L2-Open Channel Hydraulics.pdf

  • Upload
    jose03

  • View
    225

  • Download
    0

Embed Size (px)

Citation preview

  • 7/27/2019 L2-Open Channel Hydraulics.pdf

    1/66

    EAD 511 RIVER MANAGEMENT

    Open Channel Hydraulics

  • 7/27/2019 L2-Open Channel Hydraulics.pdf

    2/66

    Introduction

    Type of flow Energy principles

    Uniform flow

    Flow modelingSediment transport

    ContentsContents

  • 7/27/2019 L2-Open Channel Hydraulics.pdf

    3/66

    References

  • 7/27/2019 L2-Open Channel Hydraulics.pdf

    4/66

    Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

  • 7/27/2019 L2-Open Channel Hydraulics.pdf

    5/66

  • 7/27/2019 L2-Open Channel Hydraulics.pdf

    6/66

    Introduction

  • 7/27/2019 L2-Open Channel Hydraulics.pdf

    7/66

    9 Open channel flow is the flow of water in aconduit with a free surface at atmospheric pressure

    9 The flow in an open channel is mainly governed

    by gravity (i.e. channel bed slope)

    DEFINITIONS

    Menam Chao Praya, Bangkok Kulim River, Serdang

  • 7/27/2019 L2-Open Channel Hydraulics.pdf

    8/66

    9 Artificial or Man-made Channels (e.g. swales)

    vs. Natural Channels (e.g. rivers)

    OPEN CHANNEL CLASSIFICATION

  • 7/27/2019 L2-Open Channel Hydraulics.pdf

    9/66

    9Rigid Boundary Channels: Channels with

    immovable bed and sides (e.g. concrete drains)

    OPEN CHANNEL CLASSIFICATION

  • 7/27/2019 L2-Open Channel Hydraulics.pdf

    10/66

    9Mobile Boundary Channels: Channel boundary is

    composed of loose sedimentary particles moving under

    the action of flowing water (e.g. rivers)

    OPEN CHANNEL CLASSIFICATION

    Bank Erosion

    Bed Erosion

    Deposition

  • 7/27/2019 L2-Open Channel Hydraulics.pdf

    11/66

    Types of Flow

  • 7/27/2019 L2-Open Channel Hydraulics.pdf

    12/66

    GVF Gradually Varying Flow

    RVF Rapidly Varying Flow

    FLOW CLASSIFICATION BY DEPTH VARIATION

    ReservoirIrrigationCan

    al

    Sungai Kurau

  • 7/27/2019 L2-Open Channel Hydraulics.pdf

    13/66

    FLOW CLASSIFICATION BY FROUDE NUMBER, Fr

    For any type of channel :

    Fr =

    Fr

    Q2 Bg A3

    1.0 Subcritical Flow

    1.0 Critical Flow

    1.0 Supercritical Flow

    For rectangular channel :Fr =

    Vgyo

    For design purpose, Fr< 1.0

  • 7/27/2019 L2-Open Channel Hydraulics.pdf

    14/66

    TYPICAL CROSS SECTIONS

    Values showing isovelocity contours

  • 7/27/2019 L2-Open Channel Hydraulics.pdf

    15/66

    Geometry and Notation for Open Channel FlowGeometry and Notation for Open Channel Flow

    SIDE VIEW CROSS SECTION

    V = Average Velocity y = Flow depth

    S = Channel bed slope A = Flow area

    P = Wetted Perimeter R = Hydraulic Radius

  • 7/27/2019 L2-Open Channel Hydraulics.pdf

    16/66

    Energy Principles

  • 7/27/2019 L2-Open Channel Hydraulics.pdf

    17/66

    ENERGY COMPONENTS

    ENERGY GRADE

    LINE (EGL)

    WATER SURFACE

    CHANNEL BED

    DATUM

    H1

    H2

    hf

    yo

    Z

    2gV2

    H = + yo

    +2g

    V2Z

    Velocity Head

    Conservation of Energy : H1 = H2 + hf; hf= Frictional loss

  • 7/27/2019 L2-Open Channel Hydraulics.pdf

    18/66

  • 7/27/2019 L2-Open Channel Hydraulics.pdf

    19/66

    Critical flow occur at minimum energy, Es min

    yc =Q2

    gB2

    1/3

    =q2

    g

    1/3

    Flow Classification:

    yo > yc , V < Vc : Subcritical (Fr< 1)

    yo = yc , V = Vc : Critical (Fr= 1)

    yo < yc , V > Vc : Supercritical (Fr> 1)

