8
Pergamon M~hanlcs Rosearch Comnmnicationa, Vol. 21, No. 3, pp. 289-296, 1994 Copyright • 1994 Elaevier Scie~e Ltd P6n~d inthe USA. All ~m m~rved 0093-6413/94$6.00 + .00 LAMINAR FREE CONVECTION FLOW OVER A CONE EMBEDDED IN A STRATIFIED MEDIUM m R.K. Tripathi, A. Sau and G. Nath Department of Mathematics, Indian Institute of Science Bangalore-560 012, India. ('Received 7 September 1993; accepted for print 25 January 1994) 1 Introduction Free convection flows which arise in a thermally stratified medium are of practical importance. Interest lies in the effect of stratification on temperature and velocity fields that arise in the flow and the consequent heat transfer from a heated body. In many engineering applications cone- shaped bodies are often used. Free convection flow over a vertical cone has been studied by Hering and Crosh [I], |feting [2], tin and Chao [3], L%n [4], AlamElr [5] and recently by W~tanabe [6]. A literature review reveals that the free convection flow over a vertical cone immersed in a stratified medium has not been studied so far. This has motivated us to carry out the present analysis. Laminar free convection flows over bodies of different shapes like vertical plate, sphere and cylinder in a stratified medium have been studied by various investigators; see, for example, Chen and Eichhorn [?-8]. The purpose of the present work is to study a non-similar free convection boundary layer flow over a vertical cone embedded in a stratified medium. Non-slmilarity is purely due to stratification of the medium. The coupled non-linear partial differential equations Eoverning the flow are flrst llnearized usinE quasilinearlzation method and then solved numerically, using an implicit finite difference scheme. Numerlcal results are ~[ven ('or the velocity profile, temperature profile, skin friction parameter" and heat transfer coefficient for two Prandtl numbers 0.72 and 6.0 which apply for air and water, respectively, at normal temperature. " Author to whome correspondence to be addressed. 289

Laminar free convection flow over a cone embedded in a stratified medium

Embed Size (px)

Citation preview

Page 1: Laminar free convection flow over a cone embedded in a stratified medium

Pergamon M~hanlcs Rosearch Comnmnicationa, Vol. 21, No. 3, pp. 289-296, 1994

Copyright • 1994 Elaevier Scie~e Ltd P6n~d in the USA. All ~m m~rved

0093-6413/94 $6.00 + .00

LAMINAR FREE CONVECTION FLOW OVER A CONE EMBEDDED IN A STRATIFIED MEDIUM

m

R.K. Tripathi, A. Sau and G. Nath

Department of Mathematics, Indian Institute of Science

Bangalore-560 012, India.

('Received 7 September 1993; accepted for print 25 January 1994)

1 Introduction

Free convection flows which arise in a thermally stratified medium are of

practical importance. Interest lies in the effect of stratification on

temperature and velocity fields that arise in the flow and the consequent

heat transfer from a heated body. In many engineering applications cone-

shaped bodies are often used. Free convection flow over a vertical cone has

been studied by Hering and Crosh [I], |feting [2], tin and Chao [3], L%n [4],

AlamElr [5] and recently by W~tanabe [6]. A literature review reveals that

the free convection flow over a vertical cone immersed in a stratified medium

has not been studied so far. This has motivated us to carry out the present

analysis. Laminar free convection flows over bodies of different shapes like

vertical plate, sphere and cylinder in a stratified medium have been studied

by various investigators; see, for example, Chen and Eichhorn [?-8].

The purpose of the present work is to study a non-similar free

convection boundary layer flow over a vertical cone embedded in a stratified

medium. Non-slmilarity is purely due to stratification of the medium. The

coupled non-linear partial differential equations Eoverning the flow are flrst

llnearized usinE quasilinearlzation method and then solved numerically, using

an implicit finite difference scheme. Numerlcal results are ~[ven ('or the

velocity profile, temperature profile, skin friction parameter" and heat

transfer coefficient for two Prandtl numbers 0.72 and 6.0 which apply for air

and water, respectively, at normal temperature.

