L1 Math Fundamentals

Embed Size (px)

Citation preview

  • 7/27/2019 L1 Math Fundamentals

    1/33

    Math Fundamentals

    Ch 2-1 through Ch 2-5 Complex Variables

    Fourier Transforms

    Laplace Transforms Inverse Laplace Transforms

    Partial Fraction Expansion.

    Linear TimeInvariant Differential Equations.

    Ch 5-1, 5-2

    State Space Analysis.

    10/7/2013 1MIE 312 M. Brown

  • 7/27/2019 L1 Math Fundamentals

    2/33

    Complex Variables

    Re (s)

    Im (s)

    s = x + j yFor the spatial relationship,

    Where ,

    With complex conjugate

    2 2 1tanjy

    s x jy s e x y x

    1j

    s x jy

    Complex variables follow algebraic rules such that if 1 1 1 2 2 2ands x jy s x jy

    1 2 1 2 1 2

    1 2 1 2 1 2 1 2 1 2

    s s x x j y y

    s s x x y y j x y y x

    1 2 1 2( )1 2 1 2 1 2

    j j js s s e s e s s e

    1 1 2 2 1 1 2 21 1 1 1 22 2 2

    2 2 2 2 2 2 2 2 2 2

    x jy x jy x jy x jys x jy s s

    s x jy x jy x jy x y s

    1

    1 2

    2

    1 1 ( )1

    2 22

    jj

    j

    s e sse

    s ss e

    2 31 1 1, ,j j j

    10/7/2013 2MIE 312 M. Brown

  • 7/27/2019 L1 Math Fundamentals

    3/33

    Useful Exponential and Series Expansions

    3 5 7

    2 3 4

    2 4 6

    2 2

    1sin , sin2 3! 5! 7!

    12! 3! 4!

    1

    cos , cos 12 2! 4! 6!

    1e cos sin , sin

    2

    1e cos sin , cos

    2

    cos sin 1

    j j

    j j

    j j j

    j j j

    e ej

    e

    e e

    j e ej

    j e e

    10/7/2013 3MIE 312 M. Brown

  • 7/27/2019 L1 Math Fundamentals

    4/33

    Fourier Series and Transform

    In the study of control systems, the principal goal is to designa system such that the response of the system meets the

    functional specifications.

    Therefore the designer must understand the methods indescribing a function in the time and frequency domains or

    s-plane so that the behavior of the system can be analyzed.

    10/7/2013 4MIE 312 M. Brown

  • 7/27/2019 L1 Math Fundamentals

    5/33

    Fourier Series A function in the time domain can be represented by a sum of exponential

    functions over the entire interval -

  • 7/27/2019 L1 Math Fundamentals

    6/33

    Fourier Series and Transform

    Consider a time function x(t) described by a discrete set of exponential timedomain functions;

    where and is a

    series of amplitudes.

    For a periodic function existing within the time interval [-T/2, T/2], TheFourier transform is given as

    Where represents the amplitude of the component of frequency

    ,

    Which can be expanded for a non-periodic function with frequency domaintransform

    and inverse time domain transform

    ( )2 2

    ojn t

    n

    n

    T Tx t X e t

    2

    oT

    nX

    / 2

    / 2

    1( ) ( ) o

    Tjk t

    k oT

    X k x t e dtT

    kX

    ok k

    ( ) ( ) j tF x t e dt

    1( ) ( )

    2

    j tx t F e d

    10/7/2013 6MIE 312 M. Brown

  • 7/27/2019 L1 Math Fundamentals

    7/33

    Fourier Transform

    ( ) ( )f t F

    10/7/2013 7MIE 312 M. Brown

  • 7/27/2019 L1 Math Fundamentals

    8/33

    Laplace Transform

    Since control systems do not operate in the minus infinity

    time range, the single sided Fourier Transform with damping

    is referred to as the Laplace Transform such that

    where s = + j

    10/7/2013 8

    0( ) ( )

    1( ) ( )

    2

    st

    jst

    j

    F s f t e dt

    f t F s e dsj

    The Laplace Transform expresses a causal functionf(t) as a

    continuous sum of exponentials of complex frequencies.

    Sufficient conditions for existence are the functionf(t) must

    be piecewise continuous and of exponential order.

    10/7/2013 8MIE 312 M. Brown

  • 7/27/2019 L1 Math Fundamentals

    9/33

    Existence of the Laplace Transformation

    Given a time varying functionf(t), 0 < t < a Laplace

    Transform exists such that

    With Inverse

    For the Laplace Transform to exist, the integral

    must be finite. The integral will be finite, provided that

    , and real positive finite numbersM and exist

    so that , thenf(t) is said to be anexponential function and exists for all and the integral

    exists as well.

    .

