyanationalorganization(UBATC),andthenconsolidatedthroughaministerialorderineachregion.TheequivalenceprocedurewasdescribedinATGandBCCA(2012)andwasbasedonmulti-zonemodelingwithCONTAM(WaltonandEmmerich1994),usingatime-stepoffiveminutes.Thestandardizedinputdatawerebothdeterministic (geometry of the typical house, air leakage, moisture buffering parameters, indoor

Page 44: LBNLSVACH Smart ventilation review · 2020. 1. 4. · 0 | Page Residential smart ventilation: a review Gaëlle Guyot1, Max H. Sherman2, Iain S. Walker2 & Jordan D. Clark2 1 Cerema

41|P a g e

temperature, exterior climate file, calculation period (October to April) and stochastic (buildingorientation,wind shielding and terrain roughness, occupancy scenario, and contaminant generation).ContaminantsthatwereconsideredwereCO2,relativehumidity,andatracergasemittedfor5minutesintoiletseachtimetheseroomsareoccupied.Onehundreddatasetswereusedper levelofenvelopeair-leakage. The reviewed systemwas then compared to the three reference systems defined in theregulation (A=natural, C=exhaust, D=balanced). The IAQ performance was evaluated through threeindicators:

1. Theper-personcumulativeCO2exposureindicatorE’950(Equation20)2. Theaveragetimepermonthcriticalthermalbridgeswereexposedtorelativehumidity

over80%fromDecember1sttoMarch1st3. Theexposuretoatracergasemittedfromthebathrooms.

Equation20

Where istheabsoluteconcentrationtowhichanoccupantisexposedattime-stept, if it ishigherthan

950ppm.

Unliketheothertwo,thesecondrequirementisanabsoluterequirement(Caillou,etal.2014b).Owingtoitsinherentuncertainty,itwasgivenanassociatedtolerancethatissomewhatgreater.

OncethethreeIAQindicatorshavebeencalculatedandareshowntobeequalorbetterthantheworst-performing reference system, the energy savings coefficient freduc is determined by an extrapolationexplained inFigure5andEquation21,basedon theheating-season integratedventilationheat lossE(MWh/year), excluding infiltration heat losses which are treated separately in the energy calculationmethod.

Equation21

Page 45: LBNLSVACH Smart ventilation review · 2020. 1. 4. · 0 | Page Residential smart ventilation: a review Gaëlle Guyot1, Max H. Sherman2, Iain S. Walker2 & Jordan D. Clark2 1 Cerema

42|P a g e

Figure5:EnergysavingcoefficientcalculationforaDCVsystemX(ATGandBCCA2012)

In2014,BelgianregionsconsideredDCVsystemsmatureenoughtobedirectly integratedintotheEP-calculationmethod,withoutrequiringtheequivalencemethod.AstudyconductedbyUGentandBBRI(Caillou, et al. 2014b) evaluated the 35 systems gaining the ATG-E through an advanced equivalencemethod.Theyimprovedtheinitialmethodbytakingintoaccountsomeofitslimitations,suchasthefactthatthethreereferencesystemsdefinedintheregulation(A=natural,C=exhaust,D=balanced)arenotequivalent(illustratedinFigure5).

Moreover,Figure5illustratesthatcumulativeCO2exposureundersystemA(naturalventilation)isveryhigh (thusnotastrongrequirement).Also, thatenergygains insystemswithverygood IAQareover-estimated because of the over-estimation of the system D (balanced) ventilation heat loss—notablebecauseitdoesn’ttakeintoaccountthepossibilityofmanualcontrol.Calillou,etal.addedgenerationofaVOCpollutantemittedproportionallytothesurfaceareaofeachroomtotheevaluationmethodandcalculation of the cumulative exposure to this pollutant. They proposed classifying DCV systemsaccordingtothesensingtype:typeofsensor(CO2,RH,occupancy),typeofspaces(humidand/ordry),andregulationtype:exhaustonly,supplyonly,balanced,andlocalsensingvs.centralized.ForeachclassofDCVsystems,theyproposedstandardvaluesfortheenergysavingcoefficientfreduc.

Asaresult,asofJanuary1st2016,onlytheenergysavingcoefficientfreducgiveninthetables(Table9)ofaministerialorder(MoniteurBelge2015)canbeuseddirectlyintheEP-calculation,andtheequivalenceprocedure no longer exists. This order requires sensors to conform to the accuracy requirementsdiscussed above. In the case of DCV systems, minimum airflows greater than 10% of the minimumconstant airflow for each roomare also required. Intermittent ventilation is allowed if the15-minuteaverageairflowisequaltothis10%requirement.

Page 46: LBNLSVACH Smart ventilation review · 2020. 1. 4. · 0 | Page Residential smart ventilation: a review Gaëlle Guyot1, Max H. Sherman2, Iain S. Walker2 & Jordan D. Clark2 1 Cerema

43|P a g e

Table9:EnergysavingcoefficientfreducinBelgiumfornatural,exhaust-only,supply-only,balancedDCVsystemswitharegulationofairinletsbasedonneedsindryspacesand/orwitharegulationofairoutletsbasedonneedsinhumidrooms

(anothertableisavailableforexhaust-onlysystemswitharegulationofairoutletsbasedonneedsindryspaces)

Typeofdetectionindryspaces Typeofregulationofairinletsindry

spaces

Localdetectioninhumidspaceswithregulationofair

outletLocalregulation

Localdetectioninhumidspaceswithregulationofair

outletNolocalregulation

Otherornodetectioninhumid

spaces

CO2-local:atleastasensorin

eachdryspace

Local 0.35 0.38 0.422zones(night/day)

ormore0.41 0.45 0.49

Central 0.51 0.56 0.61CO2-partiallylocal:atleastasensorineachbedroom

Central 0.60 0.65 0.70

CO2-partiallylocal:atleastasensorinthemainbedroom+atleastasensorinthelivingroom

2zones(night/day)ormore

0.43 0.48 0.53

Central 0.75 0.81 0.87CO2-central:atleastasensorin

theexhaustduct(s)Central 0.81 0.87 0.93

Occupancy-local:atleastasensor

ineachdryspace

Local 0.54 0.60 0.642zones(night/day)

ormore0.63 0.67 0.72

Central 0.76 0.82 0.88Occupancy-partiallylocal:atleast

asensorineachbedroomCentral 0.87 0.93 1.00

Occupancy-partiallylocal:atleastasensorinthemainbedroom+atleastasensorintheliving

room

2zones(night/day)ormore

0.66 0.72 0.78

Central 0.87 0.93 1.00

Otherornodetectionindryspaces

No,local,perzone,orcentral

0.90 0.95 1.00

IntheNetherlands,forDCVsystemsusedinresidentialbuildings,itispossibletousecorrectionfactorsfor the ventilation airflow in the EP-calculation, based on the standard NEN 8088 (NEN 2011). ThestandardprovidesstandardenergyreductionfactorsforquiteafewDCVsystems,rangingfrom0.52to0.95. A complementary equivalence approach can be performed (VLA 2013), using COMIS simulationsoftware, in a semi-probabilistic approach (seven home types, different occupant types, differentairtightness levels,differentwindexposure).TheIAQmetricemployedisthecumulativeCO2exposureindexrequirementperperson,LKI1200,calculatedfortheperiodSeptember29th-April25thwithEquation22.

Foranewproducttype,manufacturersshouldsubmittheirreporttooneofthreepredefinedresearchinstitutesorconsultingcompaniesforreview.Attheendoftheprocess,anagreementispublishedontheDutchAssociationofAirHandlingEquipmentManufacturers(VLA)website,andshortlythereafteradeclaration of equivalence is published in the database of the Bureau of Control and Registration(Borsboom2015).Aminimumairflowisprescribedaccordingtothenumberandthetypeofoccupants.

Page 47: LBNLSVACH Smart ventilation review · 2020. 1. 4. · 0 | Page Residential smart ventilation: a review Gaëlle Guyot1, Max H. Sherman2, Iain S. Walker2 & Jordan D. Clark2 1 Cerema

44|P a g e

Equation22

Where istheabsoluteconcentrationatwhichanoccupantisexposedatttime-step,ifitishigherthan1200ppm,

or800ppmabovetheoutdoorconcentration.

In Germany, a methodology for assigning an energy credit for the use of DCV systems in the EP-calculation was investigated (Krus, et al. 2009), in order to update the existing credit of 10% overconstantexhaustventilation.

Page 48: LBNLSVACH Smart ventilation review · 2020. 1. 4. · 0 | Page Residential smart ventilation: a review Gaëlle Guyot1, Max H. Sherman2, Iain S. Walker2 & Jordan D. Clark2 1 Cerema

45|P a g e

Table10:Overviewofequivalenceprinciplesforsmartventilationand/orDCVinsomeresidentialbuildingregulations

Country Personincharge VentilationEquivalencemethod

CalculatedIAQindicators CreditinEP-calculation

Minimumairflow

USAandCanada(ASHRAE62.22016)

Themanufacturerordesignerissupposedtocertifythatthecalculationmeetstherequirements.

Singlezonemodeling,Δt<1h,constantpollutantemissionrate

NospecificallydefinedpollutantYearlyaveragerelativeexposureR<1Ateachtime-stepRi<5

No Canbenullifthetotalairflowrateequivalenceisrequiredoverany3-hourperiods

France Themanufacturerforeach(humidity)DCVsystemshallpassthroughanagreementprocedure

Multi-zonemodelingwithMATHIS,Δt=15min,Conventionalentrydata

Perroom,overheatingperiodonly:

1/CO2cumulativeexposureindicatorE2000<400.000ppmh

2/NumberofhoursTRH>75%<600hinkitchen,1000hinbathrooms,100hinotherrooms

Averageequivalentexhaustedairflow(m3/h)canbeimplementedintheEP-calculation

Switchoffnotallowed,minimumairflowis10-35m3/haccordingtothenumberofroomsinthebuilding

Spain(<2017)

ThemanufacturerforeachDCVsystemshallpassthroughanagreementprocedure

Multi-zonemodelingwithCONTAM,Δt=40s,Conventionalentrydata

Perroom,overentireyear:1/YearlyaverageCO2concentration<900ppm2/YearlycumulativeCO2exposureover1600ppmE1600<500.000ppmh

YearlyaverageventilationairflowcouldbeimplementedintheEP-calculation

Spain(future)

Thedesignerofthebuilding,ofthebaseofinformationgivenbythemanufacturer

Aperformance-basedapproachforallventilationsystemsisgoingtobeimplemented,usingasoftwareandconventionaldataatthedesignstageofeachbuilding

Perroom,overentireyear:1/YearlyaverageCO2concentration<900ppm2/YearlycumulativeCO2exposureover1600ppmE1600<500.000ppmh

YearlyaverageventilationairflowcouldbeimplementedintheEP-calculation

Theminimumairflowduringunoccupiedperiodsissetto1.5l/sineachroom.

Belgium(<2015)

ThemanufacturerforeachDCVsystemshallpassthroughanagreementprocedure

Multi-zonemodelingwithCONTAM,Δt=5min,conventionalentrydatabothdeterministicandstochastic

Perroom,overheatingperiodonly:

1/CO2cumulativeexposureindicatorE’9502/MonthlyaverageRH>80%oncriticthermalbridgesfromDecember1sttoMarch1st3/ExposuretoatracergasemittedintoiletsandinbathroomsTheymustbeatleastequalthattheworstperformingreferencesystem.

AnenergysavingcoefficientfreducisextrapolatedandcanbeimplementedintheEP-calculation

Belgium Thepersoninvolved Nolongerexisting. Nolongerexists Published Minimumairflowsover

Page 49: LBNLSVACH Smart ventilation review · 2020. 1. 4. · 0 | Page Residential smart ventilation: a review Gaëlle Guyot1, Max H. Sherman2, Iain S. Walker2 & Jordan D. Clark2 1 Cerema

46|P a g e

Country Personincharge VentilationEquivalencemethod

CalculatedIAQindicators CreditinEP-calculation

Minimumairflow

(since2015) inEP-calculationandmanufacturerforeachDCVsystem

Anadvancedequivalencemethodhasbeenperformedby(Caillou,etal.2014)onallthesystemshavinganagreement.

conventionalenergysavingcoefficientscanbeuseddirectlyintheEP-calculation.Theydependonthesensingtype,typeofspacesandtheregulationtype

10%oftheminimumconstantairflowforeachroom.Intermittentventilationisallowediftheaverageon15minutesenablestocomplywiththis10%.

TheNetherlands

ThepersoninvolvedinEP-calculation(standardapproach)ORthemanufacturerforeachDCVsystem(equivalenceapproach)

Evenifcorrectionfactorsaregiveninthestandard,acomplementaryequivalenceapproachcanbeperformed,usingthemulti-zonepressurecodeCOMIS,inasemi-probabilisticapproach

Perperson,overtheheatingperiodonly:CumulativeCO2exposureover1200ppm:LKI1200<30.000ppm.h

Either,correctionfactorsgiveninthestandardforquiteafewDCVsystems,areuseddirectlyintheEP-calculation,Or,Correctionfactorsfromtheequivalenceprocedurecanbeused.

Afunctionofthenumberoftypeofoccupants

Germany / / / Conventionalventilationgainof10%

/

Page 50: LBNLSVACH Smart ventilation review · 2020. 1. 4. · 0 | Page Residential smart ventilation: a review Gaëlle Guyot1, Max H. Sherman2, Iain S. Walker2 & Jordan D. Clark2 1 Cerema

47|P a g e

Onlyonestudywasfoundintheliterature(Sherman,etal.2012)thatproposestheconsiderationofnotonly ventilation equivalence but also IAQ equivalence, based on health-related metrics. The authorsproposeamethodtakingadvantageofavailabledatainpreviouswork(Logue,etal.2011b,2011a)andusingthedisability-adjustedlifeyears(DALYs)metric.Basedondiseaseincidencemodels,(Logue,etal.2011b)calculatedtheDALYslostasaresultoflong-termexposuretoindoorpollutantsinresidencesandpublished values of the DALYs lost per incidence of disease. In this calculation, they used the unitdamageestimate(UDE)valueforeachpollutantofinterest.TheIAQequivalenceprinciplealsoproposedtheuseoftheseUDEivaluestosetaDALYlimitvalue(Equation24)andthenproposescheckingthatthecombinationofcontaminantconcentrationsaccordingtoEquation23staysbelowthislimit.Sherman,etal.(2012)establishedthislimitas8200µDALYperpersonperyearforthepollutantsinTable11.Itcanbeseen thatPM2.5dominates this list. If radon,ozone,andPM2.5 canbehandled throughprescriptivemeasures,thentheDALYlimitdecreasesto90µDALY/p/year.

This approach is obviously limited, since it assumes that indoor contaminants of concern are clearlyidentified and prioritized. This equivalent methodology also needs to include acute exposure issues.Nevertheless,itcouldeventuallybeintegratedintoevaluationmethodsforinnovativesmartventilationsystems,andevendirectlyintothecontrolofsuchsystemswithreal-timesensors.ThisbackgroundwillservethedevelopmentofasmartIAQapproachthatgoesbeyindjustventilation.

Equation23

Equation24

Table11:Indooraircontaminants–UDEiandStandardivaluestoimplementIAQequivalenceaccordingtoEquation23andEquation24(Sherman,etal.2012)

Page 51: LBNLSVACH Smart ventilation review · 2020. 1. 4. · 0 | Page Residential smart ventilation: a review Gaëlle Guyot1, Max H. Sherman2, Iain S. Walker2 & Jordan D. Clark2 1 Cerema

48|P a g e

Current avai labi l i ty of smart venti lat ion systems

GiventheopportunityofferedbystandardsandregulationsinEurope,theuseofDCVsystemsarequitedevelopedinseveralEuropeancountries.AsofAugust1st2016,therewere23DCVsystemsinFrance,34 inBelgium,37 in theNetherlands, and three in Spain thathave received certification. In theUSA,someDCV systems are available, thoughnot strictly basedon theASHRAE62.2 equivalenceprinciple(Less,etal.2014).MostofthesesystemsareCO2-orhumidity-controlledsystems.

Manufacturers have to adapt their systems to the regulations or standardswith which they have tocomply.Asaresult,aDCVsystemproducedbyacertainmanufacturerisnotnecessarilyidenticalfromcountrytocountry.

Table12:OverviewofcertifiedDCVsystemsonsomeEuropeancountries

Country

NumberoftotalDCVsystems Source

France 23

http://evaluation.cstb.fr/rechercher/produits-evalues

Belgium 34

http://energie.wallonie.be/fr/concepts-novateurs-liste-des-equivalences-peb.html?IDC=8825&IDD=52265

TheNetherlands 37 http://www.vla.nu/gelijkwaardigheidsverklaringen/soonon:www.dcrg.nl

Spain 3 http://www.ietcc.csic.es/index.php/es/?option=com_chronoforms&chronoform=RespuestaDIT

Page 52: LBNLSVACH Smart ventilation review · 2020. 1. 4. · 0 | Page Residential smart ventilation: a review Gaëlle Guyot1, Max H. Sherman2, Iain S. Walker2 & Jordan D. Clark2 1 Cerema

49|P a g e

5. LITERATURE REVIEW: SMART VENTILATION PERFORMANCE IN RESIDENTIAL

BUILDINGS

Smart ventilation is often considered a strategy specific to buildingswith large changes in occupancyoverthecourseofaday,suchasofficebuildings(Mysen,etal.2010),commercialbuildings(Apte2006),andmore generally non-residential buildings (Emmerich and Persily 2001). However, the literature inthisfieldshowsthatinterestinresidentialsmartventilationsystemshasexistedsincetheearly1980s.

The literature review for this research attempts to put into perspective the advantages of smartventilationstrategies.Studiesanalyzedalsoinclude:

1. Studiesonenergyand/orIAQbenefitsofresidentialsmartventilationsystems2. Studies on occupant behavior and occupants’ ability to perceive IAQ and operate ventilation

systems3. Experimentalstudieshighlightingthemulti-zoneaspectofresidentialventilation.

IAQ and energy performance of residentia l smart venti lat ion

Weanalyzedfieldandmodelingstudiesonenergyand/orIAQbenefitsofresidentialsmartventilationsystemsfrom1979to2016.The InternationalEnergyAgencyAnnex18(Raatschen1990)reviewed31papersfrom1979to1989,includingfourstudiesontheimplementationofDCVsystemsinhomes(Anon1983;BarthezandSoupault1984;Nicolas1985;SheltairScientific,Ltd.1988).Then,FiskandDeAlmeida(1998)proposedareviewofsensor-baseddemand-controlledventilation,includingtheaforementionedreview (Raatschen 1990), 13 other papers of this Annex (including six case studies on theimplementationofDCVsystemsinhomes)(Mansson1993),and15additionalpaperspublishedbefore1997, including only one on a residence (Kesselring, et al. 1993). Until then, the vastmajority of thestudieshadconsideredonlyrelativehumidity-basedcontrol,andinsomerarecasesCO2-basedcontrol.Last, in a recent reviewon sustainable, energy-efficientandhealthyventilation strategies inbuildings(Chenari,etal.2016),theauthorsdevotealargesectiontoDCVsystems,including15additionalpapersfrom2004to2013.Fouroftheseconcernsmartventilationinresidentialbuildings(Jreijiry,etal.2007;Laverge, et al. 2011; Nielsen and Drivsholm 2010; Pavlovas 2004). As a result, these three availablereviewsinclude15papersonsmartventilation,allDCV,inresidentialbuildings.

