Lab 1 Appendix

Embed Size (px)

Citation preview

  • 7/27/2019 Lab 1 Appendix

    1/16

    1 BIOL 3050U 2013 Lab Manual Appendix

    APPENDIX:

    TheCompoundMicroscope:1.Magnification,ResolutionandNumericalAperture:

    Magnification:

    Whenyoulookintoamicroscope,youarenotdirectlylookingatthespecimen;youareviewingan

    imageofthespecimenthathasbeenincreasedinsizeduetothepresenceoflenses.

    Magnificationistheratioofthesizeoftheviewedimagetotheactualsizeoftheobject.A

    compoundlightmicroscope,suchastheoneyouwilluseinthelab,hastwomagnifyinglenses:

    1)theocularlens(theeyepiece) 2)theobjectivelens(theoneclosesttotheobject)

    Theocularlensofourmicroscopeshasamagnificationof10X.Objectivelenseshavedifferent

    magnificationsforexample,4X,10X,and40Xand100X.Themagnificationofeachlensisetchedontothesideofthatlens.

    Thetotalmagnificationofthemicroscopeiscalculatedasfollows:

    Forinstance,amicroscopewitha4Xobjectivelensanda10Xocularlenswillhaveatotal

    magnificationof40X.Magnificationcanbeincreasedvirtuallywithoutlimit,butbeyondacertainlimitthequalityoftheimagebecomesblurred.

    ResolutionandNumericalAperture:Althoughmagnificationcanbeincreasedvirtuallywithoutlimit,resolutionisthefactorthatlimits

    theeffectivenessofamicroscope.Resolutionisthe

    abilitytodistinguishtwoadjacentpointsas

    separate.Thetheoreticalmaximumresolutionofa

    lightmicroscopeis0.2m.Thereforeitiscapableof

    differentiatingindividualobjectsthataremorethan

    0.2mapartasbeingdistinct.However,itcannotresolvetwoindividualobjectsthatarelessthan0.2

    mapart.Anincreaseinmagnificationwillnot

    allowadditionaldetailtoberesolvedandtwoobjectsthatarelessthan0.2mapartwillstill

    appearasone.Thisphenomenoniscalledemptymagnification.Differentmicroscopeshavedifferentresolutionvalues.Thesmallertheresolutionvalue,thebetterthemicroscope.

    TotalMagnification=MagnificationofocularlensxMagnificationofobjectivelens

  • 7/27/2019 Lab 1 Appendix

    2/16

    2 BIOL 3050U 2013 Lab Manual Appendix

    Resolution(R)dependsonthewavelengthofthelightsourceused(forvisiblelightisbetween

    380750nm)andonthelightgatheringabilityoftheobjectivelenswhichisquantitatively

    expressedintermsofthenumericalaperture(N.A.).Resolutioncanbedeterminedusingthefollowingformula:

    Where:isthewavelengthoflight(innm)

    N.A.isthenumericalaperture

    Theresolutionvaluecanbedecreasedby: 1.Usinglightwithashorterwavelength 2.Increasingthenumericalapertureoftheobjectivelens

    (seetutorial:NumericalApertureandImageResolution).

    Whenlightraysfromthespecimencrosstheair,theymaybedeflectedoutsidetheperimeterof

    theobjectivelens.Asaresult,lesslightfromthespecimenreachestheobjectivelens.Thisresults

    inapoorimage.Increasingthenumericalapertureoftheobjectiveallowsincreasinglyoblique

    raystoentertheobjectivelens,producingamoreresolvedimage.

    Notethatanelectronmicroscopehasaresolutionvalueof0.2nm,whichis1000Xsmallerthan

    thatofalightmicroscope.Thisisbecausetheelectronbeamusedhasamuchshorterwavelength

    thanthewavelengthoflight.

    2.TheCondenser:

    Withabrightfieldmicroscope,visiblelightfromanincandescentsourceisaimedtowardathird

    lensbeneaththestagecalledthecondenser.Thecondenserfocuseslightontothespecimen

    throughanopeninginthestage.Afterpassingthroughthespecimen,thelightistransmitted

    throughtwomorelenses(theobjectiveandocularlenses)thatareplacedatbothendsofalight

    tighttube.So,themicroscopyyouwillbeusinghasthreelensesintotal:twothatproducethe

    magnifiedimageofthespecimenandonethatfocusesthelightontothespecimen.(Seetutorial:

    TransmittedLightMicroscopyOpticalPathways)

    Notethat

    the

    image

    is

    inverted

    (upside

    down

    and

    reversed)

    and

    magnified.Brightfieldmicroscopyisbestsuitedtoviewingstainedornaturallypigmentedspecimenssuch

    asstainedpreparedslidesoftissuesectionsorlivingphotosyntheticorganisms.Unstained

    specimensaredifficulttoseewithabrightfieldmicroscope.Increasedcontrastcanbeachieved

    byreducingilluminationand/oradjustingthecondenserdiaphragm.Viewingunstained

    specimenscanalsobedramaticallyimprovedbyusingtechniquessuchasdarkfield,phase

    contrast,anddifferentialinterferencecontrast.

