laser_cooling_notes

Embed Size (px)

Citation preview

  • 8/7/2019 laser_cooling_notes

    1/27

    PHY 411 / 412 / 436

    QUANTUM OPTICS

    Prof. Mark Fox

    A sub-module of the

    ASPECTS OF MODERN PHYSICS module

    Spring Semester

    10 lectures

  • 8/7/2019 laser_cooling_notes

    2/27

    Module Synopsis

    Course text:Fox, M.

    Quantum Optics, an IntroductionOxford University Press, 2006

    I. Laser Cooling & Bose-Einstein Condensation(Lectures 1-5)

    II. Photon statistics (Lectures 6-9)

    III. Quantum Information Processing

    (Cryptography) (Lecture 10)

  • 8/7/2019 laser_cooling_notes

    3/27

    Part I: Laser cooling & BEC

    Reading: Fox, Quantum Optics, Chapter 11

    Other useful books

    Foot, Atomic Physics, Oxford, 2005, Chapters 9-10Demtrder, Atoms, Molecules and Photons, 12.1Haken & Wolf, Physics of Atoms & Quanta, 22.6, 23.11

    Topics to be covered Techniques for laser cooling of atoms

    Theoretical limits on the temperature Bose-Einstein Condensation of atoms

  • 8/7/2019 laser_cooling_notes

    4/27

    Useful resources

    Web resources for laser cooling & BEC:

    http://nobelprize.org/nobel_prizes/physics/laureates/1997/

    http://nobelprize.org/nobel_prizes/physics/laureates/2001/

    http://www.lkb.ens.fr/recherche/atfroids/tutorial/index2.htm *http://www.colorado.edu/physics/2000/bec/

    http://bec01.phy.georgiasouthern.edu/bec.html/

    * in French !

  • 8/7/2019 laser_cooling_notes

    5/27

    Atomic temperatures

    oven, temp T

    2

    B

    2

    B

    1 33 D

    2 2

    1 1

    1 D2 2x

    mv k T

    mv k T

    =

    =

    Principle of equipartition of energy:kBTper degree of freedom

    atomic beam

    B3mp

    k Tv

    m=

    vmp = most probable velocity

  • 8/7/2019 laser_cooling_notes

    6/27

    Doppler cooling mechanism

    0Lab

    sorption

    frequency

    0

    absorption

    frequency

    0a

    bsorption

    frequency

    2

    v

    v

    v

    (a)

    L

    L

    (b)

    (c)

    absorption only for case (b) laser must be tuned below

    the transition frequency must be tuned as

    atoms cool

    velocity = vx

    atom laser beam

    L = 0 +

    =0

    xv

    c

  • 8/7/2019 laser_cooling_notes

    7/27

    Absorption-emission cycles

    t= 0

    t=

    1. Laser photon impinges on atom

    2. Atom promoted to excited stateat t = 0

    3. Atom re-emits at mean time in a random direction

    Average momentum kick of (h/) in time d

    d

    x x

    x

    p p hF

    t

    = =

  • 8/7/2019 laser_cooling_notes

    8/27

    Limits on Doppler cooling

    stop

    min stop

    2

    min

    B min

    min

    B

    initial

    per cycle /

    22

    ~

    2

    x x

    x

    x

    x

    p muN

    p h

    mut Nh

    m u

    d h

    k T h v

    Tk

    =

    =

    Number of absorption

    - emission cycles tostop atom,time to do so, anddistance travelled

    Doppler limit temperature

    = 1 / 2 (natural linewidth) Factor of 2 from stimulated

    emission

  • 8/7/2019 laser_cooling_notes

    9/27

    Sisyphus Cooling

    Sisyphus

    Laser cooling experiments using counter-propagatingbeams worked better than expected !