  • 7/27/2019 L2-Open Channel Hydraulics.pdf

    20/66

    GVF: Energy Balance

  • 7/27/2019 L2-Open Channel Hydraulics.pdf

    21/66

    Water Surface Curves for GVF

  • 7/27/2019 L2-Open Channel Hydraulics.pdf

    22/66

  • 7/27/2019 L2-Open Channel Hydraulics.pdf

    23/66

    Uniform Flow

  • 7/27/2019 L2-Open Channel Hydraulics.pdf

    24/66

  • 7/27/2019 L2-Open Channel Hydraulics.pdf

    25/66

    UNIFORM FLOW EQUATIONS

    1) Manning : V = R2/3 So1/2

    n1

    Where n = Manning Coefficient

    2) Chezy : V = C R So

    Where C = Chzy Coefficient

    3) Darcy Weisbach: V = 8g R Sof

    Where f= Darcy Weisbach coefficient

    C = =R1/6

    n

    8g

    f

  • 7/27/2019 L2-Open Channel Hydraulics.pdf

    26/66

  • 7/27/2019 L2-Open Channel Hydraulics.pdf

    27/66

  • 7/27/2019 L2-Open Channel Hydraulics.pdf

    28/66

    Solution to Manning Equation for Lined Open Drains

  • 7/27/2019 L2-Open Channel Hydraulics.pdf

    29/66

  • 7/27/2019 L2-Open Channel Hydraulics.pdf

    30/66

    Suggested Values of ManningSuggested Values of Manningss

    Roughness Coefficient,Roughness Coefficient,nn

    Surface Cover

    Suggested n values

    Minimum Maximum

    Grassed Floodways

    Grass cover only

    Short grass 0.030 0.035

    Tall grass 0.035 0.050

    Shrub cover

    Scattered 0.050 0.070

    Medium to dense 0.100 0.160

    Tree cover

    Scattered 0.040 0.050

    Medium to dense 0.100 0.120

  • 7/27/2019 L2-Open Channel Hydraulics.pdf

    31/66

    Critical Velocities, (m/s) forvarious conduit materials

  • 7/27/2019 L2-Open Channel Hydraulics.pdf

    32/66

    To prevent sedimentation and vegetative growth

    Min Velocity = 0.6 m/s

    To prevent Channel Surface Lining Erosion

    Max Velocity = 4.0 m/s (Lined Channel / Low flow invert)

    = 2.0 m/s (Floodways and Natural Waterway)

    Minimum Longitudinal Slope

    0.2 % - Lined Channel

    0.5 % - Grassed floodways and natural waterway

  • 7/27/2019 L2-Open Channel Hydraulics.pdf

    33/66

    COMPOUND CHANNEL

    Flood Plain Flood PlainMain Channel

    A1, n1

    A2, n2

    A3, n3

    P1

    P2

    P3

    The roughness of the side channels will be different (generally rougher) than

    that of the main channel

    Q =A1

    n1R1

    2/3 +A2

    n2R2

    2/3 +A3

    n3R3

    2/3 So1/2

  • 7/27/2019 L2-Open Channel Hydraulics.pdf

    34/66

    Suggested Values of ManningSuggested Values of Manningss

    Roughness Coefficient,Roughness Coefficient,nn

    Surface Cover Suggested n values

    Minimum Maximum

    Natural Channels

    Small streams

    Straight, uniform and clean 0.025 0.033

    Clean, winding with some pools and shoals 0.035 0.045

    Sluggish weedy reaches with deep pools 0.050 0.080

    Steep mountain streams with gravel, cobbles, and boulders 0.030 0.070

    Large streams

    Regular cross-section with no boulders or brush 0.025 0.060

    Irregular and rough cross-section 0.035 0.100

    Overbank flow areas

    Short pasture grass, no brush 0.025 0.035

    Long pasture grass, no brush 0.030 0.050

    Light brush and trees 0.040 0.080

    Medium to dense brush 0.070 0.160

    Dense growth of trees 0.110 0.200

  • 7/27/2019 L2-Open Channel Hydraulics.pdf

    35/66

  • 7/27/2019 L2-Open Channel Hydraulics.pdf

    36/66

    Flow Modelling

    http://www.hec.usace.army.mil/software/hec-ras/

    http://www.hec.usace.army.mil/software/hec-ras/http://www.hec.usace.army.mil/software/hec-ras/
  • 7/27/2019 L2-Open Channel Hydraulics.pdf