  • 7/27/2019 Lab 1 Appendix

    3/16

    3 BIOL 3050U 2013 Lab Manual Appendix

    3.FieldofView(FOV):Thefieldofviewistheviewthatyouseewhenyoulookintothemicroscope.Itshouldappearas

    onelargecirculararea.Itisimportanttonotethatasyouincreasemagnificationwiththe

    objectivelens(from4Xto100X)thefieldofviewbecomessmaller.Ifyouarefocusedona

    specimenatlowpowerthatisnotinthecentreofthefieldofview,itwillseemtodisappearwhen

    youswitchtoahigherobjectivebecausethefieldofviewgetssmaller.Inactualfact,thespecimen

    isstillinthesameposition.

    4.DepthofField:Depthoffieldreferstothethicknessoftheplaneoffocus.Inotherwords,thedepthoffieldisthe

    distancealongtheverticalaxisinwhichthespecimencanmoveandstillremainsharptotheeye.

    Thedepthoffielddependsontheresolutionofthemicroscope.Imagethatonyourmicroscope

    slideyouhavethreecellsonatoptheother.Ifyouhavealargedepthoffield,allthreecellswillbe

    infocusatthesametime.Ifyouhaveashortdepthoffield,youwillonlybeabletoseeoncellin

    focus,therestwillbeoutoffocus.

    5.Parts

    of

    the

    Microscope:

    Thepartsofthemicroscopeandtheirfunctions,areoutlinedinAppendixA,pleasereviewbefore

    attendingyourlab.

    TheStereomicroscope(DissectingMicroscope)Stereomicroscopeshavetwoocularlensesandproduceathreedimensionalimage.Theyare

    usefulforviewingspecimensthataretoolargeortoothicktoviewwiththecompound

    microscope.Theyarealsousefulforviewingsurfacefeaturesofspecimens.Stereomicroscopy

    typicallyusesreflectedlight(fromthesurfaceofthespecimen)ratherthanlightthatis

    transmittedthroughthespecimen.However,thestereomicroscopecanalsomakeuseof

    transmittedlight.Inthiscasetheilluminationisfrombelowandisreflectedfromamirrorbeneaththestageonwhichthespecimenisplaced.Reflectedlightallowsviewingofinternal

    featuresoftranslucentspecimens.

    4Xobjective 10Xobjective 40Xobjective 100Xobjective

    Specimen

    FOV FOV FOV FOV

  • 7/27/2019 Lab 1 Appendix

    4/16

    4 BIOL 3050U 2013 Lab Manual Appendix

    APPENDIXA:

    CX31OLYMPUSMICROSCOPE

    Partsof

    the

    microscope

  • 7/27/2019 Lab 1 Appendix

    5/16

    5 BIOL 3050U 2013 Lab Manual Appendix

    PARTSOFTHEMICROSCOPE:

    Identifyandfamiliarizeyourselfwiththefollowingpartsofthemicroscopeandtheir

    functions:

    Powerswitchturnsthelamponandoff.

    Lightadjustmentknobcontrolsthebrightnessofthelamp.Theintensityofthelightcan

    beadjustedbyturningtheknob.Highmagnificationsrequirehigherilluminationintensity

    whilelowmagnificationsrequirelowerintensities.Inanycase,adjustilluminationsothat

    thefieldisbrightwithouthurtingtheeyes.Illuminatorconsistsofatungstenhalogenlampthatemitsacontinuousspectrumoflight

    whichisthenpassedthroughacollectorandfieldlensbeforebeingreflectedthroughthe

    fielddiaphragmandintothesubstagecondenser.Thefielddiaphragm,whichhasaniris

    thatcontrolsthediameteroftheilluminatingbeamoflight,servesasavirtualsourceof

    lightforthemicroscopeanditsimageisfocusedbythecondenserontothespecimenplane(SeeAppendixB).Properadjustmentofthefielddiaphragm(i.e.,centeredintheoptical

    pathandopenedsoastoliejustoutsideofthefieldofview)isimportanttopreventglare

    whichcanreducecontrastintheobservedimage.Theeliminationofexcesslightis

    particularlyimportantwhenattemptingtovisualizesampleswithlowcontrast.Whenthe

    fielddiaphragmisopenedtoofar,scatteredlightoriginatingfromthespecimenandlight

    reflectedatobliqueanglesfromopticalsurfacescanacttodegradeimagequality.