    Tfinal < TDoppler

    Caused by the Sisyphus cooling effect

  • 8/7/2019 laser_cooling_notes

    10/27

    Mechanism of Sisyphus cooling

    Energy

    MJ = 1/2

    MJ = +1/2

    abso

    rptione

    mission

    x

    excited state: J= 3/2

    Position

    ground state: J= 1/2

    http://www.lkb.ens.fr/recherche/atfroids/tutorial/index2.htm

    7. LE REFROIDISSEMENT DATOMES PAR LASER

    counter-propagating

    beams createinterference pattern Atomic levels shifted

    by the AC-Starkeffect

  • 8/7/2019 laser_cooling_notes

    11/27

    Recoil limit temperature

    p= h/

    2 2

    B recoil 2

    2

    recoil 2

    B

    1 ( )

    2 2 2

    p hk T

    m mh

    Tmk

    = =

    =

    Photon recoil ultimately

    limits Twhile atom isundergoing absorption-emission cycles

  • 8/7/2019 laser_cooling_notes

    12/27

    Magneto-optic traps

    x

    y

    z

    i

    i

    Magnetic quadrupole:

    B (x2 + y2 4z2)1/2

    Atomic energy shift:E= gJBBMJ

    attractive for MJ

    > 0

    repulsive for MJ< 0

    Optical Molasses6 counter propagating beams

    + magneto-optic trap

  • 8/7/2019 laser_cooling_notes

    13/27

    Experimental cooling kit

    sodium

    oven

    tapered solenoid

    cooling beam

    probe

    pulse

    molasses

    regioncamera

    escapin

    gatoms

    precooling region

    Lasers tuned to sodium D2 line (3s2S1/2 3p 2P3/2, 589 nm)

    Use tapered solenoid to tune atoms as they cool

    Further details in Dr Phillips Nobel Prize lecture:

    see http://www.physics.nist.gov/News/Nobel/1997nobel.html

    600 C

    ~2.5 K 40 K

  • 8/7/2019 laser_cooling_notes

    14/27

    Temperature achieved

    0 10 20 30 400

    200

    400

    600

    Laser detuning (MHz)

    Temperature

    (K)

    Doppler limit

    Sodium D2 line at 589 nm: = 16 ns

    Tmin (Doppler) = 240 K

    Tmin (recoil) = 2.4 K

  • 8/7/2019 laser_cooling_notes

    15/27

    Ion traps

    Cooling

    laser

    magnetic field

    +

    +

    +

    +

    trapped ions

    Ions easily trapped byelectric & magnetic fields

    Two common designs:Penning & Paul traps

    Use laser to cool ions to

    Doppler limit temperature

    Can trap and control singleions: used for quantum

    information processing

    Penning trap: Bfield traps in (x,y)plane & Efield traps in zdirection

  • 8/7/2019 laser_cooling_notes

    16/27

    Bose-Einstein Condensation

    Main reference

    Fox, Quantum Optics, Chapter 11

    Other useful reading

    Mandl, F., Statistical Physics, 2nd Edition,Wiley (1988), Section 11.6

    Web resources:http://www.colorado.edu/physics/2000/bec/http://nobelprize.org/nobel_prizes/physics/laureates/2001/

    http://ucan.physics.utoronto.ca/

  • 8/7/2019 laser_cooling_notes

    17/27

    Basic concepts of BEC

    1 10 100 1000 100000

    1

    2

    3

    4

    Temperature (K)

    CVpe

    rmolecule/kB

    3/2 kB

    5/2 kB

    7/2 kBvibrational

    motion rotational

    motion

    translationalmotion

    ?

    Classical result: CV = kB per degree of freedom

    Classical motion freezes out when kBT Equant

    Heat capacity

    of gas ofdiatomicmolecules

  • 8/7/2019 laser_cooling_notes

    18/27

    Quantization of translational motion

    Third law of thermodynamics: CV 0 as T 0

    Translational motion must eventually be quantized

    at sufficiently low T

    Most gases liquefy and solidify before quantumeffects observed for the translational motion.(Helium is the exception.) Atoms/molecules in liquidor solid phase are not non-interacting.

    Need to get to very low temperatures but with non-interacting atoms/molecules. ie need to cool a gasto very low T without it liquefying.