Thereviewforthisresearchanalyzed23additionalstudiesof interestonresidentialsmartventilation.ThirteenofthestudiesreportonvarioussmartventilationsystemsusingeitherCO2controlorhumiditycontrol;onepresentsacombinedCO2-andTVOC-controlledventilationsystem;threestudyoccupancy-based smart ventilation systems; three study outdoor temperature-controlled smart ventilation; andthreeLBNLstudieslookatothersmartventilationstrategiesincludingthedevelopmentanduseoftheRIVECprototype.

Page 53: LBNLSVACH Smart ventilation review · 2020. 1. 4. · 0 | Page Residential smart ventilation: a review Gaëlle Guyot1, Max H. Sherman2, Iain S. Walker2 & Jordan D. Clark2 1 Cerema

50|P a g e

Resultsof these38 studiesare compiled inTable13. Performance results in theanalyzed studiesareverydifficulttocompareforatleastfourreasons:

1- Differenceinthetypesofsmartventilationsystemsused:thereisoftenalackofprecisedataonthetypeandlocationofsensors,thetypeofcontrolandthetypeofventilationsystem.

2- Alackofinformationontheconditionsofthestudies(climate,occupancy,energyperformancelevel, rangeofventilationrates,buildingmaterialsemission,andabsorptioncharacteristics).Astudy can give bad results for given conditions but this does not necessarily mean that thesystemisbad.

3- Calculation of indicators: there is neither a universal indicator, nor a universal method tocalculate the indicators, and there is often a lack of uniformity in theway the indicators arecalculated. For instance, theaverageCO2 concentration isoftengivenwithout informationoneitherthelocationofthemeasurement(whichroom),ortheaveragingtimeused(oneday,oneweek,oneyear).

4- Differencesinreferencecases:Referencecases, includingreferenceairflowrates,aredifferentin each standard or code to which each building regulation refers. Comparisons of IAQ andenergyperformancemustalsobecarefullyanalyzed.

Theperformanceofhumidity-and/orCO2-controlledsmartventilationsystemshasbeenconsideredinseveralmodelingandfieldstudies.

Until the early 1990s, researchers published primarily case studies in the literature, reporting a largerangeof energy savings (0% to60%)with small tomoderate IAQ improvements (Anon1983;BarthezandSoupault1984;Nicolas1985;SheltairScientific,Ltd.1988;Wouters,etal.1991;Moffat,etal.1991;Mansson 1993; Kesselring, et al. 1993). Though all the data required to account for these largedifferencesisrarelyavailable,afewexplanationsarelikely:typeofDCVsystem,improvementovertimeforthesetechnologies,andoutdoorclimate(forhumidity-controlledDCV).

Parekh and Riley (1991) studied the implementation of an RH-basedDCV system in two houses. Thewhole-house ventilation system had inlet exhaust grilles with a cross-section size that modulated inresponse to theRH level in the room.Theyobservedonly6%energy savings (calculatedovera shorttimeperiod,whichcouldreducecalculatedsavings)andconcludedthatIAQwaspoor,especiallyinthebedroomswhereCO2-concentrationwasgreaterthan1200ppm.Theyhighlightedthefactthatahighlevelofairleakageintheirsetupwouldreducethepotentialimpactoftheventilationsystem.

Nielsen (1992)monitored theperformanceofahumidity-basedDCVsystem installed inanewsingle-familyhouseinDenmark,occupiedbytworetiredpeople,21hoursadayforaperiodofonemonth.Thesysteminjectsair intoeachroom,includingthekitchenandbathroom,withexhausts inthebathroomand in a laundry roomconnected to the kitchen.A regulatingdamper in the inlet ductof each roomregulatestheairvolumeinresponsetotemperatureandrelativehumiditymeasurements.Sensorsarelocatedineachroomandintheinletduct.Twocriteriacontroltheoperationoftheventilationsystem:first,therelativehumiditymuststayunder45%toavoidhousedustmitegrowth;second,condensationondouble-paneglasswindowsmustbe avoided.Additionally, the authors fixed theminimumairflowrateat10l/s,andthemaximumairflowrateat35l/s.Thecontroloperatescontinuouslyandmakesacontrolchangeevery1minute.Asaresult,thetotalairflowratewasabletobereduced39%belowthe

Page 54: LBNLSVACH Smart ventilation review · 2020. 1. 4. · 0 | Page Residential smart ventilation: a review Gaëlle Guyot1, Max H. Sherman2, Iain S. Walker2 & Jordan D. Clark2 1 Cerema

51|P a g e

Danishcode requirement,witha relativehumidityof45%exceededabout10%of the time,and47%exceeded only 1%—5%of the time.No condensationwas observed, nor estimated, over the time ofmonitoring.CO2concentrationswerelowerthan1200ppm98%ofthetime.

NielsenandAmbrose(1995)monitoredtheperformanceofhumidity-controlledventilationsystems in16 apartments for three months and compared results with a group of 16 identical apartmentsequipped with constant airflow ventilation. In most of the apartments, the balanced DCV systemconsists of on-off supplies controlled by capillary hygrostats in each bedroom, and exhausts in thebathroomandkitchenautomaticallyregulatedbyamotor-drivenexhaustairvalve.Theventilationneedis automatically accounted for by the pressure difference between the space and the fan inlet. Theopeningofinletvalveshasnoimpactontotalexhaustairflowbutchangesthedistributionofwhereairenters the home: typically the air is supplied to the bedrooms. RH set points are fixed at 40% inbedroomsand45%inotherrooms.Foroutdoorairtemperatureslessthan1°C,aconstraint,whichisafunction of indoor RH and outdoor temperature measurements, is added to avoid condensation onwindows. The resulting maximum reduction in total airflow rate was 35%, obtained at an outdoortemperatureof1.5°C.Foroutdoortemperaturesgreaterthan9°C,theairflowwasconstantbecausetheoutdoorairhadnodehumidificationpotentialcomparedtotheindoorair.Themeanrelativehumiditydid not exceed 43% and was slightly lower in bedrooms equipped with DCV. No condensation onwindowswasrecorded.

AfshariandBergsøe(2003)presentafive-yearprojectontheevaluationanddevelopmentofinnovativeenergy and ventilation strategies. They calculated energy savings of 20%—30% for an RH-controlledventilationsystemthattheyconfirmedbymeasurementsonatestapartment. Inthisapartment,theysimulatedtwo-personoccupancyandemissionsfrommaterialsandfurnishings(usinganN2Otracer)inthelivingroom.Theyfirstinstalledastandardexhaust-onlyventilationsystemdeliveringaconstantrateof35L/s(20L/sinthekitchenand15L/sinbathroom).Next,theyinstalledRH-controlledexhaustsandpassiveRH-controlled inlets. Thebase flow rateswere10L/s1 inhumid rooms.A relativehumidityof45%activatedahighrateof50L/s inthekitchenand20L/s inthebathroom.Asaresult,evenwithahigher exhaust rate in the kitchen, the home ventilation rate is reduced to 2/3 that of the referencecase.TheCO2concentrationisreducedby10%andtheconcentrationofpollutantsemittedbymaterialsandfurnishingsisreducedby50%inthelivingroom.

Pavlovas (2004) modeled a typical Swedish apartment equipped with four types of exhaust-onlyventilationwiththeIDAClimateandEnergysoftware.Thefourtypesofventilationwere:

1) Areferencesystemprovidingaconstantairflowrate2) ACO2-basedDCVsystemwithsensorsinhumidrooms3) Ahumidity-basedDCVsystemwithsensorsinhumidrooms4) Anoccupancy-basedDCVsystem.

In all systems, the exhaust airflow rate varies from a base flow of 10 l/s up to 30 l/swhen needed.Different setpointswere tested:800ppm,1000ppm,and1200ppm forCO2-basedcontrol, and60%,70%,and80%forthemaximumhumiditythreshold.Positionofinteriordoors(closedoropen)wasalsotested.BothCO2-andoccupancy-basedDCVresultedinsimilarCO2concentrationsbutincreasedtheriskforhighhumidity levels.TheRH-basedDCV increasedCO2concentrations.BothCO2andRHstrategies

Page 55: LBNLSVACH Smart ventilation review · 2020. 1. 4. · 0 | Page Residential smart ventilation: a review Gaëlle Guyot1, Max H. Sherman2, Iain S. Walker2 & Jordan D. Clark2 1 Cerema

52|P a g e

resultedinmorethan50%annualheatingdemandsavings,andtheoccupancy-basedsystemresultedinapproximately 20% energy savings. Optimal setpoints were found to be 1200 ppm for the CO2concentrationand80%forthehighrelativehumiditythreshold.

Jreijiryetal.(2007)developedandtestedademand-controlledhybridventilationsystemforresidentialbuildingsasapartof theRESHYVENTEuropeanproject.Yearly simulationswereperformed inhouseslocated in four climates equipped with two different DCV systems: one based on CO2, the other onoccupancyinthedryrooms.Ineachsystem,occupancyisdetectedinthetoilets,humidityisdetectedinthebathroomandkitchen,andtemperaturesofexhaustandoutdoorairareused.Airinletsandexhaustgrillescanbemodulatedtoeightdifferentpositions.Every10minutes,acontrolalgorithmadjuststhefanspeedinresponsetothemeasureddataandtheavailablenaturalventilation.IntheCO2-basedDCVstrategy, inlets and grilles open based on humidity and CO2 concentration. Both strategies haveeconomizer and night-cooling functionality in their algorithms. Results were compared to a single-exhaust ventilation system. They showed better performance under colder climates because of thegreaterstackeffect.Inalltheclimates,theCO2exposureinoccupieddryroomsisreducedatleastbyafactorof two: thesummer thermalcomfort isnearlyalwaysbetter, theenergy forheating is reduced2%—5%, and the electrical consumption of the fan is reduced 91%—96%. IAQ was better with thestrategybasedonCO2.

VandenBossche,etal.(2007)modeledanexhaust-onlyRH-basedDCVsysteminatypicalBelgianhouseequippedwith self-regulating trickleventilatorswithCONTAMandcompared resultswithanexhaust-onlyconstantairflowventilationsystem.Theysimulatedfour-personoccupancyandusedoutdoordatafrom a reference year in Uccle, Belgium. The nominal ventilation exhaust rateswere 50m3/h in thekitchen and 25 m3/h in the bathroom. In the DCV strategy, humidity sensors in the humid roomscontrolled airflow to 20%—100%of thenominal airflow for a relativehumidity rangeof 30%—100%,with a linear relationship between the two setpoints. Also,motion sensors in humid rooms ensurednominalairflowsfora20-to30-minuteperiodafterthelastdetectionofoccupancy.

VandenBosscheshowedthatIAQ,estimatedeitherbythetimespentineachCO2-IDAclassoftheEN13779 standard, or by the LKI index of the Dutch standard (Equation 22), was slightly lower for thestudiedDCVsystem.Theotherindicatorusedwasthepercentageoftimewhenrelativehumidityfailedtostayinthe30%—70%range.Thisindicatorwasfoundtobeverysensitivetoenvelopeairtightness.Inthebathroomandbedroomofanairtighthouse (n50=0.6h-1), thestudiedDCVsystemmaintainedthespaceinthisrangeonlyfor67%ofthetime,whilethereferencesystemsucceeded90%ofthetime.Fora house with average airtightness (n50=11.2 h-1), they observed no difference in performance. Theenergysavingspotentialwascalculatedataround1,100kWh—1,200kWh,which isabout27%of theventilation-relatedenergy forveryairtighthouses,and14%of theenergy forhouseswithanaverageairtightness. They also studied the moisture-buffering effect and showed that it did not affect DCVperformance,withonly0.75%extraenergydemand.

Woloszyn, et al. (2009) studied the performance of humidity-based DCV systems for residentialbuildings,comparingfourdifferentheat,air,andmoisturesimulationsoftwarepackagesandtakingintoaccountthemoisture-bufferingeffect.Forawhole-houseexhaust-onlyventilationsystemwithexhaustairflowdependingonRH,Woloszynshowedameanventilationratereductionof30%—40%,generating12%—17%energysavingsduringthecoldseason.TheyhighlightthatthesegainswereachievedwhilekeepingthepeakRHvaluesthesame.AsCO2concentrationswereestimatedtobegreaterthan1,200

Page 56: LBNLSVACH Smart ventilation review · 2020. 1. 4. · 0 | Page Residential smart ventilation: a review Gaëlle Guyot1, Max H. Sherman2, Iain S. Walker2 & Jordan D. Clark2 1 Cerema

53|P a g e

ppmaround33%of the timeduring thecoldperiod, theyconclude thatanoptimizationofcombinedRH-andCO2-basedstrategiesshouldresultinbetterIAQperformance.

During the Performance Project (Air H 2010; Bernard 2009), measurements during two completeheating seasonswereperformed in31newoccupied apartments equippedwithhumidity-based inletand outlet DCV systems. Measured variables included outdoor and indoor CO2, temperature andhumidity, and ventilation parameters (pressure, inlet cross-sections, airflows through the trickleventilators, and exhaust air outlets). The measured values were recorded every minute. ThemeasurementsvalidatedthetheoreticalIAQperformancemodeledbythesoftwareusedintheFrenchagreements for DCV systems (Avis techniques). Cumulative CO2 exposure, even in high-occupancybedrooms (four adults), and condensation riskwere very low in the vastmajorityof homes. IAQwasbetterinbedroomsduringnightsthanitwaswithfixedairinlets.Totalaverageventilationairflowwasmeasuredatapproximately30% lower thanwith fixedventilation rates.Energy savingsonventilationmotor consumption was estimated at between 35% and 50%. The authors extrapolate this result tohomeswithgreateroccupancyandarriveatventilationenergysavingsofapproximately55%.

NielsenandDrivsholm(2010)studiedasimpleDCVapproachforhomesmeasuredtheconcentrationintheair-handlingunitandmodulatedthefanspeedbetweentwolevels.ThisstrategywasimplementedinanewDanishsingle-familyhouseoccupiedbytwoadultsandtwochildrenandequippedwithasingleventilationsystem.Measurementswereperformedwithandwithoutthenewcontrolstrategy.Thehighspeedisfixedto100%offancapacityandisbasedontheflowraterequiredbytheDanishbuildingcode(216m3/hor0.43l.s-1.m-²forthetestedhouse);thelowspeedis40%ofthespeedathigh-flowrate.Adifferenceof100ppm,150ppmor200ppmbetweenCO2-concentrationsmeasuredintheexhaustoroutdoorairsignalsthatthebuildingisoccupiedandactivatesoperationatthehighspeed.Adifferenceof2g/kginabsolutehumidityalsoactivateshigh-speedoperation,whichtakesintoaccountthefactthatin the Danish climate the outdoor temperature is below 5°C over 3000h per year. Results show anoptimumataCO2concentrationdifferencesetpointof150ppm.Atthissetting,theventilationratecanbesetto“low”37%ofthetimewithoutsignificantchangeintheCO2concentrationscomparedtothefixed rate ventilation strategy, but with energy savings estimated at 35% of the fan’s electricityconsumptionand37%ofitsheatingneeds.Measurementsofthefanspeedthroughouttheweekshowthatthecontrolstrategyfollowedtheunoccupiedschedulesduringdaytimewell.

Laverge,etal.(2011)testedtheperformanceoffourapproachesforDCVinatypicalBelgianhouse:1)humidity-controlledinthehumidroomswithan“on-off”strategyonthesizeoftheexhaustgrillebasedonanRHsetpointof70%,2)occupancy-controlled,withan“on-off”strategyonthefanrunningonce20minutes of occupancy is detected, 3) CO2-controlled in the dry roomswith air inlets reduced to 10%openingifCO2concentrationis lowerthan1000ppmintheroom,4)thethreeapproachescombined.Multi-zonemodelingwasperformedwithCONTAMandresultswerecomparedtoareferenceexhaust-only constant flow rate ventilation. Two IAQ indicators were used: 1) The mean excess CO2concentration over 1000 ppm to which an occupant is exposed during the heating season, 2) theexposuretoatracergasemittedintoiletrooms(efficiencyoftheexhaust inremovingatsource).Thetotal,heatingseasonventilationenergysavingswereintherangeof25%(onlyonecontrolparameter)to60%(threecombined).CO2detectionindryroomswasfoundtobemorerobustthanthantheotherstrategies.Reducinginletsizeeffectivelymovesresponsibilityforaerodynamicmanagementtothefan,ratherthanwindorstackeffect.Complementaryanalyseswithdifferentlevelsofenvelopeairtightness

Page 57: LBNLSVACH Smart ventilation review · 2020. 1. 4. · 0 | Page Residential smart ventilation: a review Gaëlle Guyot1, Max H. Sherman2, Iain S. Walker2 & Jordan D. Clark2 1 Cerema

54|P a g e

confirmedthisanalysis.TheCO2indicatorresultswerebetterwithCO2andoccupancycontrol.Exposuretothetoiletroomtracergasunderallstrategieswassimilar.

Inarecentstudyevaluatingdifferentcontrolalgorithmsmainlybasedonthe35DCVsystemsavailableontheBelgianmarket,Caillou,etal.(2014b)calculatedtheenergysavingstobebetween0%and40%,varyingby typeof system, foronly thesystems fulfilling the IAQrequirements.Themost IAQ-friendlyand energy-efficient systems are locally regulated and combine an exhaust controlled by relativehumidity ineachhumidroomandasupply (throughairsupply inlets inabalancedsystemorthroughtrickleventilatorsinanexhaustonlysystem)controlledbyCO2ineachdryroom.ThelessIAQ-friendlyandenergy-efficientsystemsarethosewithonlyRH-regulatedexhaustinhumidroomsandnocontrolontheairinlets.MostenergysavingcoefficientsaregivenlaterinTable9.

Another recent studywas based onone year ofmeasurements in 62 homes in theNetherlands (vanHolsteijn and Li 2014), some of which were equipped with CO2-based DCV systems. They usedcumulativeCO2 exposure index requirement, LKI1200, as an IAQ indicator (Equation22).Dependingonthe locationof the sensors, they showeda rangeofperformance for theDCVsystems. IfRHandCO2sensorswereall linkedtoamechanicalsupplyand/orexhaustaircomponent intheroomswherethesensorswerelocated,goodperformancewasobserved.Intheothercases,energyperformanceandIAQcan be worse than in constant airflow reference systems. Reference systems for single-exhaustventilationhadameanperformanceof119MJ/m²/heatingseasonand244kppm/person.SystemswithonlyCO2 sensors in the living roomdecreased theperformanceof the two systemsby21%and11%,respectively.SystemswithRHandCO2sensorsinalltheroomsincreasedperformanceby31%and70%,respectively. The reference system for balanced ventilation had a mean performance of 24MJ/m²/heating season and 68 kppm/person. Systems with only CO2 sensors in two zones increasedenergy performance by 24% and decreased IAQ by 54%; systemswith RH and CO2 sensors in all theroomsdecreasedperformanceby325%and169%,respectively.SystemswithRHandCO2sensorsinallthe roomsand supply in the connecting spaces increasedenergyperformanceby45%anddecreasedIAQby11%.