    Condensercontainsasetoflenseslocatedimmediatelyunderthestagethatfocusthe

    lightonthespecimen.Thecondenserhasthefollowingcomponents:

    Focusingknobmovesthecondenserupanddowntoadjustthefocusofthelight

    onthespecimen.Centeringknobsareusedtocentertheirisdiaphragmimageinthefieldofview.

    Frontlens,theglasssurfaceclosesttothespecimen.Becarefulnottotouchthis

    surfaceasitiseasilyscratched.

    Irisdiaphragmwithalevertoopenandclosethediaphragm.Theapertureofthe

    irisdiaphragmdeterminesthenumericalapertureoftheilluminationsystem.

    Matchingthenumericalapertureoftheilluminationsystemwiththatofthe

    objectiveyouareusingprovidesbetterimageresolutionandcontrast.

    Filterholder,locatedatthebaseofthecondenser,allowsinsertionofafilter

    (usuallyblue)toadjustthecoloroftheilluminatinglight.

    Note:Eachtimeamicroscopeisturnedon,makesurethatallopticalcomponentsofthecondenserareproperlyalignedandthatthelightbeamiscenteredontoyourspecimen.ProperadjustmentsofthecondenserandfielddiaphragmproduceKhlerilluminationwhichallowsyoutoobtainanimageofhighquality.

    Stagehorizontalsurfaceonwhichtheslideisheldinplacebyspringloadedclips.A

    mechanicalstage(suchastheoneonyourmicroscope)isequippedwithtranslation

  • 7/27/2019 Lab 1 Appendix

    6/16

    6 BIOL 3050U 2013 Lab Manual Appendix

    controlknobsthatallowtheslidetobemovedalongtwoaxes:longitudinalandlateral (See

    AppendixC).

    Revolvingnosepieceholdsseveralobjectivelensesthatcanberotatedintopositiontochangethelens.

    Objectivelensesgatherthelightfromthespecimen.Anobjectivelenscreatesamagnifiedimageofthespecimenandprojectsthemagnifiedimageintotheobservation

    tube.Yourmicroscopeisequippedwiththreelenses:

    4Xlensisusedtogetanoverviewofthestructurespresentinasectionandtofindareas

    formoredetailedobservation

    10Xlensisthemostusefulmagnificationtoidentifytissues.

    40Xlensisusedtoseethedetailsofcellandtissueorganization.

    Typically,theinformationetchedonalensisasfollows:

    Focusingcontrolsusedtoraiseandlowerthespecimenstagetofocustheimageofthespecimen.Thecoarsefocusisinitiallyusedtofocusthespecimenat4Xand10X.Thefinefocusisthenusedtofinetunethefocus.Thefinefocusisusedtofocusthespecimenat40X,butonlyafterinitiallyfocusingatlowermagnification.Highermagnificationlensesarephysicallyclosertothespecimenitself,whichposestheriskofjammingtheobjectiveinto

    thespecimen.

    Themicroscopeisparfocal.Thismeansthatonceyourspecimenisfocusedat10X,the

    specimenremainsinfocusornearlyinfocuswhenyouswitchtothe40Xobjectives,soyou

    onlyhavetoadjustthefinefocuswhenswitchingtothe40Xobjective.

    Observationtubehollowtubethroughwhichlighttravelsfromtheobjectivetotheocularlens.Itcontainsaprismatthebaseofthetubethatbendsthelightrayssotheycan

    entertheinclinedtube.Ocularlens(eyepiece)magnifies(typically10X)androtatestheprimaryimageproducedbytheobjectivelensandformsanimagethatcanbevisualizedbytheeyeora

    camera.Theocularlensisattachedtothemicroscopewithaneyepiecetube.Inabinocular

    microscope,thedistancebetweenthetwoeyepiecetubescanbeadjustedtofitthedistance

    betweentheobserverseyes.

  • 7/27/2019 Lab 1 Appendix

    7/16

    7 BIOL 3050U 2013 Lab Manual Appendix

    CAREOFTHEMICROSCOPE:Amicroscopeisaprecisioninstrument.So,HANDLEITWITHCARE.