    37/66

    HEC-RAS Modelling

  • 7/27/2019 L2-Open Channel Hydraulics.pdf

    38/66

    Cross Section at CH 41.2

    (Ladang Victoria)

  • 7/27/2019 L2-Open Channel Hydraulics.pdf

    39/66

    Longitudinal Flood Profile for Sg Muda

    (Q=1340m3/s)

    MudaBarrage

    Merdeka

    Bridge

    Exp

    ressway

    Bridge

    Railway

    Bridge B

    ridge

    Pipe

    Bridge

    Longitudinal Section for Sg. Muda Kedah (n = 0.025)

  • 7/27/2019 L2-Open Channel Hydraulics.pdf

    40/66

    n = 0.025

    -10

    -5

    0

    5

    10

    15

    0 5 10 15 20 25 30 35 40

    Chainage (km)

    Elevation(m,

    LSD)

    Existing Bed Level Predicted Water Level (HEC-RAS) Observed

    Longitudinal Section for Sg. Muda Kedah (n = 0.03)

    -10

    -5

    0

    5

    10

    15

    0 5 10 15 20 25 30 35 40

    Chainage (km)

    Elevation(m,

    LSD)

    Existing Bed Level Predicted Water Level (HEC-RAS) observed

    Longitudinal Section for Sg. Muda Kedah (n = 0.035)

    n = 0.030

    n = 0.035

    -10

    -5

    0

    5

    10

    15

    0 5 10 15 20 25 30 35 40

    Chainage (km)

    Elevation(m,

    LSD)

    Existing Bed Level Predicted Water Level (HEC-RAS) observed

  • 7/27/2019 L2-Open Channel Hydraulics.pdf

    41/66

  • 7/27/2019 L2-Open Channel Hydraulics.pdf

    42/66

  • 7/27/2019 L2-Open Channel Hydraulics.pdf

    43/66

  • 7/27/2019 L2-Open Channel Hydraulics.pdf

    44/66

  • 7/27/2019 L2-Open Channel Hydraulics.pdf

    45/66

    Particle Size DistributionParticle Size Distribution

  • 7/27/2019 L2-Open Channel Hydraulics.pdf

    46/66

    Particle Size DistributionParticle Size Distribution

    of River Bed Materialof River Bed Material

    Stesen SP7 Sg. Pari

    0.00

    10.00

    20.00

    30.00

    40.00

    50.00

    60.00

    70.00

    80.00

    90.00

    100.00

    0.01 0.10 1.00 10.00 100.00

    Sampel 1 Sampel 2 Sampel 3 Purata

    Saiz Partikel (mm)

    Peratus Telus (%)

    d90

    d65

    d10

    d35

    d50d60

  • 7/27/2019 L2-Open Channel Hydraulics.pdf

    47/66

  • 7/27/2019 L2-Open Channel Hydraulics.pdf

    48/66

  • 7/27/2019 L2-Open Channel Hydraulics.pdf

    49/66

    (a)(a) Flow DischargeFlow Discharge

    Hydrological Procedure No. 15 River Discharge Measurement by Current Meter (DID, 1976).

    Swoffer 2100 Current Meter Model Neyrflux Type 80

    Current Meter

  • 7/27/2019 L2-Open Channel Hydraulics.pdf

    50/66

    (b)(b) Bed Material :Bed Material :

    Van Veen Sampler

  • 7/27/2019 L2-Open Channel Hydraulics.pdf

    51/66

    (c)(c) Bed Load :Bed Load :

    Low Flow High Flow

  • 7/27/2019 L2-Open Channel Hydraulics.pdf

    52/66

    (d)(d) Suspended Load :Suspended Load :

