39
Kunihito IOKA (Osaka Univ.) 6. Central engine 7. Links with other fields 8. Luminosity-lag 9. X-ray flash 10. Summary 1. Observation 2. Fireball 3. Internal shock 4. Afterglow 5. Jet

Kunihito IOKA (Osaka Univ.) · Fireball Ri E 14 34 TEii10 52 R,7 MeV entropy const ⇒TR33=const exp()2 20keV:thin nm±∝−eBckT⇒Tp≈ ()91414 RT±=≈ipTRi61×0E52 Ri,7 cm energy

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Kunihito IOKA (Osaka Univ.) · Fireball Ri E 14 34 TEii10 52 R,7 MeV entropy const ⇒TR33=const exp()2 20keV:thin nm±∝−eBckT⇒Tp≈ ()91414 RT±=≈ipTRi61×0E52 Ri,7 cm energy

Kunihito IOKA (Osaka Univ.)6. Central engine7. Links with other fields8. Luminosity-lag9. X-ray flash10. Summary

1. Observation2. Fireball3. Internal shock4. Afterglow5. Jet

Page 2: Kunihito IOKA (Osaka Univ.) · Fireball Ri E 14 34 TEii10 52 R,7 MeV entropy const ⇒TR33=const exp()2 20keV:thin nm±∝−eBckT⇒Tp≈ ()91414 RT±=≈ipTRi61×0E52 Ri,7 cm energy

1. ObservationGamma-Ray Burst

Brightest object 15210 −≈ s ergs

Vela satellites in 1967

Origin has been a puzzle

Page 3: Kunihito IOKA (Osaka Univ.) · Fireball Ri E 14 34 TEii10 52 R,7 MeV entropy const ⇒TR33=const exp()2 20keV:thin nm±∝−eBckT⇒Tp≈ ()91414 RT±=≈ipTRi61×0E52 Ri,7 cm energy

IsotropicAngular distribution

~1000 events/yr

Page 4: Kunihito IOKA (Osaka Univ.) · Fireball Ri E 14 34 TEii10 52 R,7 MeV entropy const ⇒TR33=const exp()2 20keV:thin nm±∝−eBckT⇒Tp≈ ()91414 RT±=≈ipTRi61×0E52 Ri,7 cm energy

Spatial distribution Inhomogeneous

( ) 3 2N P P−> ∝Homogeneous in Euclidean

max 0.330 0.010V V = ±

Page 5: Kunihito IOKA (Osaka Univ.) · Fireball Ri E 14 34 TEii10 52 R,7 MeV entropy const ⇒TR33=const exp()2 20keV:thin nm±∝−eBckT⇒Tp≈ ()91414 RT±=≈ipTRi61×0E52 Ri,7 cm energy

Duration

Long-softShort-hard

Long burstShort burst

Page 6: Kunihito IOKA (Osaka Univ.) · Fireball Ri E 14 34 TEii10 52 R,7 MeV entropy const ⇒TR33=const exp()2 20keV:thin nm±∝−eBckT⇒Tp≈ ()91414 RT±=≈ipTRi61×0E52 Ri,7 cm energy

SpectrumBand spectrum

Non-thermal

Page 7: Kunihito IOKA (Osaka Univ.) · Fireball Ri E 14 34 TEii10 52 R,7 MeV entropy const ⇒TR33=const exp()2 20keV:thin nm±∝−eBckT⇒Tp≈ ()91414 RT±=≈ipTRi61×0E52 Ri,7 cm energy

Afterglow Beppo-SAX in 1997

X-ray

Radio

Page 8: Kunihito IOKA (Osaka Univ.) · Fireball Ri E 14 34 TEii10 52 R,7 MeV entropy const ⇒TR33=const exp()2 20keV:thin nm±∝−eBckT⇒Tp≈ ()91414 RT±=≈ipTRi61×0E52 Ri,7 cm energy

Redshift Optical → Redshift

Page 9: Kunihito IOKA (Osaka Univ.) · Fireball Ri E 14 34 TEii10 52 R,7 MeV entropy const ⇒TR33=const exp()2 20keV:thin nm±∝−eBckT⇒Tp≈ ()91414 RT±=≈ipTRi61×0E52 Ri,7 cm energy