    EVERYTHINGonagoodqualitymicroscopeisunbelievablyexpensive,sobecareful.

    Whenmovingthemicroscope,carefullycarryitwithonehandunderthebaseandtheotherhandinthehandleontherearofthearm.Neverholdthemicroscopebythestage,X/Yaxisknob,binocularsectionoftheobservationtube,etc.

    Holdtheplug(notthecable)whenunpluggingtheilluminator. Sincebulbsareexpensive,andhavealimitedlife,turntheilluminatoroffwhenyou

    aredone.

    Alwaysmakesurethestageandlensesarecleanbeforeputtingthemicroscopeaway.

    NEVERuseanythingbutgoodqualitylenstissueandappropriatelenscleanersolutiononanyopticalsurfacetopreventdamageofthelenselementsorcoatings. Covertheinstrumentwithadustjacketwhennotinuse.

    Focussmoothly;don'ttrytospeedthroughthefocusingprocessorforceanything.CleaningthemicroscopeItisimportanttokeepyourmicroscopeclean:

    LensesshouldbecleanedONLYwithlenspaperthathasbeenmoistenedwithwater(toremovegeneraldirt)orethylether(toremoveoil).

    Useabsorbentpaper,suchasKimwipes,toremovedirtandoilfromthestageandothermechanicalpartsofthemicroscope.

    TheDo'sandDonts:

    Washyourhandsbeforehandlingslidestoavoidtransferringfingergreaseontothe

    slides.

    Toremoveoilfromanobjective,moistenapieceoflenspaperwithlenscleaningsolution

    (ethanol)andslowlydrawthewetpaperacrossthefrontsurfaceofthelens.

    Toremovedirtfromaneyepiece,breatheonthelensandGENTLYwipeoffthe

    condensedwaterwithlenspaper.

    Gethelpifthesestepsdonotsolveyourproblem.

    Nevertouchalenswithanythingbutlenspaper.

    Nevertouchalenswithdrylenspaper.

    Neverrubalens.

    Donotwearmascarawhenusingamicroscope.

  • 7/27/2019 Lab 1 Appendix

    8/16

    8 BIOL 3050U 2013 Lab Manual Appendix

    Appendix B

    Preparation of Wet Mount for Biological Specimens

    Visit the following website for an animation of the preparation of a wet mount.

    http://www.wonderhowto.com/how-to/video/how-to-make-a-wet-mount-for-microscope-

    sample-viewing-259931/view/

  • 7/27/2019 Lab 1 Appendix

    9/16

    9 BIOL 3050U 2013 Lab Manual Appendix

    MICROSCOPY:The microscope is one of the most important tools available to the developmentalbiologist. There are many different types of microscopes that serve specific needs,

    including both compound and dissecting light microscopes. Primarily, microscopes areuseful for viewing objects that are too small to see clearly without magnification.Learning how to use them properly not only will allow you to achieve the greatestresolution your microscope can give, but will also avoid costly damage. Although youshare your microscopes with students in other laboratory sections, you are responsiblefor seeing that the microscope is properly cleaned and covered. The following briefexercise is designed to familiarize you with the use of a compound light microscope anda binocular dissecting microscope. Remember that only lens tissues should be used toclean microscope lenses (do not use regular tissues; it will damage the lens).

    Binocular Dissecting Microscope:

    Binocular dissecting microscopes are useful for viewing material that is too large to beviewed by compound light microscopes. In addition they are invaluable for dissectingand manipulating small materials/organisms. The magnification of these microscopestypically ranges from 8X to 40X. What is the range of your dissecting microscope?Dissecting microscopes have two ocular lenses and produce a three-dimensional image.Binocular microscopes have two adjustable ocular lenses. This enables you to adjust theviewing for each of your eyes so that you do not need to wear your glasses. You arewelcome to use your glasses if you wish, but they might get scratched.

    Your dissecting microscope can be fitted with either a light source from above or frombelow. Be sure you know how to change back and forth. You will find that some slidesor organisms are better viewed with light from above and some from below. Inaddition, light intensity required for good visual images differs from specimen tospecimen. You should try different settings so you are comfortable changing betweenthe settings. Your dissecting microscope also has a zoom adjustment on the right sideof the microscope.