Theperformanceofotherpollutant-basedsmartventilationsystemsforresidentialbuildingshasbeenstudiedbySeong(2010).AstandardKoreanmulti-zoneapartmenthasbeenmodeledwithCONTAMandEnergyPlusata1hourtime-step,equippedwithawhole-housebalancedDCVsystemeitherbasedonCO2demandoronTVOCdemand.Theinvestigatedcontrolstrategyisan“on-off”strategy,withabaseairflowrate fixedat the reference in theKorean regulation,0.7h-1.The locationof thesensors isnotgiven. TVOC generation rates were modeled based on data measured by the Korean Ministry ofEnvironment.Theydifferforeachroom,andincludeanemissionrateperfloorarea,thenfinishingandproduct emissions (furniture, bedmattress, chestof drawers, desk, personal computer, chair, kitchenunit, shoe rack, TV). The TVOC exposure is not calculated and thus it is difficult to compare theperformanceresults.TheCO2-basedDCVstrategyallowsthehometostayunder1000ppmatlowTVOCconcentrationsmost of the time,with some peaks, staying in the range 150µg-m3—800µg-m3. Theenergysavingsareestimatedat17%.TheTVOC-basedDCVstrategymaintainsCO2concentrationsunder2200ppm,andTVOCconcentrationsof400µg-m3—800µg.m3.Itshowedenergysavingsestimatedat26%.

The performance of occupancy-based smart ventilation systems has been demonstrated in somemodelingandfieldstudies.

Page 58: LBNLSVACH Smart ventilation review · 2020. 1. 4. · 0 | Page Residential smart ventilation: a review Gaëlle Guyot1, Max H. Sherman2, Iain S. Walker2 & Jordan D. Clark2 1 Cerema

55|P a g e

Through a preliminary TRNSYS-modeling study, Römer and van Ginkel (2003) demonstrated energysavings of about 15% for a low-energy house equipped with a ventilation system with a night-timestrategy.Inthisstrategy,baseairflowsduringnightsaremultipliedbyafactoroftwoinbedroomsandreducedbythesamefactorintheotherrooms.Anotherstrategyconsistedofdividingbaseairflowsbyafactoroftwowhenroomswereunoccupied.Basedonatypicalscheduleforafour-personfamily,theycalculated20%energysavings.Suchabalancedoccupancy-basedventilationsystemwas installed inalow-energy test house. If the relative humidity in a room exceeded 70% or the indoor temperatureexceededthecomforttemperature,thehighairflowratewasalsoactivated.Movementdetectioninaroom manages ventilation system control dampers directing flows to individual rooms until theprescribed levelsof temperatureandRHarereached.RömerandvanGinkelmeasuredareductionof50%to80% in thekitchenairchangerate,nochange inbedroomairchangerate,andan increaseof160%inthelivingroom,comparedtotheconstantairchangerate.NoinformationisgiveninthepaperaboutthetotalairflowreductionorIAQeffects.

SeveralstudiesfromLBNLhavedemonstratedtheapplicabilityofanintermittentventilationstrategyforresidential buildings based on occupancy. The concept of equivalence in exposure was primarilydevelopedconsideringsuchstrategies(Sherman2004)andhasbeenintegratedintopreviousupdatesoftheASHRAE62.2standard(2016).Later,Sherman,etal.(2011)furtherdevelopedthisconcepttoapplyunderavarietyofventilationrates,emissionrates,andtheevaluationperiodsforthedose.

Based on this background for chronic and acute exposure evaluation, D. K.Mortensen, et al. (2011)studiedtheoptimizationoftheperformanceofawhole-houseventilationstrategywithtwofanspeeds.They studied variations in the emission ratio (the ratio between all pollutant source strengths andbackgroundpollutantsourcestrength),thelowventilationfactor(theratiobetweenthelowventilationrateandtheventilationrateoftheequivalentconstantratesystem),andthisequivalentconstantrate.They show that the performance can always be optimized given the occupancy time and emissioncharacteristics.Thelow-ventilationfactorswere0.13—0.4atpeakeffectiveness,andallthesystemshada high-to-low airflow ratio of 2.5-5.Mortensen also calculated the ratio of the acute to the chronicexposure and showed that it was always less than three, which means that such DCV systems alsoprovide for acceptable peak exposures. Their research shows that, for a home occupied for 16consecutive hours, the total ventilation rate reduction is about 12% compared for equivalence to atargetconstantrateof0.5h-1andanemissionratioof1.5.Attheextremecasewhenoccupantpollutantemissionsaredominant,thereductioncanbeapproximately18%.Attheotherextreme,wherethereisnocontributiontocontaminantemissionsfromoccupants,reductionisminimalat9%.

Inarecentmodelingstudyofanewthree-levelhouseinSweden,HesarakiandHolmberg(2015)studiedtheIAQandenergyimpactofawhole-houseexhaust-onlyDCVsystembasedonoccupancy,consideringunoccupiedperiodsof4,6,8,and10hours.Thewhole-buildingairflowrateis60l/s(0.75l/s-m-2)andisswitchedto16 l/s(0.1 l/s-m-2)duringunoccupiedperiods.Comparedtothereferenceconstantairflowsystem at 60 l/s, themean age of air at 6 pm (when occupants return) decreases to 94.7%, 82.8%,66.7%,or48.7%,respectively.TheVOCconcentrationincreasesto3%,4%,7%,or15%,respectively—inthe last case goingover the threshold value to0.1ppmwhile theCO2 concentration staysbelow theconsidered1000ppmthresholdvalue.FortheacceptableIAQsystemwith8hoursunoccupied(e.g.,theventilation is turned on two hours before the occupants come back) the heating energy savingswasestimated at 20% and fan consumption 30%. As a result, the total building energy consumptionwas

Page 59: LBNLSVACH Smart ventilation review · 2020. 1. 4. · 0 | Page Residential smart ventilation: a review Gaëlle Guyot1, Max H. Sherman2, Iain S. Walker2 & Jordan D. Clark2 1 Cerema

56|P a g e

reducedby10%,from52kWh.m-2to47kWh.m-2.SimilarsavingswerealsoobservedbyLaverge,etal.(2011).

Theperformanceofoutdoortemperature-controlledsmartventilationsystemshasbeendemonstratedinsomerecentmodelingstudies,sometimesinconjunctionwithhybridventilationsystems.

The use of RIVEC, presented in detail in the following section, was studied to optimize hybrid andpassiveventilationstrategiesinsingle-familyhomes(TurnerandWalker2013).Inthisstudy,RIVECfirstdetermines the available airflow rate in a designed passive stack (the signal could be given from apressureprobeorotherairflowmeter).Thispassivestackairflowislimitedto100%oftheASHRAE62.2minimumrequirement.IftheairflowisnotsufficienttomeettheIAQequivalencerequirements,RIVECturnsonthewhole-houseexhaustfan.Asaresult,TurnerandWalkershowedthattherewasroomtooptimize hybrid ventilation systems with good sizing of the passive stack and smart ventilationstrategies.

Less,etal.(2014)recentlyusedRIVECtostudyanoutdoortemperature-controlledventilationstrategyallowingventilationtobeswitchedoffwhenthestackeffectalonewassufficienttoprovideventilation.Simulationswere performed in allU.S. climate zones, for two house geometries and under envelopeairtightnesslevelsintherangeof0.6—10airchangesat50Pascal(ACH50).Fourcontrolstrategieswerestudiedtooptimizethesolution:

1. Infiltrationdependent:thefanisturnedoffifstackeffectprovidesthetargetairflow2. Infiltrationdependent2:thefanisturnedtohalf-flowifstackeffectprovides50%ofthetarget

airflow3. Infiltration-independent-25th: the fan is turned off each time the outdoor temperature drops

below5°C4. Infiltration-independent-25th:thefanisturned-offeachtimeoutdoortemperaturedropsbelow

the25thpercentileofcoldesthoursdeterminedfromTMYdatafiles.

Thesimpleststrategy,withthecutoffsetto5°C,wasthemostefficientacrossavarietyofclimatezones.However,thisapproachofaccountingfornaturalinfiltrationislimitedintighterhomes.Housestighterthan3ACH50wereneverabletoreachnatural infiltrationairchangeratesequivalent toASHRAE62.2(notethatthenaturalinfiltrationairflowswerestillaccountedforinthecontrols).Forleakierhousesinsevere climates, such strategies can become effective and reach annual HVAC energy savings in therangeof100kWh—4000kWh.Fansshouldbeoversizedby5%—150%,withanaverageof34%.

Lubliner,etal.(2016)furtherinvestigatedsuchalow-cost,temperature-basedsmartventilationcontrolsystem(lessthan$80)ontwohouses,usingREGCAPandEnergyGaugeUSAenergysoftwareandafield-testingcampaignlastingseveralmonthsintwoclimates.Weeklytestinginthesehousesallowedthemto fix the outdoor temperature setpoint for each house. As a result, they obtained energy savingsbetween73kWh/yearand230kWh/year.Theyalsodemonstratedtheimportanceofthelocationofthetemperature sensors. They observed no significant effects on CO2 or humidty using this strategy.Occupancy, window opening and wind effects were found to have significant effects on CO2 andhumidity.

Page 60: LBNLSVACH Smart ventilation review · 2020. 1. 4. · 0 | Page Residential smart ventilation: a review Gaëlle Guyot1, Max H. Sherman2, Iain S. Walker2 & Jordan D. Clark2 1 Cerema

57|P a g e

Other control strategies for smart ventilation systems have also been studied by LBNL during thedevelopment of the smart ventilation concept based on equivalence in exposure (Sherman 2004).Sherman andWalker (2011) developed RIVEC, the smart ventilation prototype. This update to theirpreviousworkconsistedofanintermittentventilationstrategycontrolledbytheoperationofotherairdevices in the house and with a switch-off during the 4-hour period of peak energy demand. Thetheoretical background supposes a continuously occupied home with a constant emission rate. Theauthorsproposecontroller logicwithasetofactionsateachtimestep, fixedprimarilyat10minutes.Thecontroller:

1. Determinesthecurrentventilationrate,takingintoaccountexogenousventilationairflowsandseparatingexhaust,supply,andbalancedflows

2. Estimates the current IAQ from relative exposure and the relative dose calculated with theconstantemissionrateassumption

3. Turnsonoroff thewhole-houseventilation system,according toadetailed control algorithmdividingthedayintofourperiods:a12h-baseperiod,a4h-pre-peakshoulderperiod,a4h-peakperiod(off),anda4h-post-peakperiod.

Simulationswereperformedwitha1-minute time-stepwith the simulation toolREGCAP (WalkerandSherman 2006) on a typical new Californian home in three climate conditions (mild,warm, and coldmountain).Thissmartventilationstrategywasmodeledwithfourventilationtypes:continuousexhaust,heat recovery ventilator, continuous exhaust with a central fan integrated supply, and continuoussupply.Theyobserveadecrease intheannualaveragerelativedoseofupto14%andapeakrelativeexposurenomorethan11%abovethetargetlimit,evenwitha4-hourshutoffperiod.Energysavings,including heating gas savings and electricity savings (cooling and fans),were estimatedbetween11%and 61%. Energy savings recalculated considering equivalent IAQ (and not better IAQ as originallyobserved)werebetween20%and64%.Thefractionalruntimeoftheventilationfanswasabout25%ofwhatitwouldbewithoutdynamiccontrol.

Next,Walker and Sherman present the RIVEC prototype (Walker, et al. 2011). After being built andbench tested it was field tested in an occupied house in Moraga, California, and equipped with aneconomizer.Thefieldtestwasdividedintothreeperiods:threeweeksofoperationoftheRIVECsystem,sixdayswiththewhole-houseventilationsystemturnedoff,andtwodayswiththewhole-housesystemoperatingwithoutRIVEC.Frommeasurements, simulationswereperformedover theyearandenergysavingswereestimatedat1000kWh.RIVECreducedtheruntimeofthefansbyupto71%forahomewithaneconmizer.Thewhole-housefanmustbeoversizedby25%toallowittoprovidesufficientoff-peakventilationrates.

TheRIVECwasthenfurtherdevelopedtobemorerobust,withonlytwoperiodsintheday(eliminatingthe pre and post-peak periods), and to take into account varying occupancy in the control algorithm(Turner and Walker 2012, 2013). These further modeling investigations with REGCAP (Walker andSherman2006)lookedatdiverseclimates(16Californianclimatezones),varioushomegeometries,fourmechanicalventilationsystems,andtwopassiveorhybridsystemsandenvelopeairtightness levelstogiveagoodrepresentationofthemajorityoftheCaliforniahousingstock.Theauthorsconcludedthatventilation energy savings are typically 40% while maintaining, or even going beyond the IAQequivalenceofASHRAE62.2,andwithoutallowingunacceptableacuteexposuretoconstantlyemitted

Page 61: LBNLSVACH Smart ventilation review · 2020. 1. 4. · 0 | Page Residential smart ventilation: a review Gaëlle Guyot1, Max H. Sherman2, Iain S. Walker2 & Jordan D. Clark2 1 Cerema

58|P a g e

pollutants.Thisresultsinabsoluteenergysavingsfrom500kWh/yearto7000kWh/yearperhousehold.Thoseenergysavingsarerobustacrossclimate,housegeometry,andairtightnesslevel.Thepeakpowerisalsosignificantlyreducedupto2kWforatypicalhouse.

Anotheraspectofsmartventilationistocontrolexposuretooutdoorpollutants—typicallyparticlesandozone. RIVECwas used to simulate a smart ventilation strategy that switched off the ventilation fanduring outdoor ozone level peaks in a typical single-family house located in two places in California(WalkerandSherman2013).Theydemonstrated reductionsof10%—40% in indoor-to-outdoorozoneratios compared to continuously operating ventilation systems for a typical new California home(SpecificLeakageArea=4).

Muchlessworkhasbeendonewiththegoalofemployingresidentialventilationasaresourcefortheelectric grid. This is likely the case for several reasons, including the lack of dedicated residentialventilationsystemsintheUnitedStates,theneedforactivecontrolofventilationsystemsratherthansomeofthepassivesystemsdiscussedabovewhichareusedinEurope,theneedforinfrastructurethatcan inform smart residential systems of grid needs, and the barriers to smart ventilation in generalmentionedabove.

Notableexceptionsare the2016studiesbyRotger-Griful,etal. (Rotger-Griful, Jacobsen,Nguyen,andSorensen,2016;Rotger-Griful,etal.2016).Thesestudies lookedat thedemand-responsepotentialofventilation systems in Nordic countrieswhere heating and cooling are not needed and reduced loadfrom curtailed ventilation would be in the form of fan power only. They found that, for short-termmodulation, ventilation in a 12-story residential buildingwith 159 apartments could provide 1 kWofreductionand4.5kWofpowerincreasein30seconds.Forpeakdemandreduction,theyshowedthatventilation could be curtailed to reduce power by 1.5 kW without increasing the CO2 concentrationbeyond900ppm.Theauthorsconcludethatmanysuchbuildingswouldneedtobeaggregatedinordertoprovideasubstantialservicetothegrid.

Page 62: LBNLSVACH Smart ventilation review · 2020. 1. 4. · 0 | Page Residential smart ventilation: a review Gaëlle Guyot1, Max H. Sherman2, Iain S. Walker2 & Jordan D. Clark2 1 Cerema

59|P a g e

Table13:SummaryofsurveyedstudiesonenergyandIAQperformanceofsmartventilationstrategiesinresidentialbuildings.

Reference(classifiedbydate)Country

Typeofresidentialbuilding

Method Typeofsystem+regulation

Type&locationofsensors

Controlstrategy

Mainfindings/comments

IAQperformance

Energysavingscomparedtoconstantratereference*

(Anon1983)FranceOriginalpapernotfound,informationfromthereviewinRaatschen1990

Balanced+wholehouse+shorttermsupplementaryairflowsinkitchen

RH-controlledexhaustgrilles+RH-controlledsupply

Themeasuredaveragerelativehumiditycontrolsthesupplyandexhaustairflowrates

Costof230€fora3BR-apartmentHumiditysensors,airinletsandexhausthavebeentestedforseveralyearsintwoindependentlaboratories(EDF+CETIAT)

Fewercondensationproblems

50%-60%

(BarthezandSoupault1984)FranceOriginalpapernotfound,informationfromthereviewinRaatschen1990

Apartment Modeling+experimental

SingleExhaust+Wholehouse+Shorttermsupplementaryairflowsinkitchen

CO2+nosensorinotherrooms

Controlatwo-speedfan

GoodrelationshipbetweenCO2andoccupancybutdifficulttoconcluderelationshipbetweenCO2andrelativehumidity

CO2between400and750ppmRelativehumidityaround60%

60%ofthetotalairflowmodeledandmeasured

(Nicolas1985)France

Residential Modeling Singleexhaust+wholehouse+Shorttermsupplementaryairflowsinkitchen

MechanicalRH+MechanicalRH

Thecross-sectionoftheairinletsandoutletsisamechanicalfunctionofRH

Performancevariesaccordingtoairleakagelevel,climate,occupancy,andactivitylevelscenarios

30%ofthetotalexhaustairflow(takesintoaccountcompensationbyairleakage)10%heatingenergysavings

(SheltairScientific,Ltd.1988)Vancouver,Canada

1house Monitoringfor1week

Singleexhaust+wholehouse

MechanicalRH ThesectionoftheairinletsandoutletsisamechanicalfunctionoftheRH

ThetestedsystemshallbemoreeffectiveinadrierclimateSomeaccuracymeasurementproblemswereunderlinedbytheauthors

Therelativehumiditylevelsstayedconstant,withoutrespondingtotheoccupancy,

0%,explainedafterfurtherinvestigationsbyleaksontheboilerheater

(ParekhandRiley1991)Ottawa,Canada

2houses Monitoringcampaignover6months

Singleexhaust+wholehouse

MechanicalRH+MechanicalRH

Cross-sectionofgrillesismechanicallycontrolledfunctionofRH

Impactofairleakageunderlined

PoorIAQ,especiallyinthebedroomswithCO-concentration>1200ppm

6%energysaving

(Mansson1993)(Wouters,etal.1991)Namur,Belgium

9referenceflats+9equippedwithRHDCVina9-storybuilding

Monitoringcampaign3daysin3periods

Natural+wholehouse(Shuntductworksinhumidrooms)

RH-controlledexhaustgrilles+RH-controlledgrilles

Cross-sectionofgrillesismechanicallycontrolledfunctionofRH

SameCECprojectasthetwofollowingstudiesNomeasureinthebedroomsandlivingrooms

%oftimeCO2under1000ppmand1500IslowerwithDCV

**improvement

Page 63: LBNLSVACH Smart ventilation review · 2020. 1. 4. · 0 | Page Residential smart ventilation: a review Gaëlle Guyot1, Max H. Sherman2, Iain S. Walker2 & Jordan D. Clark2 1 Cerema

60|P a g e

Reference(classifiedbydate)Country

Typeofresidentialbuilding

Method Typeofsystem+regulation

Type&locationofsensors

Controlstrategy

Mainfindings/comments

IAQperformance

Energysavingscomparedtoconstantratereference*

(Mansson1993)(Wouters,etal.1991)Schiedam,TheNetherlands

7referenceflats+7equippedwithRHDCVina10-storybuilding

Monitoringcampaign72daysin3periods

Natural+wholehouse(Shuntductworksinhumidrooms)

RH-controlledexhaustgrilles+RH-controlledgrilles

CrosssectionofgrillesismechanicallycontrolledfunctionofRH

Nomeasureinthebed-andliving-roomsThepoorresultsareexplainedbythesmallsizeoftheexistingducts

Noimprovement **noimprovement

(Mansson1993)(Wouters,etal.1991)LesUlis,France

10referenceflats+10equippedwithRHDCVina5-storybuilding

Monitoringcampaign143daysin3periods

Natural+wholehouse(Shuntductworksinhumidrooms)

RH-controlledexhaustgrilles(exceptinkitchen)+RH-controlledgrilles

Cross-sectionofgrillesismechanicallycontrolledfunctionofRH

NomeasurementinthebedroomsandlivingroomsAirtightbuildingwithappropriatesizeofexistingductsexplainsthegoodresults

CO2andRHarewellcorrelated

**30%onaheatingseason

(Mansson1993)Torino,Italy(2700HDD)

9roomsof3flatsina6-storybuilding

2-monthmonitoringcampaignheatingperiod

Simpleexhaust+wholehouse

RH-controlledexhausts+RH-controlledgrilles

Cross-sectionofgrillesismechanicallycontrolledfunctionofRH

Surfacecondensationriskonwindowsmetalframesrelatedtomealpreparation

40%ofthetotalairflow

(Mansson1993)Maasbree,TheNetherlands

1attachedenergy-efficienthouse

Monitoring2weeks

Balanced+wholehouse

1)RHsensorinlivingroom2)RHsensorinexhaustair3)RHsensorandmixedgassensorinexhaustair

Setpoints-RH:adjustedasafunctionofoutdoorairtemperature:controlthreefanspeeds(35-155-220m3/h)

AveragebedroomCO2concentration:Ref)900ppm1)1050ppm2)890ppm3)575–790ppmNocondensationrisk

***Fanlevelin%low/middle/highRef)73/3/241)100/0/02)100/0/03)29/16/55

(Mansson1993)(Moffat,etal.1991)Ottawa&Vancouver,Canada

5energyefficienthouses

MonitoringbeforeandafterDCVinstallationfrom189hto1385h

3Balanced,twosimpleexhaust+wholehouse

CO2,pressuredifferences,temperatures,RH,absolutehumidity,activity,operatingofairequipment.