  • 8/7/2019 laser_cooling_notes

    19/27

    Bose-Einstein condensation

    From a certain temperature on, the moleculescondense without attractive forces, that is, theyaccumulate at zero velocity. The theory is pretty, butis there some truth to it.A. Einstein, letter to P. Ehrenfest, 29 Nov, 1924

    Examples

    - superfluid liquid helium TC = 2.17 K- cold atom gas TC 10

    6 K

    - Cooper pairs in superconductors, neutron stars

    - excitons

  • 8/7/2019 laser_cooling_notes

    20/27

    Transition temperature

    deB

    22

    BdeB

    1/ 3

    deBB

    2 / 32

    CB

    1 3~

    2 2 2

    ~ ~3

    ~3

    p hk T

    m m

    h V

    Nmk T

    h NT

    mk V

    =

  • 8/7/2019 laser_cooling_notes

    21/27

    Statistical mechanics of BEC

    BEC = accumulation of particles in the ground state

    Fermions (e.g. spin particles) subject to Pauli

    exclusion principle. Can only put one particle in theground state.

    Hence only bosons (i.e. integer spin particles) can

    undergo BEC.

    2 / 32

    C B

    3/ 2

    C

    0.0839

    ( ) 1

    h NT

    mk V

    Tf T

    T

    =

    =

    Condensation

    temperature

    Fraction in

    condensed phase

  • 8/7/2019 laser_cooling_notes

    22/27

    Atoms: boson or fermion ?

    Ions no good for BEC because they repel, sothat high densities are not possible. Hence need

    to use neutral atoms.

    Electrons, protons, and neutrons are spin fermions

    Satom = Selectrons + Snucleus

    Nelectron = Nproton in neutral atom.

    Hence boson for Nneutron even.

    Examples: 4He, 23Na, 87Rb

  • 8/7/2019 laser_cooling_notes

    23/27

    Recipe for BEC

    magnetic trap

    potential

    x

    Use laser cooling to cool atoms to near Trecoil

    Confine atom cloud by using a magneto-optic trap

    Turn off laser and reduce potential of trap toinstigate evaporative cooling.

    most energeticatoms escape and

    temperature goes

    down

    reduce magnetic field

  • 8/7/2019 laser_cooling_notes

    24/27

    Observation of BEC

    atomic

    gas

    resonantlaserlight

    t= 0

    t= te

    free

    expansion

    D ~ vte

    Measure velocity distribution by time of flight

    expansion and shadow image technique

    shadow of atomic gason screen / camera

  • 8/7/2019 laser_cooling_notes

    25/27

    Experimental Results

    BEC first observed in 1995 for 87Rb and 23Na

    Now observed in many other atomic gases7

    Li,1

    H,85

    Rb,4

    He,41

    K,133

    Cs,174

    Yb,52

    Cr, Details of experiments from

    http://ucan.physics.utoronto.ca/

    Significant differences between:

    2 / 32

    CB

    3/ 2

    C

    0.0839

    ( ) 1

    h NTmk V

    T

    f T T

    =

    =

    1/ 3CB

    3

    C

    0.94

    ( ) 1

    T Nk

    T

    f T T

    =

    =

    BEC in free space BEC in harmonic trap

  • 8/7/2019 laser_cooling_notes

    26/27

    BEC experimental data

    0.2

    mm

    87Rb

    5S1/2 5P3/2

    transition at780nm

    Cooling with

    laser diodes N/V~

    2.51018 m-3

    TC ~ 170 nK

    See Anderson et al, Science269, 198 (1995)

    http:/jilawww.colorado.edu/bec

    400nK

    200nK

    50nK

  • 8/7/2019 laser_cooling_notes

    27/27

    Atom lasers

    1.8 mm

    3.9mm

    1 mm

    Trap is attractive only for MJ= +1/2 states

    Apply RF pulse to tip the spin: trap becomes

    repulsive and ejects pulses of atoms Interference between two atom pulses provescoherence

    See Ketterle, Rev. Mod. Phys. 74, 1131 (2002)

    23Na 200 Hz rep rate

    10

    5

    10

    6

    atoms / pulse

    http://cua.mit.edu/ketterle_group/Projects_1997/atomlaser_97/atomlaser_comm.html

    Durfee and Ketterle, Optics Express, 2, 299 (1998)