" Author to whome correspondence to be addressed.

289

Page 2: Laminar free convection flow over a cone embedded in a stratified medium

290

2 Governing e q u a t i o n s

R.K. TRIPATHI, A. SAU and G. NATH

As s h o w n i n t h e i n s e t o f F i g . 1, a s t e a d y f r e e c o n v e c t i o n b o u n d a r y l a y e r

f l o w o v e r a c o n e ( a p e x a n g l e 2~') i n a l i n e a r l y s t r a t i f i e d e n v i r o n m e n t i~;

c o n s i d e r e d • T h e c o o r d i n a t e s y s t e m i s s u c h t h a t x m e a s u / - e s t h e d i s t a n c ~ ;~l()n~

t h e s u r f a c e o f t h e b o d y f r o m t h e a p e x , x=O b e i n g t h e l e a d i n g e d g e a n d y

m e a s u r e s d i s t a n c e n o r m a l l y o u t w a r d , u a n d v a r e t h e c o m p o n e n t ~ o f [ ' l u i d

v e l o c i t y i n t h e x a n d y d i r e c t i o n s , r e s p e c t i v e l y . T h e b o d y i!:; h e l d a t ~!

c o n s t a n t t e m p e r a t u r e T a n d t h e t e m p e r a t u r e of" t h e f l u i d f a r f r o m t h e b{)dy W

s u r f a c e i s g i v e n b y T m ( x ) = T m o + a x , w h e r e a = ( d T m / d x ) >0 a n d x ( : x c o s T ) i s

m e a s u r e d f r o m t h e a p e x o f t h e c o n e a n d i s p a r a l l e l t o t h e d i r e c t i o n o f t h e

g r a v i t y ( s e e F i g . l ) a n d T i s t i~e t e m p e r a t u r e o f t h e s u r r o u n d i n g a I x=O ( i . c , mO

x = 0 ) . We a l s o a s s u m e t h a t . T > T W 000

T h e e f f e c t o f" s t r a t i f l c a l i o n ( . ' a l l be e x ] ~ ) r ' ( . ' ~ q e ( t In I o l ' l n 5 ; of" ;* ~ : l l : * l } t i ( ' ; , I i,~I~

parameter S, defined as, S=aL cos~/kT where [. is the slant height of ti~e cone m

a n d AT m is the t e m p e r a t u r e d i f f e r e n c e , Tw-'l 'm, a t m i d h e i g h t o f the , b o d y . W i l h

t h e B o u s s i n e s q a s s u m p t i o n t h e b o u n d a r y l a y e r e q u a t i o n s g o v e r n i n g I h(~ !-;1 ( ;~(iy

free c o n v e c t i o n f l o w o v e r a v o r t i c a l c o n ( ~ c a n bt~ e x p i ' o [ ; . q e d ~xG :

a ( u r ) 8 ( v r ) ---- + - 0 {1} ax ay

Ou 8u 02u u ~ + v ~ = v - - + g /~( ' I ' -T m) c o s ~ (2) y @y2

3T 8T 0 2 T u y x + V~y = ~x - ~ (U)

8y

w h e r e r i s t h e r a d i u s o f n o r m a l s e c t i o n of ' t h e c o n e a t l o c a t i o n x H,nl I,, }~, , , ,

a r e k i n e m a t i c v i s c o s i t y , g r a v i t a t i o n a l a c c e l e r a t i o n , t h e r m a l d i f l ' u s i l i v i t y

a n d c o e f f i c i e n t o f t h e r m a l e x p a n s i o n , r e s p e c t i v e l y .