Smartventilationstrategy

Thestudyalsoincludedthetestofaircleaners

SlightreductioninaverageCO2butsignificantreductioninpeakCO2levels.

-6to21%oftotalairflow-23to34%offanelectricalenergydemand

(Nielsen1992)Denmark

Anewsinglefamilyhouse

Monitoringover1month

Airsupplyinalltherooms,withexhaustsinthebathroomandinalaundryroom+localregulation

RH Adamperintheinletductofeachroommodulatesairvolumeeveryminute,RH<45%

RH>45%10%ofthetime,RH>47%only1%-5%ofthetime.Nocondensation.CO2<1200ppm98%ofthetime

Totalairflowratecouldbereducedatleast39%belowtheDanishcode

Page 64: LBNLSVACH Smart ventilation review · 2020. 1. 4. · 0 | Page Residential smart ventilation: a review Gaëlle Guyot1, Max H. Sherman2, Iain S. Walker2 & Jordan D. Clark2 1 Cerema

61|P a g e

Reference(classifiedbydate)Country

Typeofresidentialbuilding

Method Typeofsystem+regulation

Type&locationofsensors

Controlstrategy

Mainfindings/comments

IAQperformance

Energysavingscomparedtoconstantratereference*

(Kesselring,etal.1993)Florida,USA

1energyefficienthome

5daysmonitoring

Balanced+wholehouse

1indoorCO2

sensor,nolocationinformation

On-off-controlledDt=15minbasedona600ppmsetpoint

CO2concentrationsinmasterbedroom600-900ppm

Theventilationsystemwason1/3oftime

(NielsenandAmbrose1995)Denmark

16apartments Monitoringduring3months

Balanced+wholehouse+centralizedandlocalregulation

RHairsuppliesandexhaustscontrolledbycapillaryhygrostatsineachroom

SetpointsfixedtoRH=40%-45%.Ifoutdoorair<1°C,acondensationcriterionisadded

Resultswerecomparedwithagroupof16identicalapartmentsequippedwithconstantairflowventilation

MeanRH<43%Nocondensationonwindowswasregistered.

Maximumreductionintotalairflowrate:35%Foroutdoortemperatures>9°C,0%

(RömerandvanGinkel2003)Petten,theNetherlands

1testlow-energyhouse

Preliminarymodeling(TRNYS)+experimentalresults

Balanced+wholehouse+localregulation

Occupancy+RH+indoortemperature

1a)nighttimestrategy1b)occupancystrategy2)occupancy,RH>70%orindoortemperature>comfort

1)notstudied2)nosignificantriskfrombiologicalagents,temperatures>25°Coftenoccurduringthewinter,lowradonlevels

Modeledenergysavings:1a)15%1b)20%2)Noinformation

(AfshariandBergsøe2003)Denmark

1test1BRapartment74m²,a2-personoccupancysimulated

3daysmonitoring

Exhaust-only,wholehouse+localregulation

RH+passivelycontrolledRHairinlets

Minimumratefixedat10L.s-1,RH=45%activateaforcedrateinhumidrooms

2-personoccupancysimulatedwithCO2andRHemissions,constantNO2emissionsimulatedemissionfrommaterialandfurnishings

CO2concentration–10%Pollutantemittedbymaterialsandfurnishings–50%

Totalairflowrate–30%

(Pavlovas2004)Sweden

AtypicalSwedishapartment

Modeling(IDAIndoorclimateandenergy)

Exhaustonly,wholehouse+globalregulation

1)CO2-basedDCVwithsensorsinhumidrooms,2)humidity-basedDCVwithsensorsinhumidrooms,3)occupancy-basedDCV

Exhaustairflow10l.s-1or30l.s-1.

Indoordoorsclosedoropenhavebeenalsotested.Optimumswerefoundatsetpointsat1200ppmCO2and80%highRH.

CO2-andoccupancy-basedDCV:similarCO2concentrationsbutincreaseinriskofhighhumiditylevelsRH-basedDCV:increasesCO2concentration

Annualheatdemandsavings:>50%(CO2andRH)20%(occupancycontrol)

(Jreijiry,etal.2007)Athens,GreeceNice,Trappes,FranceStockholm,Sweden

Singlefamilyhouse

Modeling(MATLAB/SimulinkandSimbad)

Whole-houseassisted(hybrid)naturalventilation

Toilets:occupancykitchenandbath:RHdryrooms:

Airinletsandgrillesover8positions.A10-mincontrolalgorithm

CO2exposureinoccupieddryroomsisatleastreducedbyafactorof2,the

Heatingneedsreduced:2%-5%Fanelectricalconsumptionreduced:91%-96%

Page 65: LBNLSVACH Smart ventilation review · 2020. 1. 4. · 0 | Page Residential smart ventilation: a review Gaëlle Guyot1, Max H. Sherman2, Iain S. Walker2 & Jordan D. Clark2 1 Cerema

62|P a g e

Reference(classifiedbydate)Country

Typeofresidentialbuilding

Method Typeofsystem+regulation

Type&locationofsensors

Controlstrategy

Mainfindings/comments

IAQperformance

Energysavingscomparedtoconstantratereference*

1)occupancydetection2)CO2

regulatesthefanspeed

summerthermalcomfortisnearlyalwaysimproved

(VandenBossche,etal.2007)Uccle,Belgium

1housewithdifferentairtightness

ModelingwithCONTAM

Whole-houseexhaustonly

RH-controlledexhaustsinhumidrooms,self-regulatingtrickleventilatorsindryrooms,motionsensorsinkitchenandbathroom

LinearrelationshipbetweenRHinrange30%-100%andnominalairflowrateinrange20%-100%.Motionsensorsinhumidroomsactivatesnominalairflowsfor20-30minutes

Simulated4-personoccupancy

IAQ,estimatedeitherbythetimespentineachCO2-IDAclass,orbycumulativeexposure,isslightlylowerforthestudiedDCVsystem.Inbathroomandbedroomofanairtighthouse(n50=0.6h

-1),DCVsystemintherangeonlyfor67%ofthetime

Energysavingsaround1100kWh-1200kWh,27%forveryairtighthouses,14%forhouseswithaverageairtightness.Themoisturebufferingeffectaddsonlya0.75%extraenergydemand.

(Krus,etal.2009)ThreeclimatesinGermany

1testapartment75m²,3-personoccupancysimulated

Modeling(Wufi-Plus)

Exhaust-only,wholehouse+localregulation

RH+RH Fanatconstantpressure100Pa,RHcontrolstheopeningofvalvesinexhaustducts

Goalofthisstudywastocompareanexhaust-onlyDCVsystemwithabalancedsystemwithheatrecovery

CO2stayedlowerthan1200ppm

Notinvestigated

(Woloszyn,etal.2009) 1testroom Modeling(TRNSYS,IDA-ICE,Clim2000,HAM-Tools)

Exhaustonly,wholehouse+localregulation

RH-controlledexhaustsinhumidrooms

LinearrelationshipbetweenmeasuredRHandnominalairflowrate

TheystressthatthesegainsareobtainedwhilekeepingthepeakRHvaluesthesame

RHintherange[40%-50%]80%ofthetimeandCO2concentrationshigherthan1200ppm33%ofthetimeduringthecoldperiod

Meanventilationratereduced30%-40%andenergysavings12%-17%inthecoldperiod

(AirH2010;Bernard2009)ParisandLyon,France

31newapartments

Monitoringovertwoheatingseasons

Exhaust-only+wholehouse+localregulation

RH-controlledexhaustgrilles+RH-controlledinlets+occupancyintoilets

Cross-sectionofgrillesismechanicallycontrolledfunctionofRH

Measuredparametersincludedpressure,airinletopeningcross-sections,airflowsthroughthetrickleventilatorsandtheexhaustairoutlets

CumulativeCO2exposureandcondensationriskverylowIAQbetterinbedrooms(nights)thanwithfixedairinlets

-30%measuredtotalaverageairflow-35%-50%energysavingsonfanconsumption-55%totalenergysavingduetoventilation

Page 66: LBNLSVACH Smart ventilation review · 2020. 1. 4. · 0 | Page Residential smart ventilation: a review Gaëlle Guyot1, Max H. Sherman2, Iain S. Walker2 & Jordan D. Clark2 1 Cerema

63|P a g e

Reference(classifiedbydate)Country

Typeofresidentialbuilding

Method Typeofsystem+regulation

Type&locationofsensors

Controlstrategy

Mainfindings/comments

IAQperformance

Energysavingscomparedtoconstantratereference*

(NielsenandDrivsholm2010)Denmark

Anewsingle-familyhouse

MeasurementswithandwithouttheDCVsystem

Exhaust-only+wholehouse+centralizedregulation

DifferenceinCO2andabsolutehumiditybetweenmeasurementsintheairhandlingunitandoutdoors

Highandlowflowrateswithsetpointsfixedtoadifferenceof150ppminCO2andto2g/kginabsolutehumidity

Measurementsofthefanspeedalongtheweekshowthatthecontrolstrategysucceededinidentifyingperiodsthatbuildingwasunoccupied

NosignificantchangeinIAQ

Lowventilationrate:37%ofthetimeEnergysavingsestimatedto35%onfanelectricityconsumptionandto37%onheatingneeds

(Seong,2010)Seoul,SouthKorean

AstandardKoreanmulti-zoneapartment

Multi-zonemodelingCONTAM+EnergyplusDt=1hp

Whole-housebalancedDCVsystem

1)CO2demand2)TVOCdemand.Locationofthesensorsisnotgiven.

“On-off”controlstrategywithabaseairflowratefixedatthereferenceintheKoreanregulation0.7h-1.

1)CO2<1000ppm,TVOCin150-800mg.m3withpeaks2)CO2<2200ppm,TVOCin400-800mg.m3

1)17%.2)26%.

(Laverge,etal.2011)Belgium

TypicalBelgiansingle-familyhouse

Modeling(CONTAM)

Exhaust-onlyWholehouse+localregulation

1)RHinhumidrooms2)occupancy3)CO2indryrooms4)thethreecombined

1)“On-off”sizegrillesetpointRH=70%,2)“On-off”onfan-20min3)Inletsreducedto10%ifCO2<1000ppm

Resultswerecomparedtoareferenceexhaust-onlyconstantflowrateventilationCO2detectionindryroomswasfoundtobemorerobustthanotherrooms

CO2exposurebetterin2)and3)Sameexposuretothetoilettracergas

Totalmeanconvectiveheatventilationlossintherange25%(1controlparameter)to60%(3combined).

(D.K.Mortensen,etal.2011)

Single-familyhouse

Calculationapproach

Whole-houseventilation

Occupancyschedules(of4-8or16h)

Twofanspeedsbasedonthechronicexposureequivalencecalculation

Performancecurveplotsallowdefinitionofoptimumpointsgiventheoccupancytime,thereferencerate,thehightolowratio,theemissioncharacterization

Equivalencein24h-chronicexposure,acceptablepeakexposure

Forahomeoccupiedduring16consecutivehoursTotalventilationrate-12%Canachieve>-18%ifoccupantemissionsaredominant

(MortensenandNielsen2011)

Multi-familyhome

Modelingstudy

Wholehouse+balancedwithheatrecovery+centralized

N/A Severalcontrolstrategiesontheairhandlingunit

Theauthorsproposeasimplecost-effective(+500$comparedtoaheat-recoverybalancedventilationsystem)solutionforthesystemdesignofacentralizedbalancedDCVsystem

Comparedstaticpressureresetatpartloadconditionsfixedstaticpressure

Yearlyelectricityconsumption:-20%to30%

Page 67: LBNLSVACH Smart ventilation review · 2020. 1. 4. · 0 | Page Residential smart ventilation: a review Gaëlle Guyot1, Max H. Sherman2, Iain S. Walker2 & Jordan D. Clark2 1 Cerema

64|P a g e

Reference(classifiedbydate)Country

Typeofresidentialbuilding

Method Typeofsystem+regulation

Type&locationofsensors

Controlstrategy

Mainfindings/comments

IAQperformance

Energysavingscomparedtoconstantratereference*

(ShermanandWalker2011)Threeclimates,California,USA

Single-familyhouse

a)Modeling(REGCAP)b)Fieldstudyofaprototype(RIVEC)

a)Wholehouse+centralized+4ventilationtypesb)exhaust-onlywitheconomizer

Controlbytheoperationofotherairdevicesandwithaswitch-offduringa4h-peakelectricitydemandperiod

Controllerlogicwithasetofactionsateachtimestep,setprimarilyto10minutes.Fourperiodsintheday

Thetheoreticalbackgroundsupposesacontinuouslyoccupiedhomewithaconstantemissionrate.

Decreaseoftheannualaveragerelativedosecanreach14%peakrelativeexposurenomorethan11%abovethetargetlimit,evenwith4h-offperiod

a)Energysavings:-11to61%,runtimeoftheventilationfans:-25%b)Annualenergysavingsestimatedto1000kWh,runtimeofthefans:-71%

(TurnerandWalker2012)16climatezones,California,USA

Single-familyhouses(3geometries)

Modeling(REGCAP)

Wholehouse+centralized+6ventilationtypes

Same+occupancy

Thecontrollerlogicwasupdatedwith2periodsinthedaybasedonoccupancy

Energysavingsarerobustacrossclimate,housegeometryandairtightness.

MaintainingIAQequivalenceofASHRAE62.2,andwithoutacuteexposurestoconstantlyemittedpollutants

Ventilationenergysavings>40%.Absoluteenergysaving500to7000kWh/year.Peakpowerreductionupto2kW

(TurnerandWalker2013)Sixteenclimatezones,California,USA

Single-familyhouses(3geometries)

Modeling(REGCAP)

Wholehouse+centralized+hybridexhaust-onlysystem

Same Iftheavailableairflowrateinadesignedpassivestackisnotsufficient,RIVECturnsonthewhole-houseexhaustfan

Theauthorsshowthattherewasroomtooptimizehybridventilationsystemswithgoodsizingofthepassivestackandsmartventilationstrategies

IAQclearlyimproved

Ventilationenergysavingsabout25%

(WalkerandSherman2013)LivermoreandRiverside,California,USA

AtypicalCaliforniansingle-familyhouse

Modeling(REGCAP)

Wholehouse+centralized+7typesofventilation

SameThe4hswitch-offperiodforpeakelectricitydemandcoincideswithpeakozoneconcentrations

Areductionof10%-40%inratiosofindoor-to-outdoorozone,whilecontinuousexhaustventilationsystemsgaveratiosaround20%

(Less,etal.2014)AllUSAclimatezones

Single-familyhouses(2geometries)

Modeling(REGCAP)

Wholehouse+centralized+exhaustonly

Outdoortemperature

4controlstrategieswerestudiedtooptimizethesolution

Thesimpleststrategywithacut-offsettoanoutdoortemperatureof5°Cwasthemostefficientoneacrossavarietyofclimatezones

EquivalentIAQ Forhouses>3ACH50

insevereclimates,HVACenergysavingsof100-4000kWhFanshouldbeoversizedbyanaverageof34%

Page 68: LBNLSVACH Smart ventilation review · 2020. 1. 4. · 0 | Page Residential smart ventilation: a review Gaëlle Guyot1, Max H. Sherman2, Iain S. Walker2 & Jordan D. Clark2 1 Cerema

65|P a g e

Reference(classifiedbydate)Country

Typeofresidentialbuilding

Method Typeofsystem+regulation

Type&locationofsensors

Controlstrategy

Mainfindings/comments

IAQperformance

Energysavingscomparedtoconstantratereference*

(SzkarłatandMróz2014)Poznan,Poland

1passivehouse

Monitoringoneyear+Modeling

WholeHVACsystemdecentralizedregulation

Temperature,RH,CO2sensorsineveryroom

Variableairvolumecontrolasafunctionofsensibleheatbalancefortempcontrol,latentheatbalanceforRHcontrol,CO2balance

Challengewasinhowtodefinecontrolparametersandalgorithmstodealwithhighinternalgainsinpassivehouses

1000ppmwasoftenexceeded,sometimesreached1500ppmormore

Notstudied

(Caillou,etal.2014b)Belgium

1-levelhouse Modeling(CONTAM)

Natural,exhaustonly,balanced+wholehouse+regulationCentralizedorlocal

1)RHexhaustonly2)CO2supplyonly3)RHexhaust+CO2supply4)RHexhaustonly+centralregulation5)CO2supplyonly+centralorzonalregulation6)CO2sensorindryroomcontrollingexhausts(indryroom)

Multiplecontrolstrategiesdescribedin§Availability,reliabilityandaccuracyofpollutant-andoccupancy-sensors

Studyevaluatingdifferentcontrolalgorithmsbasedmainlyonthe35DCVsystemsavailableontheBelgianmarket

