90
Biogeochemical and ecological coupling between Biogeochemical and ecological coupling between the epipelagic and the deep sea: regional to global implications Richard Lampitt NOC NOC UK OCB Hawaii September 22nd 2010

Lampitt OCB Sept 22nd 2010 Biogeochemistry.ppt · PELAGRA just before deployment July 2006 off RRS Discovery. 27 ... Microsoft PowerPoint - Lampitt_OCB Sept 22nd 2010 Biogeochemistry.ppt

Embed Size (px)

Citation preview

Biogeochemical and ecological coupling between Biogeochemical and ecological coupling between the epipelagic and the deep sea: regional to global implicationsg g p

Richard LampittNOCNOC

UKOCB Hawaii September 22nd 2010

E l PrimaryProduction100m

The Twilight Zone

Epipelagic

1000m

The Twilight Zone

Bathypelagic

SeabedBenthos

2Sediment

In order to monitor and understand the marine system

d k d we need to make sustained multidisciplinary observations

l at appropriate temporal resolution.

3

HMS Porcupine

N E Atlantic and Mediterranean 1869 and 1870 4

N.E. Atlantic and Mediterranean 1869 and 1870.

5HMS Challenger, 1872-1876

6William Beebe and Otis Barton in 1932

1. The twilight zone (Mesopelagic). g ( p g )

2. Bathypelagic

3. Benthos

All in the context of time series

7

PrimaryProduction100m

1000m

Seabed

8

Sediment

PrimaryProduction100m

1000m

Seabed

9

Sediment

PrimaryProduction100m

tion

1000m

Mig

rat

1000m

FluxRebound

Advection

10

Seabed

YearsYears

PrimaryProduction100m10-3

100

1000m

102

Seabed103

11

Sediment>1010

Maximum monthly mean mixed layer depth, 1980-2001 (m)

12(MLD = 0.125 kg/l from surface)

Corinne Lequere (pers comm)

Who cares about the Mesopelagic?

13

Why we care:Why we care:

Primary

Reflux

Carbon sequestration

PrimaryProduction100m

Carbon sequestration

Supply to bathypelagic and benthos

1000m

and benthos

Seabed

Sediment

14

Running the gauntlet of the twilight zone

E l

g g g

PrimaryProduction100m

The Twilight Zone

Epipelagic

1000m

The Twilight Zone

Bathypelagic

SeabedBenthos

15Sediment

Open Ocean Composite Curve

16Martin et al 1987

17Carl Lamborg (2006)

0 20 40 60 80 100 120 140 160 180 200

230Th Trapping Efficiency (%) L1L2L3

OMEX-2OMEX-3OMEX 4

0

500

L3NABE 34NABE 48BOFSESTOC

OMEX-4WASTCASTEAST

1000

1500

ESTOC

2000

2500pth

(m)

3000

3500

De

4000

4500

185000

Scholten et al 2002

From data and models we know that From data and models we know that there is considerable variability in the distribution of flux with depth.p

This will be affected by:This will be affected by:

1: Characteristics of the source material

2: The nature of midwater processing

19

Can we measure this downward flux?

20

21

A frequent method of measuring downward flux in upper ocean

Problems with surface tethered trapsProblems with surface tethered traps

H d d i h•Hydrodynamic shear•Swimmer contamination

22

The NBST

23

PELAGRA

APEX

PELAGRA

float

BuoyancyTrap cone

Drop

Sample cup p

weight

24Kev Saw

Depth-Time chart of PELAGRA trapp p

0

m) 50

Dep

th (m 100

150D 150

200

-1 0 1 2 3 4 5 6 60

25Time (h)

26PELAGRA just before deployment July

2006 off RRS Discovery.

27A shoal of PELAGRA traps(May 2008 on board RV Knorr)

28

29

Upper ocean domains (from Longhurst 1995)

30

VERTIGO

1. ALOHA and K2 during 3-week in 2004 and 2005

31

32

Buesseler et al., (2008)

POC flux versus depth ALOHA (triangles) (oligotrophic) and K2 (circles) (mesotrophic)

33

Buesseler et al., (2007)

34Steinberg et al. (2008)

VERTIGO

1. ALOHA and K2 during 3-week in 2004 and 20052 Diatom dominated K2 with silica rich particles 2. Diatom dominated K2 with silica-rich particles

dominate flux at end of a diatom bloom3. Zooplankton and their pellets larger @ K2.. p p g @ K .4. Export ratios (POC flux/primary production)

higher @ K2%5. Transfer efficiency higher @ K2 (50%) than @

ALOHA (20%).6 Three processes : heterotrophic degradation of 6. Three processes : heterotrophic degradation of

sinking particles, zooplankton surface feeding & migration and particle advection

35

migration and particle advection.

Upper ocean domains (from Longhurst 1995)

36

0

100

h (m

)

100

Downward flux at PAP, July 2006

Dep

th

200

y

300PELAGRANew Production

0 5 10 15 20 25

New Production

37Corg flux (mmol/m2/d)0 5 10 15 20 25

Downward flux at Downward flux at PAP, July 2006

38Lampitt et al 2008

Upper ocean domains (from Longhurst 1995)

39

7-11th May 14th May 17th May

Northern North Atlantic in 2008 t 600 d th

40

2008 at 600m depth

1 2

NABE 2008

4 ti 4 consecutive deployments, MayMay3 4

41

Martin et al (submitted)

42

43

Rynearson (pers. comm.)