The boundary conditions a r e :

x >- O: u ( x ,O) = v ( x ,O ) = O, T (x ,O) : Tw }

u(x,~o) ---> O, ] '(x,oo) -~ 'I" (x ) (4) co

x < O: u ( x , y ) = 0 , T ( x , y ) : T00(x) f o r a l l y

where T (x) = T + ax cos3". The conditions for x<O are meant to avoid any CO CO0

Page 3: Laminar free convection flow over a cone embedded in a stratified medium

FREE CONVECTION OVER A CONE 291

mathematical singularity. The subscripts w and m denote conditions at the

wall and at a large distance from the surface, respectively.

In regard to the present work it must be mentioned here that the validity

of the assumptions made in deriving the Eqns. (I) -(4) holds good if the

boundary layer Is assumed thin compared to the cone radius, thus neglecting

the effect of curvature [I]. Also, the normal component, of buoyancy and the

motion pressure are neglected.

Now we introduce the following nondimenslonal variables :

1/4 .. X = x / L , R = r / L , Y = y u r L / L , P r = via

U = u L / v C r l / 2 k ' V = vL/vGr I/4,L G = ( T - T ) / ( T w - T o) ( 5 )

Gr k = g ~ ( T w - T o) L 3 / u 2

w h e r e Gr k a n d P r a r e G r a s h o f n u m b e r a n d P r a n d t l n u m b e r , r e s p e c t i v e l y .

T h e n o n d i m e n s i o n a l c o n s e r v a t i v e e q u a t i o n s a r e t h e n o b t a i n e d a s

(RU) x + (RV)y = 0 (6)

UU X + VUy = Uyy + G cos~ (7)

UG x + 2S(2+S) -I U + VGy = Pr -I Cyy (8)

where subscripts X and Y denote derivatives with respect to the corresponding

variables.

The boundary conditions are :

X z O: U(X,O) = V(X,O) = O, G(X,O) = ] - 2S(2+S)-IX

U(X,~ ) --> O, ( ; (X ,~ ) --~ 0 (~))

X < O: U(X ,Y) = G(X,Y) = 0 f o r a l l Y

Using the approach of Lin and Chao [3] we apply following transformations

to the Eqns.(6) - (8)

6[XR 2 * ( 2 ~ ) - I / 2 * = UdX, n= RUY

~(X,Y) = C2~) ~z2 F(~,n), RU = ~y, RV = -~X

Page 4: Laminar free convection flow over a cone embedded in a stratified medium

292 R.K. TRIPATHI , A. S A U and G. N A T H

o.[ + ] U = U * F ' , V = - ( 2 ~ ) - 1 / 2 R F + 2 ~ F ~ 2 ~ ( R 2 " U ' ) -~ F ' ~ X

U * * = OL/(uGP1/2) , '! )0 L oo 0

U(dU/dx] = g/~('I' w

. . . . [.i.0. ],. = U dU / d X , U = (1o)

We f i n d t h a t E q n . ( 6 ) l.~ i d e n t i c a l l y .¢;~tt I s f l e ( t a n d I<qns . ( 7 ) - ( 8 ) v ( . d u c , ' f f ,

F " ' + F F " + A ( G - F ' 2 ) = 2 ¢ (V 'F~ - F ' (F ' " )

P r - l G " + F G ' - 2 S ( 2 + S ) - 1 Q F" = 2 { ( F ' G { - t . ( G ' )

w h e r e A = 2 ( ~ / U ' ) ( d U * / d ~ ) Q = 2 ~ / ( R a L I " ) a n d F a n d G a r e ,

11 )

1 2 )

r e s p e c t i v e I y ,

n o n - d i m e n s i o n a l s t r e a m f u n c t i o n a n d n o n - d i m e n s i o n a l t e m p e r a t u r e . T h e

s u b s c r i p t ~ a n d s u p e r s c r i p t ' ( p r i m e ) d e n o t e d e r i v a t i v e s w i t h r e s p e c t t o ~ a n d