1)reference2)betterthanref3)clearlybetter4)lightlybetter5)better6)better

1)0%2)26-37%3)38-39%4)-21to-28%5)-15%to+36%6)4-35%

(vanHolsteijnandLi2014)TheNetherlands

Occupiedsingle-familyhouseandapartments

1yearofexperi-mentalmeasure-ments

Natural,exhaustonly,balanced+wholehouse+regulationcentralizedorlocal

13typesofventilationsystemsincluding7CO2orCO2+RHDCV

IAQ-indicator,LKI1200,Equation22.Dependingonthelocationofthesensors,theyshowedvaryingperformanceinDCVsystems

Referenceforsingle-exhaust:meanof244kppm/personDCV:+11%to-70%Referenceforbalanced:meanof68kppm/person.DCV:+11%to-169%

Referenceforsingle-exhaust:meanof119MJ/m²/yearDCV:-31%to+21%Referenceforbalanced:meanof24MJ/m²/yearDCV:-25%to+325%

Page 69: LBNLSVACH Smart ventilation review · 2020. 1. 4. · 0 | Page Residential smart ventilation: a review Gaëlle Guyot1, Max H. Sherman2, Iain S. Walker2 & Jordan D. Clark2 1 Cerema

66|P a g e

Reference(classifiedbydate)Country

Typeofresidentialbuilding

Method Typeofsystem+regulation

Type&locationofsensors

Controlstrategy

Mainfindings/comments

IAQperformance

Energysavingscomparedtoconstantratereference*

(HesarakiandHolmberg2015)Sweden

3-levellow-energyhouse

Modeling(IDAICE4)

Exhaustonly,wholehouse,centralized

Unoccupiedperiodsof4,6,8,and10hours

Baseairflowrate60l.s-1isswitchedto16l.s-1duringunoccupiedperiods

ForacceptableIAQ,theventilationshallbeturnedon2hoursbeforetheoccupantscomebackThereferenceconstantairflowsystemdelivers60l.s-1

Meanageofairdecreasesresp.to94.7,82.8,66.7,-48.7%,VOCconcentrationincreasestoresp.3,4,7,15%,inthelastcaseoverthethresholdvalue,CO2staidbelow1000ppm

20%onheatingneeds30%onfanconsumption,10%ontotalbuildingenergyconsumption

(Lubliner,etal.2016)WashingtonandIllinois,USA

2houses Modeling(REGCAPandEnergyGaugeUSA)+Testfields

Exhaust-only,wholehouse,centralized

Outdoortemperature

On-offstrategyaccordingtoapredefinedsetpoint

Investigationofalow-costtemperature-basedsmartventilationcontrol(lessthan$80)

NosignificantimpactonCO2andhumidity

Energysavingsbetween73and230kWh/year

*:thereferenceistheconstantflowrateoftherequiredstandard.Thereferenceisalsodifferentineachcountry.**:thereferencecaseisaclassicnaturalventilationsystem***:thereferencecaseisabalancedventilationsystemmanuallycontrolledwiththreespeeds

Page 70: LBNLSVACH Smart ventilation review · 2020. 1. 4. · 0 | Page Residential smart ventilation: a review Gaëlle Guyot1, Max H. Sherman2, Iain S. Walker2 & Jordan D. Clark2 1 Cerema

67|P a g e

Occupant behavior and suitabi l i ty of automatical ly control led venti lat ion systems

Severalstudiesrevealedthathomeoccupantsarenotnecessarilysensitivetothequalityoftheirindoorair, and that they do not necessarily operate ventilation systems when they are needed. From thisperspective, smart ventilation strategies includingautomatically controlledventilation systemsappeartobeparticularlyrelevant.

Areviewonthehealthofoccupantsinenergy-efficientnewhomes(Leech,etal.2004)revealsthat10%of theoccupantsdon’tuse their ventilation system. Ina field studymeasuringairflowsand surveyingoccupantsin139apartmentsinthesouthernpartoftheSeoulmetropolitanarea,ParkandKim(2012)observedthatalmost70%ofthedwellersdidnotusetheirmechanicalventilationsystem,andthat60%didso inordertosaveenergy. Inarecentstudyof62homes intheNetherlands(vanHolsteijnandLi2014), it was also revealed that occupants almost never control their ventilation systems, so thatmanuallycontrolledventilationsystemsstayatlowspeedmostofthetime.InthePerformanceProject(Bernard2009), occupantsdidnot realize that their ventilation systemswereoff during aone-monthperiod,andalsodidn’ttrytocompensatefor itby, for instance,openingwindowsmoreoften.Also inthisproject,throughthetwo-yearstudy,occupantsalmostneverusedthehigh-speedventilationinthekitchen.Thisissuewasconfirmedby(Klug,etal.2011;Mullen,etal.2013)withonlyaboutaquarterofpeopleregularlyusingkitchenexhaustfans.Inafieldsurveyin300recentlybuiltDutchhomes,(Balvers,etal.2012)observedthatalmostalloccupants(96%)donotusetheirventilationsystemasprescribedbymanufacturers.

Wemustalsomentionthatsomestudiesshowedthatoccupantsneedtofeelincontrolofsomeoftheparameters in their environment, and that they could be bothered by the lack of personal controlcausedbyanautomatedventilationsystem(Balvers,etal.2012;Boerstra2013).

Faced with these considerations, a smart ventilation strategy is able to offer a compromise: theventilationsystemdoesn’tneedanyinputfromtheoccupanttobeefficient,butcanallowforoccupantcontrol under some circumstance, such as a brief period of high occupancy (party) or high emissions(hobby activity, cleaning, etc…). Such systems with occupant-override capability should have anautomaticreset,forinstanceevery24h(Walker,etal.2014).

Suitabi l i ty of a mult i -zone–based approach

Exhaust-onlyandbalancedventilationsystems,thepredominanttypeinnewhomesinEurope,areveryoftenbasedonawhole-houseventilationstrategy,wherefreshairentersthedryrooms,andmovestothehumidroomstobeexhaustedthere.Insuchastrategy,amulti-zoneapproachinthedesignandtheperformanceevaluation ismoreapplicablethanawhole-houseone,aspointedoutby(Laverge,etal.2011).IntheUnitedStates,mostofthehousesareequippedwithairconditioningsystemsanddonothavetrickleventilators,sincefreshair issupposedtocomefromenvelopeair leakage. Insuchhomes,theprincipleofa“well-mixed”zonecanbeconsideredapplicableandthereforemulti-zoneapproachesfor ventilationwerehavenot beenused.Newhigh-performancehouses needmuch less heating andcooling and thereforehavemuch lessmixing from central systems aswell as the reduction inmixing

Page 71: LBNLSVACH Smart ventilation review · 2020. 1. 4. · 0 | Page Residential smart ventilation: a review Gaëlle Guyot1, Max H. Sherman2, Iain S. Walker2 & Jordan D. Clark2 1 Cerema

68|P a g e

providedbynatural infiltrationthoughenvelope leakage. Inaddition, it isbecomingmorecommontonothaveacentralforcedairsysteminthesehomes—insteadusinglocalheatingandcoolingwithmini-split systems. For these reasons, multi-zone approaches will becomemore relevant and could easilybecomeintegrated intosmartventilation,becausesuchasystemofferstheabilitytotreateachroomaccordingto itsneeds.Thissectionrelatesevidencefromthe literaturedemonstratingthedisparity inpollutant or CO2 concentrations in the different rooms of a home, and examines the differencesbetweensingle-zoneandmulti-zoneIAQandairflowmodelinginresidentialbuildings.

TheliteratureshowshowCO2,humidity,and/orpollutantconcentrationscanvaryfromroomtoroom.Measured concentrations and corresponding room-specific ventilation rates are influenced by manyparameters, including differences in emission and ventilation rates, presence of a DCV strategy,presenceofanair recirculatingsystem,andalsothepositionof the indoordoors (RuddandLstiburek2000;Björling,etal.2007;Sherman2008;ShermanandWalker2008).Toevaluatedifferencesbetweenwell-mixed and zonal approaches this study used themetric proposed byHodgson, et al. (2004): theabsoluteaveragefractionaldifferences,definedasthedifferencebetweentwovalues(one inaroom,oneinanotherroom)dividedbytheaverageofthetwo.

Hodgson, et al. (2004)measuredVOC concentrations during one year in a newmanufactured house.DependingontheparticularVOCcompound(of22studied),theabsoluteaveragefractionaldifferencebetween livingroomandmasterbedroomwas intherangeof1%—48%,withastandarddeviation intherange5%—58%.Hodgsonobservedastatisticallysignificantdifferencebetweenthetworoomsforphenol,toluene,styrene,m/p-Xylene,and1,2,4-Trimethylbenzenethrough2-tailedStudent’sttestwithp>0.95.

NielsenandDrivsholm(2010)monitoredCO2concentrationsforaweekinalltheroomsofanexistinghouseequippedwithaconstantairflowventilationsystem.Fromtheirdata,thestandarddeviationofconcentration ineachof therooms,duringnightswhensteady-state is reached, iscalculatedtobe intherangeof178ppm—285ppm,withamedianvalueof221ppmandameanvalueof224ppm.Theabsoluteaveragefractionaldifferencesbetweenlivingroomandmasterbedroomcanbecalculatedintherangeof29%—56%,withamedianvalueof44%andameanvalueof42%.Theabsoluteaveragefractionaldifferencesbetweenthemasterbedroomandtheboy’sroomcanbecalculatedintherangeof67%—79%,withamedianvalueof67%andameanvalueof70%.

AlessiandSollaris(2011)measuredtheconcentrationofseveralVOCcompoundswithpassivesamplersthroughoutaweekinall12roomsoftwotwo-storylaboratorypassivehousesequippedwithabalancedventilationsystem.Theyobservedstrongdifferencesinsomepollutants,suchasbenzene,betweenthekitchen and living room on one side and the bedrooms on the other side. Other pollutants such astolueneandformaldehydeweremoreevenlydistributedamongtherooms.

IntheMONICAIRproject,vanHolsteijnandLi(2014)monitoredtheventilationandIAQofallindividualroomsin62homeseveryfiveminutesforawholeyear.TheycalculatedtheCO2-excessdoseaccordingtoEquation22,butperroomandnotperperson,foreachtypeofventilationsystem.Fromtheirdata,the standard deviation of this indicator for the heating season per type of ventilation system can becalculated.Dependingonthetypeofventilation,thisstandarddeviationisintherange17kppm—259kppm-h,withamedianvalueof95kppm-h.TheloweststandarddeviationsoccurforconstantairflowbalancedventilationsystemsandforDCVexhaust-onlyventilationsystemswithRHandCO2sensorsin

Page 72: LBNLSVACH Smart ventilation review · 2020. 1. 4. · 0 | Page Residential smart ventilation: a review Gaëlle Guyot1, Max H. Sherman2, Iain S. Walker2 & Jordan D. Clark2 1 Cerema

69|P a g e

every room. The absolute average fractional differences between living room (or open kitchen) andmaster bedroom canbe calculated in the range 1%—171%,with amedian valueof 97%and ameanvalueof91%.Theabsoluteaveragefractionaldifferencesbetweenthetwobedroomscanbecalculatedintherange42%—192%,withamedianvalueof151%andameanvalueof142%.

Derbez,etal.(2014)monitoredtheIAQinsevennewenergy-efficienthousesbeforeandduringthefirstyearofoccupancy.Theabsoluteaverage fractionaldifferences in themeasured radonconcentrationsbetween living roomandmasterbedroomcanbecalculated in the range20%—100%,withamedianandameanvalueof50%.

Eklund, et al. (2015) studied ventilation effectiveness by monitoring 29 houses with five types ofventilation systems inWashington State. For the 11 houseswith data available, a comparison of thepercentageoftimewhenthemeasuredCO2-concentrationsatnightwere lowerthan1000ppmcanemade.Thisindicatorvariesbyafactorofbetweenzeroand8.5inthemasterbedroomandthesecondbedroom,respectively,withamedianvalueof1andameanvalueof2.Dependingontheventilationsystem,theyalsoobservedthattherelativehumiditywasneverhigherthan70%inthelivingroomevenas it exceeded its threshold in themaster bedroom and in some cases also in the second bedroomaround5%of the time. Thesehomeswere very tight anddidnothave central forcedair systems, sowhen bedroom doors were closed, CO2 concentrations became high—resulting in the large ratiosreportedabove.

Guyot, et al. (2016) monitored IAQ in 10 new energy-efficient houses during a winter week, two ofwhichwereequippedwithahumidity-basedDCVsystem.Theycalculatedtheaveragevalueofthe60highestCO2concentrationsinthemainbedroomandinthelivingroom.Theratiobetweenthemasterbedroomandsecondbedroomvariesbetween1and2.1,withamedianvalueof1.7andameanvalueof1.6.

Ribéron,etal.(2016)calculatedanairstuffinessindexinthemainbedroomandthelivingroomof10homesbasedonmeasurementsduringtwoweeks.Thisindexisalogarithmfunctionofthepercentageof timewhenthemeasuredCO2-concentrationatnight ishigher than1000ppmand1700ppm.Theyshowedthatonly60%ofthehomescouldbeconsidereduniform.

Datafromcontrolledexperimentsalsoexists,butwasartificiallyobtainedbytracergasinjections.Thesedatahavebeenusedforthevalidationofmulti-zoneIAQmodelingsoftwaresuchasCONTAMorCOMIS(Lansari,etal.1996;Sextro,etal.1999;Zhao,etal.1998,1998).

Anotherissueconsideredhereisthediscrepancybetweensingle-zoneandmulti-zoneIAQandairflowmodelinginresidentialbuildingsdemonstratedintheliterature.

D’OttavioandDietz(1985)studiedtheerrorsresultingfromtheuseofasingle-zoneventilationmodelonaranchhousewithabasement.Theydemonstratedthat,withasingle-zonemodel,errorsonpeakconcentration could be ±35%, depending on the definition of the zone perimeter, with a variableemissionsourcesuchasagasstovecomparedtoatwo-zonemodel.Withaconstantemissionsource,errorsareinalargerrange(-19%;+60%).Errorsinthecalculatedenergyrequiredtoheatinfiltrationairwerelessthan15%overalargerangeofoutdoortemperaturesforasingle-zonecase,andmuchhigher(35%—45%) for another single-zone case. They also demonstrated that these errors do not dependlinearly on errors in the air exchange rate, so that they conclude that an accurate air change ratemeasurementcombinedwithazonemodelshouldbeconsideredonlyasafirstapproximation.

Page 73: LBNLSVACH Smart ventilation review · 2020. 1. 4. · 0 | Page Residential smart ventilation: a review Gaëlle Guyot1, Max H. Sherman2, Iain S. Walker2 & Jordan D. Clark2 1 Cerema

70|P a g e

Du,etal.(2012)characterizedairchangeratesandinterzonalairflowsin126residencesandevaluatedtheireffectsonIAQ.Then,atwo-zonemodel(thebedroomandtherestofthehouse)calibratedwiththefieldstudywasconductedfor the IAQstudy.Airchangeratemeasurementsweremadeusingtheconstantmulti-zone injectionmethod,using twotracergases,overaweek, indifferentseasons.Theywere0.73±0.76h-1 (medianvalue=0.57h-1 ; n=263) in the living room,andhigher in thebedrooms:1.66±1.5h-1 (medianvalue=1.23h-1 ;n=263).Theyshowedthat26±20%of theairentering the livingroom comes from the bedrooms, 50±18% from the rest of the house,with slight variations over theseasons. IntheIAQmodelingstudy,theyconsideredeitherasourcein livingroomor inthebedroom.TheyalsoshowedstrongdifferencesbetweentheaveragePMconcentrationsinthelivingroomandinthebedroom.Concentrations in thebedroomare43%—47% lower than those in the living room.Forstrongsourcesinthebedroom,theconcentrationsare65to74%higherthanthoseinthelivingroom.Asensitivity analysis using the two-zonemodel demonstrated that the key factors influencingpollutantconcentrationsaretheemissionsourcestrengthandlocation,theairchangerates,andtheinter-zonalair flows. They concluded that single-zonemodels should apply only in the case of uniform emissionsourcesfortighthomes,withclosedbedroomdoorsandnocentralforcedairsystem.

Page 74: LBNLSVACH Smart ventilation review · 2020. 1. 4. · 0 | Page Residential smart ventilation: a review Gaëlle Guyot1, Max H. Sherman2, Iain S. Walker2 & Jordan D. Clark2 1 Cerema

71|P a g e

6. FURTHER DEVELOPMENTS

Towards an optimal solut ion in the IAQ metrics for smart venti lat ion

IAQmetrics is anactive researchareaand this reviewservesasabackground for future research.AsdescribedinTable1theadvancedsmartventilationconceptiscomposedofalistofcontrolstrategies,includingpollutant-basedstrategies.Thissectionofthereportdealsspecificallywithsuchcontrolissues,whichisasubsetofthesmartventilationconcept.

A function of home location and pollutant sources is suggested by several authors in the literature(RaatschenandTrepte1987;Caillou,etal.2014;Borsboom,etal.2016)andcombinedwiththeuseofmultipleparametersincontrolalgorithms(WonandYang2005).Thiscouldbeapromisingsolutionforsmartventilationstrategies.

Raatschen and Trepte (1987) showed that, in an unoccupied bathroom, the hourly air change rateneeded to removemoisturewashigher than theone to remove formaldehyde,but theoppositewasobservedinthelivingroom.Theyconcludedthat, inoccupiedrooms,moisturecontrolwasimportant,but that formaldehyde could become dominant in unoccupied rooms and must be considered inadjustingminimumairflowsinresidentialbuildings.

Ribéron,etal.(2016)proposedanairstuffinessindexforhomes.InFrance,morethan50%ofthetimespent in the house is spent in a bedroom (Zeghnoun, et al. 2010), so the authors conclude that it isrelevanttostudythenocturnalbedroomoccupancyinordertodefineanairstuffinessindexforhomes.Borsboom, et al. (2016) proposed pollutants of concern depending on the type of room andcorresponding demand control detection options in their recent AIVC Technical Note on “ResidentialVentilationandHealth”(Table3).

Table14:Roomsandstate-of-theartventilationmeasuresinresidentialbuildings(Borsboom,etal.2016)

Page 75: LBNLSVACH Smart ventilation review · 2020. 1. 4. · 0 | Page Residential smart ventilation: a review Gaëlle Guyot1, Max H. Sherman2, Iain S. Walker2 & Jordan D. Clark2 1 Cerema

72|P a g e

From their experience inmulti-zonemodeling of homes for several years in the Belgian equivalenceprocedure, and through a comprehensive complementary modeling study, Caillou, et al. (2014b)proposedalistofrelevantsensorsaccordingtothetypeofspace.Forbedroomsandlivingrooms,CO2and VOC sensorswould be themost relevant. For humid rooms other than toilets, relative humiditysensors would be the most relevant. CO2 sensors could be used to complement relative humiditysensors in open kitchens, which could see high occupancies. For the toilet, the occupancy sensor isconsidered the best solution to avoid the transmission of odors to the rest of the home. Such goodresults in toilets could also have been obtained under given conditions by the coupling of light andventilationswitches,orwithVOCsensors.

AnupdateofthetablepublishedbyBorsboom,etal.(2016)ispresentedinTable15.Theuseofmultiplepollutantmetrics in control algorithms is proposedby several authors, includingBrinke, et al. (1998);Sekhar,etal.(1999);Mendell(2003);Oakes,etal.(2014);andTeichman,etal.(2016),whichcanthenallowcontroloftheairflowratesinsmartventilationstrategies.