Upper ocean domains (from Longhurst 1995)

44

BATS: Transfer efficiency

45

Lomas et al 2010

BATS: Export at 150m

46

Lomas et al 2010

BATS: POC flux

47

Lomas et al 2010

DOC concentrations at BATS: Interannual variability in export.

A i t ti d d i i f DOC48

Arrows: winter-time downward mixing of DOC.

Burd et al 2010

Who is degrading the supply of organic carbon?

49

50

51Twilight zone fauna

52Malacosteus nigerP. Herring

53P.Herring Periphylla periphylla

54A hatchet fish: Master of camouflage.

Can we collect them effectively?

55

56The RMT system in 1973

E l PrimaryProduction100m

The Twilight Zone

Epipelagic

1000m

The Twilight Zone

Bathypelagic

SeabedBenthos

57Sediment

Downward flux: From ocean interior to seafloorSediment Trap mooringp g

58

Upper ocean domains (from Longhurst 1995)

59

DW406080

100120

46810

020

02

POC10

15

20

6810

(mg/

m2 /d

)

6

8

of d

ata

810

0

5

024

PIC

Ave

rage

flux

0

2

4

# Ye

ars

o

0246

2010

3 0

A

BSi

0

5

10

15

02468

TPN

0.51.01.52.02.53.0

246810

60Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

0.0 0

Lampitt et al 2010

Downward particle flux at PAP at 3000m depthp

61

Downward particle flux at 3000m depth

62Lampitt et al 2010

50 0.6

a

ht (g

/yea

r)

30

40

e/ye

ar

0.3

0.4

0.5DW (g) POC (mole) PIC (mole) BSi (mole)

a

Dry

Wei

g

10

20 Mol

e

0.1

0.2

0.3

1989 1990 1997 1998 1999 2001 2004

rodu

ctio

n on

/m2 /y

)

150

200

250 c1989 1990 1997 1998 1999 2001 2003 2004

0 0.0

1998 1999 2000 2001 2002 2003 2004

Prim

ary

Pr(g

car

bo

0

50

100

150

ng

600 d

1989 1990 1997 1998 1999 2000 2001 2002 2003 2004

Max

imum

mix

ide

pth

(m)

0

200

400

d

63

Year1989 1990 1997 1998 1999 2000 2001 2002 2003 2004

Lampitt et al 2010

5

io (%

)

3

4

port

rat

2

3

Exp

0

1

Year1998 1999 2000 2001 2002 2003 2004

0

64Lampitt et al 2010

Upper ocean domains (from Longhurst 1995)

65

ear)

0 3

mol

e/ye

0.2

0.3

C fl

ux (m

0.1

PAP OSP BATS/OFP Station M

POC

0.0

66Lampitt et al 2010

E l PrimaryProduction100m

The Twilight Zone

Epipelagic

1000m

The Twilight Zone

Bathypelagic

SeabedBenthos

67Sediment

68The seabed below (4800m)

69Wigham et al. 2003

Megabenthos

70Billett et al. 2010

Macrobenthos

71Kalogeropoulou et al. 2010

MeiofaunaPolychaetes mean abundance. PAP time series 1989-1998

240

260

280

Mean ±SE ±0,95*SD

180

200

220

per 0

.25m

2

100

120

140

160

of in

divi

dual

s p

40

60

80

100

Num

ber o

Aug

89

Mar

90

ept 9

0

May

91

ept 9

1

Mar

92

Jun

92

Apr

il 93

ept 9

3

Apr

il 94

ept 9

4

Mar

95

Jun

95

Mar

96

ept 9

6

Mar

97

Jul 9

7

Mar

98

ept 9

8

0

20

72

A M Se M Se M J A Se A Se M J M Se M M Se

Cruise

Soto et al. 2010

Foraminifera

73Gooday et al. 2010

74

FitzGeorge-Balfour et al 2010

Abyssal pigments

4g DW

)ne

200

4Ju

ne 2

004

on (g

/g Jun

Jen

trat

io20

05t

conc

ey

2005

July

2Pigm

ent

July

75

P

FitzGeorge-Balfour et al 2010

76

77Smith et al 2009

78Smith et al 2009

79Smith et al 2009 Year

1. Comparison of benthic communities at Station M and PAP at >4 000m depthPAP at >4,000m depth.

2. Large changes in deep-ocean ecosystems correlated to climate-driven changes in the surface oceanto climate-driven changes in the surface ocean.

3. Climate-driven variation affects oceanic communities from surface to deep seafrom surface to deep sea.

80

Is the community ready for the challenge?

81

82

.“The Snatcher“

83

DiffuseParticle Dense Particle

84Centred Particle Organism

Jen Riley

APEX profiling float with optical nitrate sensor

85

From Ken Johnson

IODA

In situ oxygen In situ oxygen consumption

86Tamburini et al

Sinking particle simulation experimentsg p p

High Pressure Bottles:500 ml- 500 ml

Simulate sinking of150 m/day

87Tamburini et al,2005

The MBARI Environmental Sample Processor

88

Sample collection with in situ molecular probe technology

th (m

)

0

100

200

238U234Th oo

ooo

o

o

Sink

ing

ScavengingDecay

Def

icit

Surp

lus

89234Th concentration

(dpm/l)

1 2 3 4 5 6

Dep

t

300

400

500

90