    0

    dtetfsFtf st

    j

    j

    stdtesFj

    tfsF2

    11

    0

    stf t e dt

    0

    tf t e dt

    ( ) for all 0tf t Me t

    0t

    10/7/2013 9MIE 312 M. Brown

  • 7/27/2019 L1 Math Fundamentals

    10/33

    Fourier and Laplace Transform relationship

    =

    Complex Fourier Transform

    (Bilateral Laplace Transform)

    s = +j .f(t) exists in the interval

    t

    =

    Ordinary Fourier Transform

    s = j . f(t) exists in the

    interval t =

    Laplace Transform

    s = + j . f(t) exists as a

    casual function , t > 0

    10/7/2013 10MIE 312 M. Brown

  • 7/27/2019 L1 Math Fundamentals

    11/33

    Basic Rules of Transformations

    Given that

    Scaling

    Time shifting: For t0 > 0,

    Frequency shifting:

    Linearity property:

    Time differentiation:

    Time integration:

    Frequency integration:

    1f t F s

    1 sf at Fa a

    00

    stf t t F s e

    at

    f t e F s a

    sFasFatfatfathensFtfandsFtf 221122112211

    1 2 10 0 0m

    m m m mm

    d fs F s s f s f f

    dt

    0

    (0)t F s ff t d t

    s s

    dssFt

    tf

    s

    10/7/2013 11MIE 312 M. Brown

  • 7/27/2019 L1 Math Fundamentals

    12/33

    Examples

    Determine the Laplace transform of the following commandsignals:

    Impulse function:

    step function:

    ramp function:

    sinusoidal function:

    0, 0( )

    1, 0

    for tf t

    for t

    0, 0( )

    , 0

    for tf t

    At for t

    0, 0

    ( )sin , 0

    for tf t

    A t for t

    0

    0

    0 0

    ( )( ) 1

    for t

    tt dt

    10/7/2013 12MIE 312 M. Brown

  • 7/27/2019 L1 Math Fundamentals

    13/33

    Development of Important Properties

    Initial Value Theorem: As t 0, the signal in the s- plane is related

    as s such that

    Which states that it is always possible to determine the initial value

    of the time function from its Laplace transform.

    Final Value Theorem: The final value of a signal as t is related

    to the value of the Laplace transform of the function as s 0, such

    that

    0lim ( ) (0 ) lim ( )

    stf t f sF s

    0lim ( ) lim ( )t s

    f t sF s

    10/7/2013 13MIE 312 M. Brown

  • 7/27/2019 L1 Math Fundamentals

    14/33

    Laplace transforms of common signals encountered in

    control engineering

    10/7/2013 14MIE 312 M. Brown

  • 7/27/2019 L1 Math Fundamentals

    15/33

    10/7/2013 15MIE 312 M. Brown

  • 7/27/2019 L1 Math Fundamentals

    16/33

    Laplace Transform Examples

    23 0( )

    0 0

    t te e t

    f t

    t

    ( ) cosatf t e t

    Determine the Laplace Transform for the following signals;

    10/7/2013 16MIE 312 M. Brown

  • 7/27/2019 L1 Math Fundamentals

    17/33

    Inverse Laplace transform by Partial

    Fraction expansion

    Given a rational function

    By factoring the polynomials the function can be expressed as

    the product of the factors such as

    Where F(s) is the transfer function representing any physical

    system . When , ziis referred to as the zeros of the

    system andpiare the poles of the system. For the case that

    the poles are either real or complex, but distinct, the transferfunction can be written in terms of partial fractions as

    1 21 2

    1 21 2

    ( )( )

    ( )

    n nn

    n n nn

    b s b s bY SF s

    U S s a s a s a

    1

    1

    ( )( )

    ( )

    m

    ii

    n

    ii

    s zF s K

    s p

    m n

    31 2

    1 2 3

    ( ) n

    n

    CC C CF s

    s p s p s p s p

    10/7/2013 17MIE 312 M. Brown

  • 7/27/2019 L1 Math Fundamentals

    18/33

    Inverse Laplace transform by Partial

    Fraction expansion

    The set of constants Ci are determined by multiplying bothsides of the above equation by the corresponding pole and

    solving for the constant. For example to determine C1 the

    following method would be applied

    And evaluate the expression at s = p1with results

    For the case of repeated roots consider the function with

    three repeated roots, with partial fraction expansion given by

    31 2

    1 1 1 1 11 2 3

    ( )n

    n

    CC C C

    s p F s s p s p s p s ps p s p s p s p

    1

    1 1 ( ) s pC s p F s

    31 2 4

    2 31 21 1

    ( ) n

    n

    CC C C C F s

    s p s p s ps p s p

    10/7/2013 18MIE 312 M. Brown

  • 7/27/2019 L1 Math Fundamentals

    19/33

    Inverse Laplace transform by Partial

    Fraction expansion

    Set s = p1, and C3 follows as

    To determine the remaining constants related to the repeated

    root, differentiate equation with respect to the Laplace

    variable s.