Table15:Asynthesisofoptimalsolutionsforsmartventilation

Rooms Pollutantsandcomfortparametersofconcern*alsoanacuteissue

Sensors Complementarycontrolstrategyforpeakcontrol

Closedkitchen Humidity,PM2.5*,formaldehyde*,acrolein*,

NO2*

RH,PM-counter,gassensors,timer

Highairflowduring30min

Openkitchen Idem+CO2 RH,CO2,PM-counter,gassensors,timer

Highairflowduring30min

Bathroom Humidity,Chloroform* RH,gassensors,timer Highairflowduring30minToilets Odor Presence,timer,RH,CO2,

gassensorsHighairflowduring20min

Bathroomwithtoilets Humidity,Chloroform*,odor Presence,RH,gassensors,timer

Highairflowduring30min

Otherhumidroom Humidity Presence,RH,timer Highairflowduring20minDryrooms Odorofpersons,PM2.5*,

formaldehyde*,acrolein*,CO2

CO2,RH,PM-counter,gassensors

Combiningventilationforhealthandventilationforcomfort.TheEuropeancollaborativeactionleadingto the “Guidelines for ventilation requirements in buildings” (Bienfait, et al. 1992) proposed separatecalculationofventilationrequirementstosatisfyhealthconcernsfromthatforcomfort,andtheuseofthehighestvalueatthedesignstage.Thisconceptcouldbeimplementedinasmartventilationstrategy,inordertocontroltheventilationrateateachcontroltime-step,accordingtocomfortparametersandpollutantmeasurements.However,ventilationrequirementsforcomfortarenotwelldefned(andmaybe undefineable beyond delivered air temperature and velocity requirements), so smart ventilationstrategies,suchasthosedevelopedbyLBNL,havebeenbasedonhealthandnotoncomfort.

Page 76: LBNLSVACH Smart ventilation review · 2020. 1. 4. · 0 | Page Residential smart ventilation: a review Gaëlle Guyot1, Max H. Sherman2, Iain S. Walker2 & Jordan D. Clark2 1 Cerema

73|P a g e

Feedback from real-world appl icat ions and recommendations for implementation

General feedback on poor-quality ventilation installations must be taken into account in the futureimplementationofsmartventilation.InEurope(Dimitroulopoulou2012),Canada(Hill,etal.1998),andtheUnitedStates (Stratton,etal.2012andSonne,etal.2015),ventilation installationshave failed tomeet prescribed requirements. A roughly 50% non-compliance rate has been observed in theNetherlands (Balvers, et al. 2012; Borsboom 2015), in Belgium (Caillou, et al. 2012), and in France(JobertandGuyot2013).Compliancecanbethe lowest forsingle-familyhomes,withnon-complianceratesof68%to100%inarecentstudyof20low-energyhomes(Guyot,etal.2016).OnepossiblereasonforthisnoncomplianceisthatneithertheUnitedStatesnorEuropeanstandards,andrarelyregulations,requirecommissioningofventilationinstallations.Butotherissuesmustalsobeconsideredtoimprovefutureventilationandsmartventilationinstallations.Theseincludethelackofproperfansizingduringdesign, lack of systems maintenance, the lack of continuity in the chain of actors involved in theventilationinstallation,thelackofawarenessofoccupants,andthelackofprofessionaltraining.

IEA Annex 18 Mansson, et al. (1997) gives guidelines for DCV system development andrecommendationsconcerningtheapplicabilityofDCVsystems,includingissuessuchas:

• Airtightness of the building: airflows must be controlled by the ventilation system and notdominatedbyinfiltration.

• Buildingemissions:ifstrongsourcesareknowntobeinthebuildingandcannotbereduced,theDCVsystem isnotappropriate,orshouldbeableto increasetherate forparticularperiods inthebuilding’slife.Thiscanbethecaseinnewbuildingswhenpainting,materialsandfurnishinghavejustbeencompletedorinstalled.

• Outdoor climate: its impact on indoor climate, infiltration rates, and humidity-controlledventilationsystemsmustbeclearlyevaluatedtobesurethataDCVstrategyisapplicabletothisoutdoorclimate.

Page 77: LBNLSVACH Smart ventilation review · 2020. 1. 4. · 0 | Page Residential smart ventilation: a review Gaëlle Guyot1, Max H. Sherman2, Iain S. Walker2 & Jordan D. Clark2 1 Cerema

74|P a g e

7. SUMMARY AND CONCLUSIONS

ThisresearchisapartoftheprojectcalledSmartVentilationAdvancedforCalifornianHomes(SVACH).Smartventilation ismadepossiblethroughtheuseofthethreecomplementarycomponentsofsmartventilation:

• First,ventilationisprovidedinresponsetodemandforventilationratherthanonlyaprescribed,conservative prescription on ventilation airflow rate. This example of a smart ventilationstrategyhasbeenstudiedandimplementedfairlywidelyunderthebannerofDCV.Mostoftendemandhasbeenquantifiedintermsofoccupancy,orsomeothermeasureablequantitythatisusuallyintendedtoindirectlyestimateoccupancy,suchasRHorCO2concentrations.Lessoftenstudiedisthequantificationofdemandintermsofindividualpollutantloads,throughsensingofindividual pollutants, and the allowance for reduction in demand based on thesemeasurements. The newest and least studied and implemented approach is the reduction incalculatedindemandbasedonothermechanismsofairentryorexhaustintoaspace,suchasinfiltration and mechanical equipment used for source removal such as kitchen hoods andbathroomfans.

• Thesecondaspectofsmartventilationstrategyisthatitcanemploytheprincipleofequivalentventilation to satisfydemandat timesof theday that arenotnecessarily coincidentwith thedemanditself.Throughtheequivalentventilationprinciple,properIAQandacceptablelevelsofexposure to pollutants can be maintained even if ventilation quantity is not proportional todemandatanypointintime.Thisapproachallowsforbenefitssuchasshiftingventilationfromtimeswhenthermalloadsassociatedwithventilationarehightothosewhenitwillbelower.

• Lastly,SmartVentilationissmartinthatdecisionsmadebyacontrollerusedinsmartventilationapplicationswillintegrateinformationfrommanysourcestomakeaninformeddecisionabouthow best to ventilate. These sources of informationmay include outdoor conditions such astemperature, humidity, pollutant concentration, wind speed and wind direction; indoorconditions such as occupancy, humidity, pollutant concentrations, and static pressure;whole-house conditions such as predefined schedules and the operation of other mechanicalequipment;andglobalinputssuchascommunity-orregional-scaledemandforelectricityortheprince of electricity. With this information, a smart ventilation controller can them makedecisions based not just on current conditions but, conceivably, also prediction of futureconditionsandweighingoftheappropriatenessofvariouscontrolstrategiesbasedonfinancial,energy,andairqualityconsiderationsinthefuture.

Thisreportalsodiscussestheappropriatenessofseveralenvironmentalvariablesforuseasinputsinasmartventilationstrategy.Thereisnoconsensusintheliteratureastothe“right”variablestouseinasmartventilationstrategy.ThemostcommonlyusedvariablesincludehumidityandCO2concentrationsbecauseoftheeaseofmeasurementandtheirassumedcorrelationwithoccupancy,whichisseenasadriver of IAQ concerns. Non-occupancy related emissions, such as those from furnishings,may driveventilation needs as well. While directly measuring some pollutants of concern, such as particulate

Page 78: LBNLSVACH Smart ventilation review · 2020. 1. 4. · 0 | Page Residential smart ventilation: a review Gaëlle Guyot1, Max H. Sherman2, Iain S. Walker2 & Jordan D. Clark2 1 Cerema

75|P a g e

matter and individual gaseous pollutants, may offer advantages, this is less often done for severalreasons.These includethefactthatsensorsusedtomeasurethesepollutantsarerelativelyexpensiveand may require calibration more often than is desired, and knowledge of concentrations of somepollutantsmaynotbesufficientinformationforcontrollingventilationsystems,evenifthisinformationwerereadilyavailable.OutdoortemperatureandTVOCshavealsobeenusedtocontrolventilationwithvaryinglevelsofsuccess.

Thestateoftheartinsensortechnologyusedtomeasurethesevariablesisalsoreviewed.Devicesforsensinghumiditydirectlyorindirectlyarethecheapestandmostcommonlyused,followedbythoseforsensingCO2concentrations.CO2sensorsarealsooftenutilizedbecauseoftheeasewithwhichtheycanbe calibrated. Particle sensors capable of providing estimates of concentration with the level ofprecisionandaccuracyneededarestillexpensive,butquicklybecomingmorecompetitive.Sensorsformeasuringindividualgasesarenearingmaturity.

Therearevariousstrategiesforcontrollingresidencestoensurethatadequateventilationisprovidedinthe leastexpensiveandmostenergyefficientmannerpossible.Themostobviousmeans is tocontrolventilationtomatchdemandposedbyoccupancy.Thishasbeendonewidelyandis incorporatedintosome building codes. Occupancy-based ventilation control is often coupled with a constant baselineventilation rate designed to dilute pollutants emitted by home furnishings and the home itself. Lessunderstood are the benefits and consequences of controlling ventilation by other means, such asmodulating controllers in response to outdoor conditions or electric power grid singals, directlycontrolling based on measured potentially harmful pollutant concentrations, and model-predictivecontrolbasedonmultipleinputsignals.

A multi-zone approach to smart ventilation control has pros and cons in terms of desirability andfeasibility. Studies in the literature demonstrate the disparity between pollutants and CO2concentrations in different rooms of a home, and also discrepancies between single-zone andmulti-zone IAQ and airflow modeling results in residential buildings. Different control strategies and evendifferent control variables may be appropriate for different rooms within a home. This is a subjectsuitableforfurtherinvestigation.

A favorable context exists in many countries for development of such strategies. As a result, DCVsystems are readily available on the market; more than 30 compliant DCV systems are available incountriessuchasBelgium,France,andtheNetherlands.

Areviewof38studiesofvarioussmartventilationsystemsincludedCO2,humidity,combinedCO2andTVOC, occupancy, outdoor temperature-controlled ventilation and smart ventilation strategies. Thestudies show that ventilation energy savings up to 60% can conceivably be achieved withoutcompromising,andevensometimesimproving,IAQ.However,casesalsoexistinwhichnegativeeffectsonperformancewereobserved.Ventilationenergysavingscomeinmanyforms,includingadecreaseinthetotalairflowsuppliedtothespacethroughasimpleglobalreductioninratesofademand-specificcontinuouscontrolmadepossiblebysensing,reductionofheatingandcoolingloadsthroughshiftingofventilation times, and reduction of required whole-house ventilation rates by accounting for other

Page 79: LBNLSVACH Smart ventilation review · 2020. 1. 4. · 0 | Page Residential smart ventilation: a review Gaëlle Guyot1, Max H. Sherman2, Iain S. Walker2 & Jordan D. Clark2 1 Cerema

76|P a g e

means of air introduction into the space. Much less understood is the ability of smart ventilationsystemstocontributetodemandresponseforutilitygrids.

Several studiesalso revealed thathomeoccupantsarenotnecessarily sensitive to thequalityof theirindoor air, and that they do not necessarily operate the ventilation systems when they are needed.From this perspective, smart ventilation strategies, including automatically controlled ventilationsystems,areparticularlyappealing.

Continued research in fields with immediate applicability to smart ventilation strategies isrecommended. This includes research into determination of appropriate IAQmetrics, addressing thelackofqualityofventilationinstallations,andfiltrationandaircleaningissues.

Thisreviewprovidesthegroundworkforapathforwardforfuturesmartventilationresearch.Thispathincludesextensivevalidatedmodeling,whichwilltakeintoaccountthestateoftheartandprioritiesforsmart ventilation research including determination of appropriate control strategies andrecommendations forbestpractices. The resultsof thismodeling can thenbe validated through fielddemonstrations in real homes. Through theseefforts, the stateof theartof smart ventilationwill beadvancedtothebenefitofhomeowners,energyproviders,andmanyotherstakeholders.

Page 80: LBNLSVACH Smart ventilation review · 2020. 1. 4. · 0 | Page Residential smart ventilation: a review Gaëlle Guyot1, Max H. Sherman2, Iain S. Walker2 & Jordan D. Clark2 1 Cerema

77|P a g e

8. REFERENCES

ACGIH, 2011. Documentation of the Threshold Limit Values and Biological Exposure Indices. Afshari, A., Bergsøe, N.C., 2003. Humidity as a Control Parameter for Ventilation. Indoor Built

Environ. 12, 215–216. doi:10.1177/1420326X03035163 Air H, 2010. Deux années de mesure de la VMC hygroréglable de type B dans 31 logements

occupés répartis sur deux sites en France - Dossier de presse du projet Performance (Projet PREBAT ADEME).

Alessi, F., Sollaris, M., 2011. Measurement of pollutant emissions in two similar very mow energy houses with cast concrete and timber frame, in: AIVC Conference 2011. Brussels.

Anon, 1983. Humidity-controlled ventilation. Un nouveau principe de ventilation mecanique - la ventilation hygroreglable. Chaud Froid Plomb. 37, p.107-109.

ANSES, 2013. Concentrations de CO2 dans l’air intérieur et effets sur la santé - Avis de l’Anses - Rapport d’expertise collective, Édition scientifique.

ANSI/ASHRAE, 2013. ASHRAE Standard 62.2 « Ventilation and acceptable indoor air quality in residential buildings ».

Apte, M., 2006. A review of demand control ventilation (No. LBL-60170). ATG, BCCA, 2012. Goedkeuringsleiddraad voor de energetische karakterisatie van

vraaggestuurde residentiele ventilatiesystemen. Balvers, J., Bogers, R., Jongeneel, R., Kamp, I. van, Boerstra, A., Dijken, F. van, 2012.

Mechanical ventilation in recently built Dutch homes: technical shortcomings, possibilities for improvement, perceived indoor environment and health effects. Archit. Sci. Rev. 55, 4–14. doi:10.1080/00038628.2011.641736

Barsan, N., Koziej, D., Weimar, U., 2007. Metal oxide-based gas sensor research: How to? Sens. Actuators B Chem., Special Issue: 25th Anniversary of Sensors and Actuators B: Chemical 121, 18–35. doi:10.1016/j.snb.2006.09.047

Barthez, M., Soupault, O., 1984. Control of Ventilation Rate in Building Using H2O or CO2 Content, in: Ehringer, H., Zito, U. (Eds.), Energy Saving in Buildings. Springer Netherlands, pp. 490–494. doi:10.1007/978-94-009-6409-9_61

Bekö, G., Lund, T., Nors, F., Toftum, J., Clausen, G., 2010. Ventilation rates in the bedrooms of 500 Danish children. Build. Environ. 45, 2289–2295. doi:10.1016/j.buildenv.2010.04.014

Bernard, A.-M., 2009. Performance de la ventilation et du bâti - Phase 3 - Performance énergétique et QAI des systèmes hygroréglables (Projet PREBAT ADEME).

Bernard, A.-M., Villenave, J.G., Lemaire, M.., 2003. Demand controlled ventilation (DCV) Systems : Performances of infrared detection, in: 24th AIVC and BETEC Conference “Ventilation, Humidity Control and Energy”,. Washington D.C., USA,.

Bienfait, D., Fitzner, K., Lindvall, T., Seppanen, O., Woulliscroft, M., Fanger, P.O., Jantunen, M., Skaret, E., Schwer, J., 1992. Guidelines for Ventilation Requirements in Buildings (No. Report n°11-EUR 14449 EN), European Collaborative Action on Urban Air, Indoor Environment and Human Exposure Reports.

Bishop, R.H., 2002. The mechatronics handbook, The electrical engineering handbook series. CRC Press, Boca Raton, Fla.

Page 81: LBNLSVACH Smart ventilation review · 2020. 1. 4. · 0 | Page Residential smart ventilation: a review Gaëlle Guyot1, Max H. Sherman2, Iain S. Walker2 & Jordan D. Clark2 1 Cerema

78|P a g e

Björling, M., Stymne, H., Mattsson, M., Blomqvist, C., 2007. Ventilation measurements combined with pollutant concentration measurements discriminate between high emission rates and insufficient ventilation, in: The 6th International Conference on Indoor Air Quality, Ventilation & Energy Conservation in Buildings IAQVEC 2007. Sendai, Japan.

Boerstra, A., 2013. Personal control over indoor climate and the use of operable windows in offices.

Borsboom, W., 2015. Quality and compliance on building ventilation and airtightness in the Dutch context.

Borsboom, W., De Gids, W., Logue, J., Sherman, M., Wargocki, P., 2016. TN 68: Residential Ventilation and Health, AIVC Technical Note 68.

Boulanger, X., Mouradian, L., Pele, C., Pamart, P.Y., Bernard, A.-M., 2012. Lessons learned on ventilation systems from the IAQ calculations on tight energy performant buildings, in: AIVC-Tightvent Conference Proceedings. Copenhagen, pp. 40–43.

Brasche, S., Bischof, W., 2005. Daily time spent indoors in German homes--baseline data for the assessment of indoor exposure of German occupants. Int. J. Hyg. Environ. Health 208, 247–253. doi:10.1016/j.ijheh.2005.03.003

Brinke, J.T., Selvin, S., Hodgson, A.T., Fisk, W.J., Mendell, M.J., Koshland, C.P., Daisey, J.M., 1998. Development of New Volatile Organic Compound (VOC) Exposure Metrics and their Relationship to “Sick Building Syndrome” Symptoms. Indoor Air 8, 140–152. doi:10.1111/j.1600-0668.1998.t01-1-00002.x

Buonomano, A., Sherman, M., 2009. Analysis of residential hybrid ventilation performance in US climates, in: Proceedings of the AIVC 30th Conference: Trends in High Performance Buildings and the Role of Ventilation. pp. 1–2.

Caillou, S., Heijmans, N., Laverge, J., Janssens, A., 2014. Development of an evaluation methodology to quantify the energy potential of demand controlled ventilation strategies, in: 35th AIVC Conference “ Ventilation and Airtightness in Transforming the Building Stock to High Performance.”

Caillou, S., Heijmans, N., Laverge, J., Janssens, A., 2014b. Méthode de calcul PER: Facteurs de réduction pour la ventilation à la demande.

Caillou, S., Van den Bossche, P., Dinne, K., Vandaele, L., 2012. Performances of ventilation systems : on site measurements related to energy efficiency, comfort and health, in: AIVC-Tightvent Conference Proceedings. Copenhagen, p. 176.

Cain, W.S., Berglund, L.G., 1979. Role of Odors in Ventilation Requirements for Buildings. Proc. Hum. Factors Ergon. Soc. Annu. Meet. 23, 139–143. doi:10.1177/107118137902300135

Cain, W.S., Leaderer, B.P., Isseroff, R., Berglund, L.G., Huey, R.J., Lipsitt, E.D., Perlman, D., 1983. Ventilation requirements in buildings—I. Control of occupancy odor and tobacco smoke odor. Atmospheric Environ. 1967 17, 1183–1197. doi:10.1016/0004-6981(83)90341-4

Caron, A., Redon, N., Thevenet, F., Hanoune, B., Coddeville, P., 2016. Performances and limitations of electronic gas sensors to investigate an indoor air quality event. Build. Environ. 107, 19–28. doi:10.1016/j.buildenv.2016.07.006

CCFAT, 2015. VMC Simple Flux hygroréglable - Règles de calculs pour l’instruction d’une demande d’avis techniques - GS14.5 - Equipements / Ventilation et systèmes par vecteur air.