~q, r e s p e c t i v e l y , a n d [] i s a h y p o t h e t i c a l o u t e r " ~ t / ' e a m v e l o c i t y [ 'un( : t i o n ,

F o r a v e r t i c a l c i r c u l a r c o n e we h a v e t h e r e l a t i o n s R=X s i n ? a n d O*=cos?,

w h i c h o n s u b s t i t u t i n g i n E q n . ( 1 0 ) g i v e t h e e x p r e s s i o n s :

= (2/7)(2X 7 cos?')/2 sin~?, [] = (2X cos~)/2, A : 2/Z, %) = 4X, /,

I

~] = Y (7/2)/2 (cos3/2X1}/~ £(0/0~] : (2X/Y)(O/OX)

With the help of above expressions we can write Eqns. (11) and (12) o!5 :

F " ' + F F " + ( 2 / 7 ) ( G - F ' 2 ) = ( 4 X / 7 ) ( F ' F ~ - F x F " )

P p - 1 G " + F G ' - 2 S ( 2 ÷ S ) - I Q F ' = ( 4 X / 7 ) ( F ' G X - F x G ' ]

T h e b o u n d a r y c o n d i t i o n s t a k e t h e f o r m :

X ~- O: F = F ' = O, G = 1 - 2X S ( 2 + S ) -1

V ' - - ~ O, G - ~ 0

X < O: t : " ~ G = 0 F o r a l l 0

(1:~)

1 4 )

a [ z) = 0

as 7) ..... ) o0 1~)

1 / 2 1 / 4

I f we a p p l y t h e t r a n s f o r m a t i o n s 7) = ( ( M + S ) / 6 ) (~X ~ ; i n ' j / , 1 ) Y,

1 / 2 3 / 4 1 / 4

= ( 6 / ( M + 3 ) ) V (4X 3 s i n 2 ~ / 3 ] Gr- F, RU= ~ y , RV = - 0 X L

t o t i l e Eqm~. ( G ) - ( ~ ) ,

we c a n a l t e r n a t i v e l y g e t t h e e q u a t i o n s f o r a n i s o t h e r m a l m e d i u m ( i . e . , S = O / a s :

Page 5: Laminar free convection flow over a cone embedded in a stratified medium

FREE CONVECTION OVER A CONE 293

F"'+ 6(M+3)-I( 3FF" - 2F'2+ G cos~ ) = 8(M+3)-IX(F~F '- FxF") (16)

PF-IG " + 18(M+3)-iF G' = 8(M+3)-IX(Gx F'- FxG') (17)

Equations (16) and (17) are identical to those of Watanabe [6]. ||ere M is the

cone angle parameter [6].

The local skln fl.lCtlon (Cf) and he~it t.ra,~sl'er" ( Nu x) coefflclent.s c~ul be

expressed as

2 m2 Cf = rw/P(v/L) Cr 3/4 = R U (2~) -I/2 F"

L w

Nu x = (Xqw/kATm)= - 7 I/2 2-3/4(1 + S/2) G~ (GP x cos~) I/4

where T w and qw are local shear stress and local heat transfer rate, respecti-

vely, at the vrall and k is the thermal conductivity..

4 R e s u l t s a n d d i s c u s s i o n

The governing Eqns.(13) and (14) under conditions (15) have been solved

numerically using an implicit finite difference scheme in combination with the

quasilinearlzatlon technique [9]. To fix the stepslzes for computation, they

have been optimized for all values of S, using Richardson extrapolation

formula. In order to assess the accuracy of the present method we have

compared our results in Table I with those of Watanabe [6] for an isothermal

medium with no surface mass transfer. For an isothermal medium with no

surf~ce mass transfer, the Eqns.(16) and (17) admit self-similarity and

consequently the right hand side of Eqns.(I6) and (17) which contains X will

not appear. The maximum difference between our results and the results of'

Watanabe [6] is found to be about I% . Moreover, our results for S=X=0 (i.e.,

for self-similar solution ) are in excellent agreement with I.in and Chno [3],

however, comparison is not shown here for the sake Of brevlty.