    Then

    In general

    1

    3

    3 1 ( )s p

    C s p F s

    33 1

    1 1 1 2( ) 2n

    n

    C s pd ds p F s C s p C

    ds ds s p

    1

    3

    2 1 ( )s p

    dC s p F s

    ds

    1

    1

    1( ) , 0, , 1

    !

    ik

    k i i

    s p

    dC s p F s i k

    i ds

    10/7/2013 19MIE 312 M. Brown

  • 7/27/2019 L1 Math Fundamentals

    20/33

    Examples

    2

    3( )

    3 2

    sF s

    s s

    2

    3( )

    ( 1)( 2)

    sF s

    s s

    21( )

    ( 1)F s

    s s s

    10/7/2013 20MIE 312 M. Brown

  • 7/27/2019 L1 Math Fundamentals

    21/33

    Transfer function of spring-damper-mass

    system

    Given the differential equation for a typical spring (spring constant k)

    damper (damping constant c) system with mass m; from Newtons law, the

    equation can be written as

    Where u(t) is a forcing function on the system. The Laplace Transform for

    the system equation (Output/Input) is written as:

    In general, define the natural frequency as and

    damping ratio

    10/7/2013 21

    tukyycym

    kcsmssUsY

    2

    1

    n

    k

    m

    2 n

    c

    m

    2

    2 2 2

    1 1

    2

    n

    n n

    Y s

    U s kms cs k s s

    10/7/2013 21MIE 312 M. Brown

  • 7/27/2019 L1 Math Fundamentals

    22/33

    Matlab Example

    For a unit step function input

    num=[2 10];

    den=[1 2 10];

    sys=tf(num,den)

    t=0:0.01:8;

    step(sys,t); %U(s)=1/s

    title('Response');

    xlabel('time');ylabel('Displacement');0 1 2 3 4 5 6 7 8

    0

    0.5

    1

    1.5Response

    time (sec )

    Displacement

    2( ) 2 10( )( ) 2 10

    Y s sH sU s s s

    10/7/2013 22MIE 312 M. Brown

  • 7/27/2019 L1 Math Fundamentals

    23/33

    Solution of an Ordinary Differential

    Equation

    2 0,y y y (0) 1 and (0) 0y y

    2 35 6 3 ,t ty y y e e (0) 0 and (0) 0.y y

    22 1( )3 3

    t ty t e e

    ( ) 3 ( ) 2 ( ) 2 ( ) ( ),y t y t y t u t u t 0 0 0(0) , (0) , and (0)y y y y u u

    With unit impulse input

    1 0( )

    0 0

    tt

    t2( ) 3t ty t e e

    2 3 2 31 2

    1( ) 3

    30

    t t t t y t c e c e te e

    10/7/2013 23MIE 312 M. Brown

  • 7/27/2019 L1 Math Fundamentals

    24/33

    State Space Representation Example

    For the ODE

    Define the state variables

    In state variable form:

    Given the matrix form as

    2 3 0y y y

    1

    2

    2

    x y

    x y

    x y

    2 2 1

    1 2 1 1

    2 1 2 2 2

    2 3 0

    0 1

    3 2 3 2

    x x x

    x x x x

    x x x x x

    = u

    = u

    x Ax + B

    Cx+Dy

    A is the state matrix .

    B is the input matrix .

    C is the output matrix .

    u is the input vector .

    y is the output vector. D is the transmission matrix

    10/7/2013 24MIE 312 M. Brown

  • 7/27/2019 L1 Math Fundamentals

    25/33

    Block Diagram of State Space Model

    A

    B

    D

    C

    +

    +

    y(t)

    +

    u(t) dt( )x t ( )x t

    = u

    = u

    x Ax + B

    Cx+Dy

    10/7/2013 25MIE 312 M. Brown

  • 7/27/2019 L1 Math Fundamentals

    26/33

    State Space Representation Example

    With state variables:

    The state formulation becomes

    1 1 1 1

    2 2 2 2

    1

    2

    0 1,

    3 2

    1 0

    x x x x

    x x x x

    x

    x

    x x

    y

    1

    2

    2

    x y

    x y

    x y

    = u

    = u

    x Ax + B

    Cx+Dy

    10/7/2013 26

    2 3 0y y y

    MIE 312 M. Brown

  • 7/27/2019 L1 Math Fundamentals

    27/33

    MatLab Representation

    Applying initial conditions such

    that x(0) = 0.1m,

    A= [0 1;-3 -2];C = [1 0];

    x0 = [0.1 ; 0];

    sys = ss(A,[],C,[]);

    initial(sys,x0);

    title('response to initial displacement x(0)=0.1');

    ylabel('Displacement');

    xlabel('time');