  • 7/27/2019 Lab 1 Appendix

    10/16

    10 BIOL 3050U 2013 Lab Manual Appendix

  • 7/27/2019 Lab 1 Appendix

    11/16

    11 BIOL 3050U 2013 Lab Manual Appendix

    Usingacompoundlightmicroscope

    Foroptimalviewingwithamicroscopeyoumustadjust:

    o Eyepieces(interpupillarydistanceanddiopter)o Khlerilluminationo Focus

    Mostmicroscopedamageisduetocarelesstransport.Itisimportantthatyoucarrythemicroscopesecurely,withtwohands,andinanuprightposition.Rememberthatyouarehandlingprecisioninstrumentation.

    1.Carryyourmicroscopebyplacingonehandunderthebase(1)andtheotherhandholdingthehandleontherearofthearm(2)asshown.

    2.Pluginyourmicroscopeandturniton(1).Makesuretoadjustthelightintensitytoacomfortablelevel

    (2).

    Makesurethatthecondenserapertureisopen(slidethecondenserdiaphragmleverbackandforthtocheck).

    3. Place a slide on the stage. Ensure that it is locked in place with the slide holder.

    PositionthespecimenunderthelightpathusingtheXandYaxisknobs.

  • 7/27/2019 Lab 1 Appendix

    12/16

    12 BIOL 3050U 2013 Lab Manual Appendix

    4.Initialfocusingmustbedoneusingthe10X(or4X)objectivelens.Slowlyrotatethecoarseadjustmentknobuntilthespecimenisinfocus(turnclockwisetomove

    thestagedown/counterclockwisetomovethestageup).Fineadjustmentismadeusing

    thefineadjustmentknob.Allsubsequentfocusingshouldbe

    donewiththefineadjustmentknobonly.

    5.Toreduceeyestrain,adjusttheeyepiecestoyourinterpupillarydistance(distancebetweenyoureyes)andadjust

    thediopter.

    a.Interpupillarydistancemovetheeyetubesuntilyouonlyseeoneuniformfieldofview.Thisdistancevarieswitheachindividual.

    b.Diopterusingthe10Xobjective,closeyourlefteyeandfocusonthespecimenwithyourrighteyeusingthefocusknobsuntilyouobtainasharp

    image.Next,closeyourrighteyeandadjustthefocusofthelefteye

    byrotatingthediopteradjustingringlocatedonthelefteyepiece.

    Donotreadjustthefocusofthelefteyewiththecoarseorfineadjustmentsofthemicroscope.Step5needonlybeperformedonceatthebeginningofyourlab.Itmay,ofcourse,becheckedperiodicallyifdesired,andwillneedtobereadjustedifsomeoneelseusesyourmicroscope.

  • 7/27/2019 Lab 1 Appendix

    13/16

    13 BIOL 3050U 2013 Lab Manual Appendix

    6.AdjusttheKhlerilluminationforoptimalillumination. Makesurethatthespecimenontheslideisinfocus. Usethe10Xobjectivetocompletethefollowingsteps:

    Positionthecondenser: i.Closetheirisbyturningthefieldirisdiaphragmring(1)counterclockwise.

    ii.Turnthecondenserheightadjustmentknob(2)tobringthefieldirisdiaphragmimageintofocus.Theiris

    diaphragmisinfocuswhenyoucanclearlyseethehexagonal

    shapeoftheiriswhichisusuallysurroundedwithablue

    halo.

    Centerthefieldirisdiaphragm: iii.Rotatethetwocondensercenteringknobs(3)sothatthefieldirisdiaphragmimageiscenteredinthe

    eyepiecefieldofview.

    iv.Openthefielddiaphragmuntilitsedgetouchestheperimeterofthefieldofview.

    Matchthenumericalaperatures. v.Matchthenumericalaperture(1)ofthecondenserwiththenumericalaperatureoftheobjectivetoobtainabetter

    imageresolutionandcontrast.

    Neverusethecondenserapertureforcontroloflightintensity.Controloflightintensityisthepurposeofthevariablerheostat(dimmerswitch,orvoltageregulator)onthelightsource.7.Checkthefocusat10Xagain,centertheobjectyouwishtoview,androtatethe

    nosepiecetothenexthighestmagnification(40X).Notethatthefieldofviewissmaller

    athighermagnification.Usethefinefocusknobonlytoobtainthesharpestimage.

    DONOTUSETHECOARSEADJUSTMENTKNOBWHENUSINGTHE40Xor100XLENS.