In Figs. I and 2 velocity profiles (F') ar'e shown for dlff'er'ent va]ue~; o["

stratification parameter S at two X-locations. It is clear that stratification

reduces the buoyancy force, which results in lower velocities. The effect of

stratification is more pronounced at higher locations. For instance, for Pr=

Page 6: Laminar free convection flow over a cone embedded in a stratified medium

2 9 4 R.K. TRIPATHI, A. SAU and G. NATH

0.72, at X=0.4 the reduction in peak velocity is about 23X when the ~tratil'i~-

.~0., ation parameter increases from 0.5 to 2.0, whereas at X=0.8, it i~ about ~" "

f o r t h e s a m e c h a n g e o f s t r a t i f i c a t i o n . F r o m t h e d e f i n i t i o n (;f' .~-, '~,',~ ,h.;~'v'..'~.

t h a t f o p S = 2 t i l e t e m p e r a t u r e I l l t h e a m b i e n t e q u a l s t i l e sk i r t ' s / c ( • [¢, lnp, . I ' ; l l ill 'i! :l~

X = I , a n d f o p a v a l u e o f S > 2 , a p o r t i o n a t t h e t o p o f t i l e c o n e w i l l h a v e :~

t e m p e r a t u r e l e s s t h a n t h e a m b i e n t w h i c h i n t u r n w i l l c a u s e a f l o w F ( w ( , r s a l .

F i g s . 1 and 2 a l s o s h o w l h e ( H ' t ' e c I o]" s t r a t l t + l c a L l , m <>l~ t, . l l l l , , .r ' ;~l lit-,,

p r o f i l e a a t t w o d i f f e r e n t X l o c a t i o n s , f o r P r a n d t 1 n u m b e r s O. "72 ~md (q. !:).

S l i g h t n e g a t i v e n o n - d i m e n s i o n a l t e m p e r a t u r e s a r e f o u n d f a r " f r o m t h e s u r f a c e

f o r h i g h e r v a l u e s o f s t r a t i f i c a t i o n p a r a m e t e r . T h e o b s e r v e d t r e n d s a r e c l e a r l y

a result of the increase in the ambient temperature T with x. Since the f'luid o0

with Pr=6.0 has a lower thermal diffusivity than that of the ~']uid with

PF=O. 7 2 , t h e d i p i n l h e / e m p e r ; ~ l u r e p v o ( ' l le~; I~ m o w t ' o r I h , ' c:~s<: ,~l' t ' r - ~3. ~1

than for the case of Pr=0,72.

E f f e c t o f s t r a t i f i c a t i o n o n h e a t t r a n ~ f ' e r c o e f f ' i c l e n l al~d !~kir l t ' v i~ : l i ~

p a r a m e t e r i s s h o w n i n F i g . 3 . H e a t t r a n s f e r c o e f f i c i e n t Nu ( l o c a l N u s s t ~ l t x

n u m b e r ) i s s h o w n i l l t e r m s o f Nu ( G r c o s ~ ) -1 /4 . Fig. 3 a l s o s h o w s l h a t t h e x x

s k i n f r i c t i o n p a r a m e t e r F " r e d u c e s w i t h t h e increase o f s t r a t i f i c a t i o n . I b i s ; w

l s d u e t o t h e r e d u c t i o n i n b u o y a n c y f o r c e wi t h t h e i n c r c a . ~ e <~i' lh( : lun;~l

s t r a t i f i c a t i o n .