    Low Flow High Flow

  • 7/27/2019 L2-Open Channel Hydraulics.pdf

    53/66

    Suspended Load Sampling

  • 7/27/2019 L2-Open Channel Hydraulics.pdf

    54/66

    Suspended Load Sampling

    @ Muda River

    Ladang Victoria

  • 7/27/2019 L2-Open Channel Hydraulics.pdf

    55/66

    Sediment Databaseediment DatabasePari River @ ManjoiPari River @ Manjoi

  • 7/27/2019 L2-Open Channel Hydraulics.pdf

    56/66

  • 7/27/2019 L2-Open Channel Hydraulics.pdf

    57/66

  • 7/27/2019 L2-Open Channel Hydraulics.pdf

    58/66

    Channel cross sectionshannel cross sections

    Ch. 3020 ( 21 Oktober 2002) Jambatan Manjoi, Ch. 3380 ( 21 Oktober 2002)

    Taman Merdeka, Ch. 2475 ( 21 Oktober 2002)Alor Limpah Batu, Ch. 1220 ( 25 Julai 2001)

  • 7/27/2019 L2-Open Channel Hydraulics.pdf

    59/66

  • 7/27/2019 L2-Open Channel Hydraulics.pdf

    60/66

    Observed FlowObserved Flow

    ProfilesProfiles

    Measured DataMeasured Data

    flow profileslow profiles

    Perbezaan Paras Air Sungai Pari

    34.00

    35.00

    36.00

    37.00

    38.00

    39.00

    2000 2500 3000 3500 4000 4500 5000

    Keratan Rentas, m

    Pa

    ras,m

    P. Air 7/10/2002 (35.00 Cumecs) P. Air 8/10/2002 (34.70 Cumecs)P. Air 9/10/2002 (47.80 Cumecs) P. Air 10/10/2002 (14.15 Cumecs)P. Air 21/10/2002 (7.05 Cumecs)

    Paras Air Cera an Sun ai PariParas Air Cerapan

  • 7/27/2019 L2-Open Channel Hydraulics.pdf

    61/66

    Backwater DataBackwater Data

    Hydrological dataydrological data

    2000 Flood Hydrograph2000 Flood Hydrograph

    Profil Aliran Berhayun Sungai Pari

    33.0

    34.0

    35.0

    36.0

    37.0

    38.0

    39.0

    40.0

    0 50 100 150 200 250 300 350 400 450 500

    Masa, jam

    ParasAir,m

    Puncak Hidrog raf Tahu n 2000 Sungai Pari

    0

    20

    40

    60

    80

    100

    120

    2390 2400 2410 2420 2430 2440 2450

    M as a, jam

    Kadaralir,m

    3/s

  • 7/27/2019 L2-Open Channel Hydraulics.pdf

    62/66

  • 7/27/2019 L2-Open Channel Hydraulics.pdf

    63/66

    FluvialFluvial--12 Model12 Model

    Predicted flow profilesredicted flow profiles

    Profil Paras Air Sungai Pari Bagi Kadaralir Q=48 m3/s

    Profil Paras Air Sungai Pari Bagi Kadaralir Q=15 m3/s

    2000 Flood

    34.50

    35.00

    35.50

    36.00

    36.50

    37.00

    37.5038.00

    2000 2500 3000 3500 4000 4500 5000

    Keratan Rentas, m

    Paras,m

    Paras air simulasi (FL-12) Paras air cerapan

    35.50

    36.00

    36.50

    37.00

    37.50

    38.00

    38.50

    2000 2500 3000 3500 4000 4500 5000Keratan Rentas, m

    Paras,m

    Paras air simulasi (FL-12) Paras air cerapan

  • 7/27/2019 L2-Open Channel Hydraulics.pdf

    64/66

    Cross section changesross section changes

    Ch. 2475

    Taman Merdeka

    Ch. 3020

    36.00

    37.00

    38.00

    39.00

    40.00

    41.00

    0.00 10.00 20.00 30.00 40.00 50.00Jarak Dari Tebing Kiri, m

    Paras,m

    P. Dasar Awal P. Air AwalP. Dasar Simulasi FL-12 P. Air Simulasi FL-12

    P. Dasar Simulasi FL-14 P. Air Simulasi FL-14

    35.00

    36.00

    37.0038.00

    39.00

    40.00

    41.00

    0.00 10.00 20.00 30.00 40.00 50.00Jarak Dari Tebing Kiri, m

    Para

    s,m

    P. Dasar Awal P. Air AwalP. Dasar Simulasi FL-12 P. Air Simulasi FL-12P. Dasar Simulasi FL-14 P. Air Simulasi FL-14

  • 7/27/2019 L2-Open Channel Hydraulics.pdf

    65/66

  • 7/27/2019 L2-Open Channel Hydraulics.pdf

    66/66