Page 82: LBNLSVACH Smart ventilation review · 2020. 1. 4. · 0 | Page Residential smart ventilation: a review Gaëlle Guyot1, Max H. Sherman2, Iain S. Walker2 & Jordan D. Clark2 1 Cerema

79|P a g e

CEN, 2007. EN 15251 - Indoor environmental input parameters for design and assessment of energy performance of buildings addressing indoor air quality, thermal environment, lighting and acoustics.

Chao, C.Y., Wan, M.P., Law, A.K., 2004. Ventilation performance measurement using constant concentration dosing strategy. Build. Environ. 39, 1277–1288. doi:10.1016/j.buildenv.2004.03.012

Chenari, B., Dias Carrilho, J., Gameiro da Silva, M., 2016. Towards sustainable, energy-efficient and healthy ventilation strategies in buildings: A review. Renew. Sustain. Energy Rev. 59, 1426–1447. doi:10.1016/j.rser.2016.01.074

Chung, P.-R., Tzeng, C.-T., Ke, M.-T., Lee, C.-Y., 2013. Formaldehyde Gas Sensors: A Review. Sensors 13, 4468–4484. doi:10.3390/s130404468

Coeudevez, C.-S., 2016. 33 dynamic IAQ measurement devices tested by the French IAQ network RISEB.

Communiqué de presse - Indoor air pollution: new EU research reveals higher risks than previously thought [WWW Document], 2003. URL http://europa.eu/rapid/press-release_IP-03-1278_en.htm (accessed 11.28.16).

De Almeida, A.T., Fisk, W.J., 1997. Sensor-based demand-controlled ventilation. LBNL-40599. de Gids, W.F., Heijnen, I.P., 2011. Ventilatie van ruimten ten behoeve van personen

Achtergronden van de eisen. Demouge, F., Le Roux, N., Faure, X., 2011. Numerical validation fo natural ventilation design,

in: 32nd AIVC Conference “ Towards Optimal Airtightness Performance.” Brussels, Belgium.

Derbez, M., Berthineau, B., Cochet, V., Lethrosne, M., Pignon, C., Riberon, J., Kirchner, S., 2014. Indoor air quality and comfort in seven newly built, energy-efficient houses in France. Build. Environ. 72, 173–187. doi:10.1016/j.buildenv.2013.10.017

Dimitroulopoulou, C., 2012. Ventilation in European dwellings: A review. Build. Environ. 47, 109–125. doi:10.1016/j.buildenv.2011.07.016

D’Ottavio, T.W., Dietz, R.N., 1985. Errors resulting from the use of single zone ventilation models on multi-zone buildings: implications for energy conservation and indoor air quality studies., in: ASHRAE Symposium on Multi-Cell Infiltration. Honolulu, Hawaii.

Du, L., Batterman, S., Godwin, C., Chin, J.-Y., Parker, E., Breen, M., Brakefield, W., Robins, T., Lewis, T., 2012. Air Change Rates and Interzonal Flows in Residences, and the Need for Multi-Zone Models for Exposure and Health Analyses. Int J Env. Res Public Health 1639–4661.

Eklund, K., Kunkle, R., Banks, A., Hales, D., 2015. Pacific Northwest Residential Ventilation Effectiveness Study (No. REPORT #E15-015). Washington State University Energy Programm.

Emmerich, S.J., Mitchell, J.W., Beckman, W.A., 1994. Demand-Controlled Ventilation in a Multi-Zone Office Building. Indoor Built Environ. 3, 331–340. doi:10.1177/1420326X9400300607

Emmerich, S.J., Persily, A.K., 2001. State-Of-The-Art Review of Co2 Demand Controlled Ventilation Technology and Application. DIANE Publishing.

Emmerich, S.J., Reed, C.H., Gupta, A., 2005. Modeling the IAQ impact of HHI interventions in inner-city housing. Citeseer.

European Parliament, the Council, 2014. Directive 1253/2014 with regard to ecodesign requirements for ventilation units.

Page 83: LBNLSVACH Smart ventilation review · 2020. 1. 4. · 0 | Page Residential smart ventilation: a review Gaëlle Guyot1, Max H. Sherman2, Iain S. Walker2 & Jordan D. Clark2 1 Cerema

80|P a g e

European Parliament, 2010. DIRECTIVE 2010/31/EU OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 19 May 2010 on the energy performance of buildings (recast).

Fahlen, P., Rudd, S., Andersson, H., 1991. Demand controlled ventilation - evaluation of commercially available sensors., in: 12th AIVC Conference “Air Movement and Ventilation Control within Buildings.” Ottawa, Canada.

Fanger, P.O., Lauridsen, J., Bluyssen, P., Clausen, G., 1988. Air pollution sources in offices and assembly halls, quantified by the olf unit. Energy Build. 12, 7–19. doi:10.1016/0378-7788(88)90052-7

Faulkner, D., Fisk, W.J., Walton, J.T., 1996. Energy Savings in Cleanrooms from Demand-Controlled Filtration. J. Inst Env. Sci 392 21–27.

Federal Technology Alert, W.J., 2004. Demand-Controlled Ventilation Using CO2 Sensors [WWW Document]. URL http://infohouse.p2ric.org/ref/43/42844.pdf (accessed 7.8.16).

Federspiel, C.C., 1996. On-demand ventilation control: a new approach to demandcontrolled ventilation. Proc. Indoor Air 96, 935–40.

Fisk, W.J., 2013. Health benefits of particle filtration. Indoor Air 23, 357–368. doi:10.1111/ina.12036

Fisk, W.J., 2010. CO2 monitoring for demand controlled ventilation in commercial buildings. Lawrence Berkeley Natl. Lab.

Fisk, W.J., De Almeida, A.T., 1998. Sensor-based demand-controlled ventilation: a review. Energy Build. 29, 35–45. doi:10.1016/S0378-7788(98)00029-2

Fisk, W.J., Faulkner, D., Sullivan, D.P., 2006. Accuracy of CO2 sensors in commercial buildings: a pilot study. Lawrence Berkeley Natl. Lab.

Fisk, W.J., Sullivan, D.P., 2010. Optical People Counting for Demand Controlled Ventilation: A Pilot Study of Counter Performance. Lawrence Berkeley Natl. Lab.

French ministry For Ecology, 2007. Le plan de prévention des risques technologiques (PPRT) - Guide méthodologique.

Galatsis, k, Wlodarsk, W. (Eds.), 2006. Car Cabin Air Quality Sensors and Systems, Encyclopedia of sensors. American Scientific Publishers, Stevenson Ranch, Calif.

Garcia, S., Linares, P., 2015. Energy and IAQ friendly variable ventilation rates, according with the proposed indoor air quality regulations included in the Spanish building code., in: 36th AIVC Conference “ Effective Ventilation in High Performance Buildings.” Madrid, Spain, p. 11 p.

Hesaraki, A., Holmberg, S., 2015. Demand-controlled ventilation in new residential buildings: Consequences on indoor air quality and energy savings. Indoor Built Environ. 24, 162–173. doi:10.1177/1420326X13508565

Hill, D. (1998). Field Survey of Heat Recovery Ventilation Systems (Technical Series No. 96-215). Ottawa, Ontario: Canada Mortgage and Housing Corporation: Research Division. Retrieved from http://publications.gc.ca/collections/collection_2011/schl-cmhc/nh18-1/NH18-1-90-1998-eng.pdf

Hodgson, A.T., Nabinger, S.J., Persily, A.K., 2004. Volatile organic compound concentrations and emission rates measured over one year in a new manufactured house. Lawrence Berkeley Natl. Lab.

Page 84: LBNLSVACH Smart ventilation review · 2020. 1. 4. · 0 | Page Residential smart ventilation: a review Gaëlle Guyot1, Max H. Sherman2, Iain S. Walker2 & Jordan D. Clark2 1 Cerema

81|P a g e

Homod, R.Z., Sahari, K.S.M., 2013. Energy savings by smart utilization of mechanical and natural ventilation for hybrid residential building model in passive climate. Energy Build. 60, 310–329. doi:10.1016/j.enbuild.2012.10.034

Janssen, 1989. Ventilation for acceptable indoor air quality. Ashrae J. Jantunen, M., Oliveira Fernandes, E., Carrer, P., Kephalopoulos, S., European Commission,

Directorate General for Health & Consumers, 2011. Promoting actions for healthy indoor air (IAIAQ). European Commission, Luxembourg.

Jobert, R., Guyot, G., 2013. Detailed analysis of regulatory compliance controls of 1287 dwellings ventilation systems, in: Proceedings of the 34th AIVC–3rd TightVent–2nd Cool Roofs’–1st Venticool Conference. Athens, Greece, pp. 25–26.

Jones, B., Das, P., Chalabi, Z., Davies, M., Hamilton, I., Lowe, R., Mavrogianni, A., Robinson, D., Taylor, J., 2015. Assessing uncertainty in housing stock infiltration rates and associated heat loss: English and UK case studies. Build. Environ. 92, 644–656. doi:10.1016/j.buildenv.2015.05.033

Jreijiry, D., Husaunndee, A., Inard, C., 2007. Numerical study of a hybrid ventilation system for single family houses. Sol. Energy 81, 227–239. doi:10.1016/j.solener.2006.03.013

Ke, Y.-P., Mumma, S.A., 1997. Using carbon dioxide measurements to determine occupancy for ventilation controls, in: Proceedings of the Ashrae Summer Meeting [Preprint]. Ashrae Transactions, Vol 103, Part 2, Boston, USA, p. 9 p.

Kesselring, J.P., Koontz, M.D., Cade, D.R., Nagda, N.L., 1993. Evaluation of residential ventilation controller technology, in: Proceedings of ’Indoor Air “93”, The 6th International Conference on Indoor Air Quality and Climate". Finland, Helsinki, p. pp 73-78.

Kirchner, S., al., 2006. Observatoire de la qualité de l’air intérieur - Campagne nationale Logements - Etat de la qualité de l’air dans les logements français (Rapport final). CSTB.

Klepeis, N.E., Nelson, W.C., Ott, W.R., Robinson, J.P., Tsang, A.M., Switzer, P., Behar, J.V., Hern, S.C., Engelmann, W.H., 2001. The National Human Activity Pattern Survey (NHAPS): a resource for assessing exposure to environmental pollutants. J. Expo. Anal. Environ. Epidemiol. 11, 231–252. doi:10.1038/sj.jea.7500165

Klug, V., Lobscheid, A.., Singer, B.C., 2011. Cooking Appliance Use in California Homes – Data Collected from a Web-Based Survey (No. LBNL-5028E).

Knoespel, P., Mitchell, J.W., Beckman, W.A., 1991. Macroscopic model of indoor air quality and automatic control of ventilation airflow. Ashrae Trans. 97, 10 pp.

Krus, M., Rösler, D., Holm, A., 2009. Calculation of the primary energy consumption of a supply and exhaust ventilation system with heat recovery in comparison to a demand-based (moisture-controlled) exhaust ventilation system, in: 30th AIVC Conference “ Trends in High Performance Buildings and the Role of Ventilation.” Berlin, Germany.

Kumar, P., Skouloudis, A.N., Bell, M., Viana, M., Carotta, M.C., Biskos, G., Morawska, L., 2016. Real-time sensors for indoor air monitoring and challenges ahead in deploying them to urban buildings. Sci. Total Environ. 560–561, 150–159. doi:10.1016/j.scitotenv.2016.04.032

Labat, M., Woloszyn, M., Garnier, G., Roux, J.J., 2013. Assessment of the air change rate of airtight buildings under natural conditions using the tracer gas technique. Comparison with numerical modelingmodeling. Build. Environ. 60, 37–44. doi:10.1016/j.buildenv.2012.10.010

Page 85: LBNLSVACH Smart ventilation review · 2020. 1. 4. · 0 | Page Residential smart ventilation: a review Gaëlle Guyot1, Max H. Sherman2, Iain S. Walker2 & Jordan D. Clark2 1 Cerema

82|P a g e

Lansari, A., Streicher, J.J., Huber, A.H., Crescenti, G.H., Zweidinger, R.B., Duncan, J.W., Weisel, C.P., Burton, R.M., 1996. Dispersion of Automotive Alternative Fuel Vapors within a Residence and Its Attached Garage. Indoor Air 6, 118–126. doi:10.1111/j.1600-0668.1996.t01-1-00008.x

Laverge, J., Van Den Bossche, N., Heijmans, N., Janssens, A., 2011. Energy saving potential and repercussions on indoor air quality of demand controlled residential ventilation strategies. Build. Environ. 46, 1497–1503. doi:10.1016/j.buildenv.2011.01.023

Leech, J.A., Raizenne, M., Gusdorf, J., 2004. Health in occupants of energy efficient new homes. Indoor Air 14, 169–173. doi:10.1111/j.1600-0668.2004.00212.x

Less, B., Walker, I., Tang, Y., 2014. Development of an Outdoor Temperature-Based Control Algorithm for Residential Mechanical Ventilation Control. Ernest Orlando Lawrence Berkeley National Laboratory, Berkeley, CA (US).

Levin, H., Phillips, T.J., 2011. Indoor Environmental Quality: Research Roadmap 2012–2030: Energy-Related Priorities, California Energy Commission, publication number CEC-500-2015-012. Available using the following link: http://www.energy.ca.gov/publications/displayOneReport.php?pubNum=CEC-500-2015-012.

Limb M.J, 1992. TN 36: Air Infiltration and Ventilation Glossary. AIVC Technical Note. Linares, P., García, S., Larrumbide, E., Tenorio, J., 2015. Energy and IAQ friendly variable

ventilation rates, according with the proposed indoor air quality regulations included in the Spanish building code., in: 36th AIVC Conference “ Effective Ventilation in High Performance Buildings.” Madrid, Spain, p. 11 p.

Linares, P., García, S., Sotorrío, G., A Tenorio, J., 2014. Proposed change in Spanish regulations relating to indoor air quality with the aim of reducing energy consumption of ventilation systems, in: 35th AIVC Conference “ Ventilation and Airtightness in Transforming the Building Stock to High Performance.” Poznań, Poland.

Liu, D.-L., Nazaroff, W.W., 2003. Particle Penetration Through Building Cracks. Aerosol Sci. Technol. 37, 565–573. doi:10.1080/02786820300927

Liu, D.-L., Nazaroff, W.W., 2001. Modeling pollutant penetration across building envelopes. Atmos. Environ. 35, 4451–4462. doi:10.1016/S1352-2310(01)00218-7

Logue, J.M., McKone, T.E., Sherman, M.H., Singer, B.C., 2011a. Hazard assessment of chemical air contaminants measured in residences. Indoor Air 21, 92–109. doi:10.1111/j.1600-0668.2010.00683.x

Logue, J.M., McKone, T.E., Sherman, M.H., Singer, B.C., 2011a. Hazard assessment of chemical air contaminants measured in residences. Indoor Air 21, 92–109. doi:10.1111/j.1600-0668.2010.00683.x

Logue, J.M., Price, P.N., Sherman, M.H., Singer, B.C., 2011b. A Method to Estimate the Chronic Health Impact of Air Pollutants in U.S. Residences. Environ. Health Perspect. 120, 216–222. doi:10.1289/ehp.1104035

Logue, J.M., Price, P.N., Sherman, M.H., Singer, B.C., 2011b. A Method to Estimate the Chronic Health Impact of Air Pollutants in U.S. Residences. Environ. Health Perspect. 120, 216–222. doi:10.1289/ehp.1104035

Lu, T., Knuutila, A., Viljanen, M., Lu, X., 2010. A novel methodology for estimating space air change rates and occupant CO2 generation rates from measurements in mechanically-ventilated buildings. Build. Environ. 45, 1161–1172. doi:10.1016/j.buildenv.2009.10.024

Page 86: LBNLSVACH Smart ventilation review · 2020. 1. 4. · 0 | Page Residential smart ventilation: a review Gaëlle Guyot1, Max H. Sherman2, Iain S. Walker2 & Jordan D. Clark2 1 Cerema

83|P a g e

Lubliner, Francisco, Martin, Walker, I., Less, B., Viera, Kuckle, Merrin, 2016. Practical Applications and Case Study of Temperature Smart Ventilation Controls, in: Thermal Performance of the Exterior Envelopes of Buildings XIII, ASHRAE/DOE/BTECC.

Lucas, J.-P., Ramalho, O., Kirchner, S., Ribéron, J., 2009. Observatoire de la qualité de l’air intérieur - Etat de la ventilation dans le parc de logements francais. CSTB.

Mansson, L.G., 1993. IEA Annex 18. Demand Controlled Ventilation Systems: Case Studies, Document. Swedish Council for Building Research, Stockholm, Sweden.

Mansson, L.G., Svennberg, L.A., Liddament, M.., 1997. Technical Synthesis Report. A Summary of IEA Annex 18. Demand Controlled Ventilating Systems, AIVC.

Maripuu, M.-L., 2011. Demand controlled ventilation (DCV) for better IAQ and Energy Efficiency. REVHA J. 48, 26–30.

Matson, N.E., Sherman, M.H., 2004. Why we ventilate our houses-An historical look. Lawrence Berkeley Natl. Lab.

Mendell, M.J., 2003. Indices for IEQ and building-related symptoms. Indoor Air 13, 364–368. doi:10.1046/j.0905-6947.2003.00229.x

Moffat, P., Moffat, S., Cooper, K., 1991. Demand-controlled ventilation - final report. canadian Mortgage and Housing corporation, Ottawa, Canada.

Mølhave, L., Clausen, G., Berglund, B., De Ceaurriz, J., Kettrup, A., Lindvall, T., Maroni, M., Pickering, A.C., Risse, U., Rothweiler, H., Seifert, B., Younes, M., 1997. Total Volatile Organic Compounds (TVOC) in Indoor Air Quality Investigations*. Indoor Air 7, 225–240. doi:10.1111/j.1600-0668.1997.00002.x

Moniteur Belge, 2015. Arrêté ministériel déterminant les valeurs du facteur de réduction pour la ventilation visé à l’annexe A1 de l’ arrêté du Gouvernement wallon du 15 mai 2014 portant exécution du décret du 28 novembre 2013 relatif à la performance énergétique des bâtiments.

Mortensen, D., Walker, I.S., Sherman, M.H., 2011. Energy and air quality implications of passive stack ventilation in residential buildings (No. LBNL 4589E). Lawrence Berkeley National Laboratory.

Mortensen, D.K., 2011. Demand controlled ventilation for multi-family dwellings: demand specification and system design : Ph.D. thesis. DTU Civil Engineering, Technical University of Denmark, Lyngby.

Mortensen, D.K., Nielsen, T.R., 2011. System Design for Demand Controlled Ventilation in Multi-Family Dwellings. Int. J. Vent. 10, 205–216. doi:10.1080/14733315.2011.11683949

Mortensen, D.K., Walker, I.S., Sherman, M.H., 2011. Optimization of occupancy based demand controlled ventilation in residences. Int. J. Vent. 10, 49–60.