    0 1 2 3 4 5 6-0.02

    0

    0.02

    0.04

    0.06

    0.08

    0.1response to initial displacement x(0)=0.1

    time (s ec)

    Displa

    cement

    10/7/2013 27MIE 312 M. Brown

  • 7/27/2019 L1 Math Fundamentals

    28/33

    System Velocity

    x1 is the displacementx2is the velocity

    The output vectors become

    Matlab code

    A= [0 1;-3 -2];Cy = [1 0]; Cv=[0 1]; %Displacement x0 = [0.1 ; 0]

    sysd = ss(A,[],Cy,[]); %Cy represents Displacement

    sysv= ss(A[],Cv,[]); %Cv represents Velocity

    initial(sysd,sysv,x0);

    title('response to initial displacement x(0)=0.1');

    ylabel('Amplitude')

    xlabel('time')

    1

    2

    2

    x y

    x y

    x y

    0 1 2 3 4 5 6-0.1

    -0.08

    -0.06

    -0.04

    -0.02

    0

    0.02

    0.04

    0.06

    0.08

    0.1response to initial displacement x(0)=0.1

    time (s ec)

    Amplitude

    Displacement

    Velocity

    1 12 2

    1 0 , 0 1x x

    y vx x

    10/7/2013 28

    = u

    = u

    x Ax + B

    Cx+Dy

    MIE 312 M. Brown

  • 7/27/2019 L1 Math Fundamentals

    29/33

    System Response with forcing function

    For the following system equation

    A= [0 1;-3 -2]; B=[0;10]; D=[0;0]

    C= [1 0;0 1] %[Displacement; Velocity]

    sys = ss(A,B,C,D);

    t=0:0.01:5;

    U = sin(5*t);

    [Y,T,X] = lsim(sys,U,t);

    x1=[1 0 ]*X'; %Displacement

    x2=[ 0 1 ]*X'; %Velocityplot(t,x1,t,x2)

    title('Response to Forcing Function 10sin(5t)');

    ylabel('Amplitude');xlabel('time')

    2 3 10sin5y y y t

    0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5-3

    -2

    -1

    0

    1

    2

    3

    Response to Forcing Function 10sin(5t)

    Amplitude

    time

    Velocity

    10/7/2013 29MIE 312 M. Brown

  • 7/27/2019 L1 Math Fundamentals

    30/33

    DC motor Transfer Function

    5/12/2012 30

    e

    t

    Ke

    iKT

    KVRidt

    diL

    KibJ

    ( ) I( )

    I( ) ( ) ( )

    s Js b s K s

    Ls R s V s Ks s

    2)()(

    KRLsbJs

    K

    sV

    sW

    Torque Equation:

    System Equations:

    Transfer Function:

    10/7/2013 30MIE 312 M. Brown

  • 7/27/2019 L1 Math Fundamentals

    31/33

    DC Motor State Space Formulation

    5/12/2012 31

    KVRidt

    diL

    KibJ

    1

    b KiJ J

    di K R i V

    dt L L L

    1

    2

    2

    3

    3

    x

    x

    x

    x idi

    xdt

    1 2

    2 2 3

    3 2 31

    x x

    b Kx x x

    J J

    K Rx x x VL L L

    ux Ax B

    + uy x DC

    10/7/2013 31MIE 312 M. Brown

  • 7/27/2019 L1 Math Fundamentals

    32/33

    2 DOF State Space

    10/7/2013 32MIE 312 M. Brown

    1 1 3 2

    2 1 4 2

    2 1 4 2

    x y x y

    x y x y

    x y x y

  • 7/27/2019 L1 Math Fundamentals

    33/33

    Runge-Kutta numerical soln

    An alternate method to the Controls Tool Box is the Runge-Kutta Algorithm

    ODE45 in Matlab follows. ODE45 is designed to solve first order ordinarydifferential equations. Open an M-file and save as any name you want. In

    this case the file is named mike.m

    function dx = mike(t,x)

    dx = zeros(2,1); % designates a column vector

    dx(1) = x(2) ;

    dx(2) = -3*x(1) - 2*x(2) ;

    In the Matlab command window or generate an m-file, enter the following

    x0 = [0.1 ; 0]; %initial displacement in radians

    [T,X] = ode45(@mike,[0 6],x0); % @mike is the call to the M-file and [0 6]

    % is the time span.

    plot(T,X(:,1)); title('response to initial displacement x(0)= 0.1')

    ylabel('Displacement'); xlabel('time') End of lecture

    10/7/2013 33MIE 312 M Brown