  • 7/27/2019 Lab 1 Appendix

    14/16

    14 BIOL 3050U 2013 Lab Manual Appendix

    Evenifyouwishtoviewyourspecimenathigherpower,alwaysbeginfocusingwiththe10Xmagnification.Theobjectivelensesareparfocalandparacentric,whichmeansthatoncethe10Xlensisfocusedandcentered,thehighermagnifyinglenses(40Xand100X)arealsoinfocusandcentered.Onlyfineadjustmentsareneededtoobtainasharpimagethatiscenteredinthefieldofview.Whileusingthemicroscope,onehandshouldremainonthefinefocusasconstantreadjustmentwillbecalledfor.Usetheotherhandtomanipulatestagemovements.

    MeasurementsandSize(Scale)Bars

    Measuringyourspecimenusingtheocularmicrometer

    Thesizeofthespecimencanbeaccuratelydeterminedbyusinganocularmicrometer.Theocularmicrometerisagraduatedscalethatislocatedinoneoftheeyepiecesofyour

    microscope.Thisscaledoesnothaveanyunitsandmustbecalibratedagainstafixedand

    knownruler,thestagemicrometerorgreticule.Wecanmeasurethediameterofthefieldofvieworacellusingastagemicrometerand

    eyepiecegraticule.Youshouldrememberhowtodothis,buthereisareminder(figure2).

    Figure 2. Method for calculating the size of a specimen.

    Ingraticuledivisions,thecellillustratedaboveis41divisionsinlength.41divisionsonthe

    eyepiecegraticuleisequivalenttoapproximately10X0.01mmdivisionsonthestage

    micrometer.Therefore,thiscellis100minlength.Thismeansthat

    ONEOCULARMICROMETERDIVISION=LENGTHOFSTAGEMICROMETER#OFDIVISIONSONOCULARMICROMETER

    ONEOCULARMICROMETERDIVISION=10x0.01mm=2.43m 41CalibratetheocularmicrometerandshowthevaluesinTableAbelowtoyourTA:

  • 7/27/2019 Lab 1 Appendix

    15/16

    15 BIOL 3050U 2013 Lab Manual Appendix

    TableA:ConversionTablefortheOcularMicrometerObjectivelensmagnification Ocularmicrometercalibration(inm/oculardivision)

    10X

    40X

    Onceyouhavethecalibrationvaluesyouarereadytomeasureaspecimenunderthe

    microscope.Useyourocularmicrometerasyouwouldarulerandmeasurethelengthof

    theobject,thenmultiplythisbythecalibrationvaluetogettheactualsizeofthespecimen.

    Remembertonotetheobjectivelensandusethecorrectcalibrationvalue!ScaleBars:Whendrawingacellviewedunderthemicroscope,itisimportanttoalsoindicate,onyour

    drawing,theactualsizeofthecell.Thisiscommonlydonebyinsertingascalebarinthe

    rightbottomcornerofthedrawingthatshowstherelationshipbetweenthesizeofthe

    drawingandtheactualsizeofthespecimen.

    Calculatingyourscalebars

    Youmaycalculateyourscalebarbyusingthefollowingratio:

    Remember:the

    size

    of

    the

    drawing

    and

    the

    actual

    size

    of

    the

    specimen

    must

    havethesameunits(i.e.bothmustbeincm,mmorm)oryourcalculationwillbeincorrect.Theseunitsmustcancelout.

    ActualSizeofSpecimen =MicrometermeasurementxCalibrationvalue

    =Sizeofdrawing(units)Sizerepresentedbyscalebar(units)

    Actuallengthofscalebar(units)Actualsizeofspecimen(units)

  • 7/27/2019 Lab 1 Appendix

    16/16

    16 BIOL 3050U 2013 Lab Manual Appendix

    ExampleA:

    Youhavemeasuredyourspecimentobe300mlongandhavedrawnadiagramthatis

    5cminlength.Youwantyourscalebardrawingtobe1cminlengthi.e.thiscorresponds

    to1cmofyourdrawing.Whatisthesizerepresentedbythat1cmlongscalebar?

    Using the ratio above, the size of the drawing must have the same units as the actual size ofthe specimen, so convert cm to m: 5 cm = 50,000 m. Now you are ready to plug yourvalues in the ratio:

    Them units cancel so the size represented by the scale bar = (300)(1cm)/50,000= 0.006 cmWe know that since our original specimen was very small (measured in m) then mwould be better units to use. So 0.006 cm converts to 60 m.Now you are ready to draw the scale-bar on your drawing. For example:

    60 m

    =0,000 m 1 cmSize represented by scale bar00 m

    You draw the bar 1 cm long

    You write, above the bar, the actual sizeit represents.