S Conclusions

I t I s f o u n d t h a i . v e l o c i t y i s s l g n i t ' i < : a n t l y r e d u c e d b y Ih ( . i H , ' ~ , ' : , ; , : ~ t

s t r a t i f i c a t i o n p a r a m e t e r . E f f e c t o f s t r a t i f i c a t i o n i s m o r e p r o n o u r ~ c e d a t

h i g h e r X - l o c a t i o n s . . ~ l l g h t r e v e r s a l I n t e m p e r a t u r e p r o t ' l I c ~ i~; t '~mHd I~,~-

h i g h e r s t r a t i f i c a t i o n . H e a t t r a n s f e r c o e f f i c i e n t , a n d s k i n f r i c t i o n p a r a m e t e v

a r e a f f e c t e d s i g n i f i c a n t l y b y t h e s t r a t i f i c a t i o n .

References

i. R.G. Hering and R.J. Erosh, Int. J. Heat Mass Transfer S, 1059 (1.q62).

2 . R . C . H e r i n g , I n t . J . H e a t M a s s T r a n s f e r 8 , I 3 3 3 ( 1 9 6 5 ) .

Page 7: Laminar free convection flow over a cone embedded in a stratified medium

FREE CONVECTION OVER A CONE 295

3 F.N. L ln and B.T. Chao, Trans . ASME J. Heat T r a n s f e r 94, 43S (1974) .

4 F.N. Lin, Lett. Heat Mass Transfer 3, 49 (1976).

5 M. Alamglr, Trans. ASME J. Heat Transfer 101, 174 (1979)]

6 T. Watanabe, Acta Mech. 87, I (1991).

7 C.C. Chen and R. Eichhorn, Trans. ASME J. Heat Transfer 98, 446 (1978).

8 C.C. Chen and R. Eichhorn, Trans. ASME J. }{eat Transfer 101, 566 (1979).

9 K. Inouye and A. Tare, AIAA J. 12, 5~8 (19'74).

TABLE 1

Comparison of the heat transfer parameter and skin

friction parameter for Pr = 0.?3, S = O.

Watanabe [ 6 ] P r e s e n t r e s u l t s

F" -C' F" -C' W W W W

0.11556 (~=30 °) 0 .84043 0.67894 0.84613 0.67512

0 .24503 (~=45 °) 0 .70734 0.63238 0.71105 0.62441

0 .42410 (~=60 ° ) 0 .63098 0.56463 0.53810 0.56734

II

b-

0.3

o ,..H 0.12

H

Pr = 0.72 .~

0 2.0 4.0 6.0 8.0

0

x" 5~ ~D

FIG. 1

V e l o c i t y and t e m p e r a t u r e p r o f i l e s f o r v a r i o u s v a l u e s o f S. I n s e t :

The coordinate system; ~ , F'(~,~); --, C(~,n)

Page 8: Laminar free convection flow over a cone embedded in a stratified medium

296 R.K. TRIPATHI, A. SAU and G. NATH

0.I!

"u_ ~L"

e,,a ---_ 0 .1 (

o ~ ( . 9

ID

,-5, ---- 0 . 0 5 H 2~

0 0

Pr= 6.0 I ,

- - m

= 0 4 , S = 0 . 5 O

:\/,

2 . 0 4 0 6 . 0 7/

0 5 x t _'>

FIG. 2

Velocity a nd t e m p e r a t u r e p r o f ' i l e s £or" v a r i o u s v a l u e s

o f 5; , F ' ( ~ , n ) ; , G ( ~ , ~ )

0 . , 3 6 2 . 0 ~ , ~

\ ~ "---C: 0 ~2 s \ 6 ' "- ~ ' . " -'0 5

.~4 / ~ -~-.0. " < - ' , ",, . . . . 0.12

OL . . . . I I • .... I .I l I l I : '~J 0 0 0 . 5 1,0

X

FIG. 3

L o c a l h e a t t r a n s f e r a nd l o c a l s k i n t ' r i c t i o n F e s u l t s t ' o r v a r ' i o u - ~

v a l u e s o f S; - - NUx(Gr x c o s ~ ) - l / 4 ; F'" ' W