Mullen, N., Li, j, Singer, B.C., 2013. Participant Assisted Data Collection Methods in the California Healthy Homes Indoor Air Quality Study of 2011-13 (No. LBNL-6374E).

Mysen, M., Schild, P., Drangsholt, F., 2010. Robustness and True Performance of Demand Controlled Ventilation in Educational Buildings – Review and Needs for Future Development, in: 31st AIVC Conference “ Low Energy and Sustainable Ventilation Technologies for Green Buildings.” Seoul, Korea.

Nazaroff, W.W., Gadgil, A.J., Weschler, C.J., 1993. Critique of the use of deposition velocity in modeling indoor air quality, in: Modeling of Indoor Air Quality and Exposure. ASTM International.

Page 87: LBNLSVACH Smart ventilation review · 2020. 1. 4. · 0 | Page Residential smart ventilation: a review Gaëlle Guyot1, Max H. Sherman2, Iain S. Walker2 & Jordan D. Clark2 1 Cerema

84|P a g e

NEN, 2011. NEN 8088-1:2011 nl Ventilatie en luchtdoorlatendheid van Gebouwen - Bepalingsmethode voor de toevoerluchttemperatuur gecorrigeerde ventilatie- en infiltratieluchtvolumestromen voor energieprestatieberekeningen - Deel 1: Rekenmethode (Ventilation and infiltration for buildings - Calculation method for the supply air temperature corrected Ventilation and infiltration air volume rates for calculating energy performance - Part 1: Calculation method).

Nicolas, C., 1985. Analysis of a humidity-controlled ventilation system. Evaluation des performances d’une ventilation hygromodulante., in: Proceedings of the CLIMA 2000 World Congress on Heating, Ventilating and Air-Conditioning, Indoor Climate. P O Fanger, Copenhagen, p. p339–343.

Nielsen, J., 1992. A new ventilation strategy for humidity control in homes., in: 13th AIVC Conference “Ventilation for Energy Efficiency and Optimum Indoor Air Quality”,. Nice, France,.

Nielsen, J., Ambrose, I., 1995. A new ventilation strategy for humidity control in homes - a demonstration project., in: 16th AIVC Conference “Implementing the Results of Ventilation Research”,. Palm Springs, USA,.

Nielsen, T.R., Drivsholm, C., 2010. Energy efficient demand controlled ventilation in single family houses. Energy Build. 42, 1995–1998. doi:10.1016/j.enbuild.2010.06.006

Oakes, M., Baxter, L., Long, T.C., 2014. Evaluating the application of multipollutant exposure metrics in air pollution health studies. Environ. Int. 69, 90–99. doi:10.1016/j.envint.2014.03.030

Olesen, B.W., 2007. The philosophy behind EN15251: Indoor environmental criteria for design and calculation of energy performance of buildings. Energy Build. 39, 740–749. doi:10.1016/j.enbuild.2007.02.011

Parekh, A., Riley, M., 1991. Performance analysis of demand controlled ventilation system using relative humidity as sensing element., in: 12th AIVC Conference “Air Movement and Ventilation Control within Buildings.” Ottawa, Canada.

Park, J.S., Kim, H.J., 2012. A field study of occupant behavior and energy consumption in apartments with mechanical ventilation. Energy Build. 50, 19–25. doi:10.1016/j.enbuild.2012.03.015

Pavlovas, V., 2004. Demand controlled ventilation: A case study for existing Swedish multifamily buildings. Energy Build., REHVA Scientific 36, 1029–1034. doi:10.1016/j.enbuild.2004.06.009

Persily, A., 2006. What we Think we Know about Ventilation. Int. J. Vent. 5, 275–290. doi:10.1080/14733315.2006.11683745

Persily, A., 1997. Evaluating building IAQ and ventilation with indoor carbon dioxide. ASHRAE Trans.

Persily, A., Dols, W.S., 1990. The relation of CO 2 concentration to office building ventilation, in: Air Change Rate and Airtightness in Buildings. ASTM International.

Phillips, T.J., Levin, H., 2015. Indoor environmental quality research needs for low-energy homes. Sci. Technol. Built Environ. 21, 80–90. doi:10.1080/10789669.2014.975056

Presmanes, L., 2015. Micro-capteurs à semi-conducteurs pour la detection du CO2. Chim. Technol. L’information 18 p.

Raatschen, W., 1990. IEA Annex 18. Demand controlled ventilating system: state of the art review, Document. Swedish Council for Building Research, Stockholm, Sweden.

Page 88: LBNLSVACH Smart ventilation review · 2020. 1. 4. · 0 | Page Residential smart ventilation: a review Gaëlle Guyot1, Max H. Sherman2, Iain S. Walker2 & Jordan D. Clark2 1 Cerema

85|P a g e

Raatschen, W., Trepte, L., 1987. Ventilation requirements and demand controlled ventilation., in: 8th AIVC Conference “Ventilation Technology Research and Application.” Ueberlingen, West Germany.

Rackes, A., Waring, M.S., 2016. Spatial Resolution and Sensor Accuracy in Routine Indoor Air Quality Monitoring Networks: Are More Sensors Better?, in: 37th AIVC Conference - ASHRAE Conference. Presented at the IAQ 2016, Alexandria, USA, p. 8 p.

Ramalho, O., Wyart, G., Mandin, C., Blondeau, P., Cabanes, P.-A., Leclerc, N., Mullot, J.-U., Boulanger, G., Redaelli, M., 2015. Association of carbon dioxide with indoor air pollutants and exceedance of health guideline values. Build. Environ., Special Issue: Indoor pollutants, chemistry and health- Selected papers presented at Indoor Air 2014 conference in Hong Kong 93, Part 1, 115–124. doi:10.1016/j.buildenv.2015.03.018

Ribéron, J., Ramalho, O., Derbez, M., Berthineau, B., Wyart, G., Kirchner, S., Mandin, C., 2016. Air stuffiness index: from schools to homes. Pollut. Atmos.

Römer, J.C., van Ginkel, J.T., 2003. Demand controlled ventilation in a low-energy house: Preliminary results on energy conservation and health effects, in: The 4th International Conference on Cold Climate - Heating, Ventilating and Air-Conditioning.

Roveti, D.., 2001. Choosing a Humidity Sensor: A Review of Three Technologies | Sensors. Rudd, A.F., Lstiburek, J.W., 2000. Measurement of ventilation and interzonal distribution in

single-family homes. ASHRAE Trans. 106, 709. Satish, U., Mendell, M.J., Shekhar, K., Hotchi, T., Sullivan, D., Streufert, S., Fisk, W.J., 2012. Is

CO2 an Indoor Pollutant? Direct Effects of Low-to-Moderate CO2 Concentrations on Human Decision-Making Performance. Environ. Health Perspect. 120, 1671–1677. doi:10.1289/ehp.1104789

Savin, J.., Jardinier, M., 2009. VIP 31: Humidity Controlled Exhaust Ventilation in Moderate Climate. AIVC 12 p.

Savin, J.-L., Berthin, S., Jardinier, M., 2014. Demand-controlled ventilation. 20 years of in-situ monitoring in the residential field, in: 35th AIVC Conference “ Ventilation and Airtightness in Transforming the Building Stock to High Performance.” Poznań, Poland.

Schell, M., Inthout, D., 2002. Demand Control Ventilation Using CO2. ASHRAE J. Schild, P., 2007. State-of-the-art of low-energy residential ventilation. (Contributed Report 07.).

Air Infiltration and Ventilation Centre. Sekhar, S., Tham, Cheong, D., Kyaw, T., Susithra, M., 1999. The Development of an Indoor

Pollutant Standard Index, in: 8th International Conference on Indoor Air Quality and Climate. Edinburgh, pp. 272–7.

Semple, S., Ibrahim, A.E., Apsley, A., Steiner, M., Turner, S., 2013. Using a new, low-cost air quality sensor to quantify second-hand smoke (SHS) levels in homes. Tob. Control tobaccocontrol-2013-051188. doi:10.1136/tobaccocontrol-2013-051188

Seong, N.C., 2010. Energy Requirements of a Multi-Sensor Based Demand Control Ventilation System In Residential Buildings, in: 31st AIVC Conference “ Low Energy and Sustainable Ventilation Technologies for Green Buildings”,. Seoul, Korea,.

Seppanen, O., et. al., 2012. HealthVent Project Report WP5 – Existing buildings, buildings codes, ventilation standards and ventilation in Europe.

Sextro, R.G., Daisey, J.M., Feustel, H.E., Dickerhoff, D.J., Jump, C., 1999. Comparison of modeled and measured tracer gas concentrations in a multi-zone building. RECENT Res. INDOOR AIR Qual. Compil. Mem. OF 7.

Page 89: LBNLSVACH Smart ventilation review · 2020. 1. 4. · 0 | Page Residential smart ventilation: a review Gaëlle Guyot1, Max H. Sherman2, Iain S. Walker2 & Jordan D. Clark2 1 Cerema

86|P a g e

Sheltair scientific Ltd., 1988. Preliminary Results of “Evaluation of the Aereco ventilation system in the VIS Residence.” For Canadian Home Builders association, Vancouver, Canada.

Sherman, M.H., 2008. Multi-zone Age-of-Air Analysis. Int. J. Vent. 7, 159–167. doi:10.1080/14733315.2008.11683808

Sherman, M.H., 2004. Efficacy of intermittent ventilation for providing acceptable indoor air quality (No. LBNL--56292, 834643).

Sherman, M.H., 1990. Tracer Gas Techniques for Measuring Ventilation in a Single Zone. Build. Environ. 4, 365–374.

Sherman, M.H., Hodgson, A.T., 2002. Formaldehyde as a basis for residential ventilation rates. Lawrence Berkeley Natl. Lab.

Sherman, M.H., Mortensen, D.K., Walker, I.S., 2011. Derivation of equivalent continuous dilution for cyclic, unsteady driving forces. Int. J. Heat Mass Transf. 54, 2696–2702. doi:10.1016/j.ijheatmasstransfer.2010.12.018

Sherman, M.H., Walker, I.S., 2011. Meeting residential ventilation standards through dynamic control of ventilation systems. Energy Build. 43, 1904–1912. doi:10.1016/j.enbuild.2011.03.037

Sherman, M.H., Walker, I.S., 2008. Air distribution effectiveness for different mechanical ventilation systems. Int. J. Vent. 6, 307–313.

Sherman, M.H., Walker, I.S., Logue, J.M., 2012. Equivalence in ventilation and indoor air quality. HVACR Res. 18, 760–773. doi:10.1080/10789669.2012.667038

Sherman, M.H., Wilson, D.J., 1986. Relating actual and effective ventilation in determining indoor air quality. Build. Environ. 21, 135–144. doi:10.1016/0360-1323(86)90022-3

Shi, L., Hasegawa, Y., Katsube, T., Nakano, M., Nakamura, K., 2005. Highly sensitive SnO/sub 2/-based gas sensor for indoor air quality monitoring. IEEE, pp. 1203–1206. doi:10.1109/SENSOR.2005.1497294

Shrestha, S., Maxwell, M., 2009. Product Testing report - Wall mounted carbon dioxide transmitters. Iowa Energy Center.

Singer, B.C., Delp, W.W., Price, P.N., Apte, M.G., 2012. Performance of installed cooking exhaust devices. Indoor Air 22, 224–234. doi:10.1111/j.1600-0668.2011.00756.x

Sonne, J.K, Withers, C, and Vieira, R. 2015. Investigation of the effectiveness and failure rates of whole-house mechanical ventilation systems in Florida. Florida Solar Energy Center. FSEC-CR-2002-15

Stephens, B., Siegel, J.A., 2012. Penetration of ambient submicron particles into single-family residences and associations with building characteristics. Indoor Air 22, 501–513. doi:10.1111/j.1600-0668.2012.00779.x

Stratton, J.C., Walker, I.S., Wray, C.P., 2012. Measuring Residential Ventilation System Airflows: Part 2-Field Evaluation of Airflow Meter Devices and System Flow Verification. LBNL-5982E Httpeetd Lbl Govnode51148.

Sublett, J.L., Seltzer, J., Burkhead, R., Williams, P.B., Wedner, H.J., Phipatanakul, W., 2010. Air filters and air cleaners: Rostrum by the American Academy of Allergy, Asthma & Immunology Indoor Allergen Committee. J. Allergy Clin. Immunol. 125, 32–38. doi:10.1016/j.jaci.2009.08.036

Szkarłat, K., Mróz, T., 2014. System for controlling variable amount of air ensuring appropriate indoor air quality in low-energy and passive buildings, in: 35th AIVC Conference “

Page 90: LBNLSVACH Smart ventilation review · 2020. 1. 4. · 0 | Page Residential smart ventilation: a review Gaëlle Guyot1, Max H. Sherman2, Iain S. Walker2 & Jordan D. Clark2 1 Cerema

87|P a g e

Ventilation and Airtightness in Transforming the Building Stock to High Performance.” AIVC, Poznań, Poland.

Teichman, K., Howard-Reed, C., Persily, A., Emmerich, S., 2016. Characterizing Indoor Air Quality Performance Using a Graphical Approach (No. NIST TN 1868). National Institute of Standards and Technology.

Turner, W., Walker, I., 2012. Advanced Controls and Sustainable Systems for Residential Ventilation.

Turner, W.J.N., Walker, I.S., 2013. Using a ventilation controller to optimise residential passive ventilation for energy and indoor air quality. Build. Environ. 70, 20–30. doi:10.1016/j.buildenv.2013.08.004

Turner, W.J.N., Walker, I.S., Roux, J., 2015. Peak load reductions: Electric load shifting with mechanical pre-cooling of residential buildings with low thermal mass. Energy 82, 1057–1067. doi:10.1016/j.energy.2015.02.011

Ulmer, heiko, Herberger, S., 2011. New developments in VOC sensing for DCV, in: 2011 AIVC-TIGHTVENT Conference.

Van den Bossche, Janssens, A., Heijmans, N., Wouters, P., 2007. Performance evaluation of humidity controlled ventilation strategies in residential buildings., in: Thermal Performance of the Exterior Envelopes of Whole Buildings X. ASHRAE, Clearwater Beach, FL, USA, p. 7p.

van Holsteijn, R., Li, W., 2014. MONItoring & Control of Air quality in Individual Room - Results of a monitoring study into the indoor air quality and energy efficiency of residential ventilation systems.

Viricelle, J.-P., Vernoux, P., Gao, J., Romanytsia, I., 2016. NO2-Selective Electrochemical Sensors for Diesel Exhausts. Presented at the EuroSensors 2016.

VLA, 2013. VLA methodiek gelijkwaardigheid versie 1-1dd. Von Pettenkofer, M., 1858. Über den Luftwechsel in Wohngebäuden. Walker, I., Sherman, M., 2006. Evaluation of existing technologies for meeting residential

ventilation requirements. (No. LBNL-59998). Walker, I., Sherman, M., Dickerhoff, D., 2011. Development of a Residential Integrated

Ventilation Controller (No. LBNL-5401E). Ernest Orlando Lawrence Berkeley National Laboratory, Berkeley, CA (US).

Walker, I., Sherman, M.H., Less, B., 2014. Houses are Dumb without Smart Ventilation. eScholarship.

Walker, I.S., Sherman, M.H., 2013. Effect of ventilation strategies on residential ozone levels. Build. Environ. 59, 456–465. doi:10.1016/j.buildenv.2012.09.013

Walton, G.N., Emmerich, S.J., 1994. CONTAM93: a multi-zone airflow and contaminant dispersal model with a graphic user interface. Air Infiltration Rev. 16, 6–8.

Wang, S., Jin, X., 1998. CO2-Based Occupancy Detection for On-Line Outdoor Air Flow Control. Indoor Built Environ. 7, 165–181. doi:10.1159/000024577

Wargocki, P., 2012. The effects of ventilation in homes on health, in: Ventilation 2012. INRS, Paris, France, p. 21 p.

Weisel, C.P., Zhang, J., Turpin, B.J., Morandi, M.T., Colome, S., Stock, T.H., Spektor, D.M., Korn, L., Winer, A.M., Kwon, J., Meng, Q.Y., Zhang, L., Harrington, R., Liu, W., Reff, A., Lee, J.H., Alimokhtari, S., Mohan, K., Shendell, D., Jones, J., Farrar, L., Maberti, S., Fan, T., 2005. Relationships of Indoor, Outdoor, and Personal Air (RIOPA). Part I. Collection methods and descriptive analyses. Res. Rep. Health Eff. Inst. 1-107-127.

Page 91: LBNLSVACH Smart ventilation review · 2020. 1. 4. · 0 | Page Residential smart ventilation: a review Gaëlle Guyot1, Max H. Sherman2, Iain S. Walker2 & Jordan D. Clark2 1 Cerema

88|P a g e

WHO, 2014. Burden of disease from Household Air Pollution for 2012. World Health Organization.

WHO, 2011. Environmental burden of disease associated with inadequate housing, Methods for quantifying health impacts of select housing risks in the WHO European Region. Cph. Den. World Health Organ. 238 p.

Woloszyn, M., Kalamees, T., Olivier Abadie, M., Steeman, M., Sasic Kalagasidis, A., 2009. The effect of combining a relative-humidity-sensitive ventilation system with the moisture-buffering capacity of materials on indoor climate and energy efficiency of buildings. Build. Environ. 44, 515–524. doi:10.1016/j.buildenv.2008.04.017

Won, D., Yang, W., 2005. The State-of-the-A rt in Sensor Technology for Demand-Controlled Ventilation, PERD S5-42 : Final Report (No. IRC-RR-243).

Won, D.Y., Schleibinger, H., 2011. Commercial IAQ Sensors and their Performance Requirements for Demand-Controlled Ventilation.

Wouters, P., L’Heureux, D., Geerinckx, B., Vandaele, L., 1991. Performance evaluation of humidity controlled natural ventilation in apartments., in: 12th AIVC Conference “Air Movement and Ventilation Control within Buildings.” Ottawa, Canada.

Yamazoe, N., Shimanoe, K., 2009. New perspectives of gas sensor technology. Sens. Actuators B Chem. 138, 100–107. doi:10.1016/j.snb.2009.01.023

Zampolli, S., Elmi, I., Stürmann, J., Nicoletti, S., Dori, L., Cardinali, G.C., 2005. Selectivity enhancement of metal oxide gas sensors using a micromachined gas chromatographic column. Sens. Actuators B Chem. 105, 400–406. doi:10.1016/j.snb.2004.06.036

Zeghnoun, A., Dor, F., Grégoire, A., 2010. Description du budget espace-temps et estimation de l’exposition de la population française dans son logement. Inst. Veille Sanit. Qual. L’air Intér. Dispon. Sur Www Air-Interieur Org.

Zhang, X., Wargocki, P., Lian, Z., 2016. Physiological Responses during Exposure to Carbon Dioxide and Bioeffluents at Levels Typically Occurring Indoors. Indoor Air n/a-n/a. doi:10.1111/ina.12286

Zhao, Y., Yoshino, H., Okuyama, H., 1998. Evaluation of the COMIS Model by Comparing Simulation and Measurement of Airflow and Pollutant Concentration. Indoor Air 8, 123–130. doi:10.1111/j.1600-0668.1998.t01-2-00007.x