Summary of observation>msec

LuminosityRedshift

AfterglowGRBX-rayOpticalRadio

~1000 events/yrIsotropic, Inhomogeneous~200 keV10-3s~103s : short, long

Time

Page 10: Kunihito IOKA (Osaka Univ.) · Fireball Ri E 14 34 TEii10 52 R,7 MeV entropy const ⇒TR33=const exp()2 20keV:thin nm±∝−eBckT⇒Tp≈ ()91414 RT±=≈ipTRi61×0E52 Ri,7 cm energy

2. FireballCompactness problem

( )810 10ms cmR c T Tδ δ≈ ≈2 49

7 2810 ergE FD F D−≈ ≈e eγγ + −→2 22

133 2 7 210

10 erg cm 3Gpc 10msTe

FD F D TRR m c

δτ σ−

− −

! !

MeVEγ ≥

Optically thick Non-thermal⇔

1−ΓRelativistic motion

2R Γ!Eγ

N4 6.5Bβτ − + −∝ Γ Γ!

210Γ≥Γ×MeVMeV

Page 11: Kunihito IOKA (Osaka Univ.) · Fireball Ri E 14 34 TEii10 52 R,7 MeV entropy const ⇒TR33=const exp()2 20keV:thin nm±∝−eBckT⇒Tp≈ ()91414 RT±=≈ipTRi61×0E52 Ri,7 cm energy

FireballiRE

1 4 3 452 ,710 MeVi iT E R−!

3 3entropy const constT R⇒ =

( )2exp 20keV:thine B pn m c k T T± ∝ − ⇒ ≈

( ) 9 1 4 1 452 ,76 10 cmi p i iR T T R E R± = ≈ ×

4 3energy const const iT R R Rγ γ⇒ = ⇒ ! obs iT T Tγ! !

+Baryon3

bn R−∝ 14 1 2 1 252 21 10 cmthinR E η −×!

2E Mcη =

92 ,71 10 cm : Matter dominantmatter i iR R Rη η= = × 2E Mcγ!

Thermal

10 5 10

5

10 :Pure radiation 10 < <10 :Electron dominated1< <10 :Relativistic baryon <1: Newtonian

η ηη η

<

Page 12: Kunihito IOKA (Osaka Univ.) · Fireball Ri E 14 34 TEii10 52 R,7 MeV entropy const ⇒TR33=const exp()2 20keV:thin nm±∝−eBckT⇒Tp≈ ()91414 RT±=≈ipTRi61×0E52 Ri,7 cm energy

Central engine

Optically thick region

Internal shocks

External shocks

ISM

1−Γ 1−Γ

−+→ eeγγ

Internal-External shock model

Kinetic energy

Shock dissipation⇓

Luminosity

time

Page 13: Kunihito IOKA (Osaka Univ.) · Fireball Ri E 14 34 TEii10 52 R,7 MeV entropy const ⇒TR33=const exp()2 20keV:thin nm±∝−eBckT⇒Tp≈ ()91414 RT±=≈ipTRi61×0E52 Ri,7 cm energy

3. Internal shock

Two shell collision

sγ mγ

rm sm mm

( )

( )

2 2

2

1 1

1

r r s s r s m m

r r s s

r s m m

m m m m E

m m

m m E

γ γ γ

γ γ

γ

• + = + +

• − + −

= + + −

( )efficiency : 1 r s m

r r s s

m mm m

γε

γ γ+

= −+

: 0.5 when 13.9r s r sm m ε γ γ= > >

Many shell

Kobayashi,Piran&Sari(97)

Page 14: Kunihito IOKA (Osaka Univ.) · Fireball Ri E 14 34 TEii10 52 R,7 MeV entropy const ⇒TR33=const exp()2 20keV:thin nm±∝−eBckT⇒Tp≈ ()91414 RT±=≈ipTRi61×0E52 Ri,7 cm energy

Time scale

2γ γ

c Tδ

2 1310 cmR c Tγ δ! ! 1−Γ

2R γ!

2

R Tc

δγ

!

γ γ2γ2γ

c Tδ

Pulse intervalTδ

Nakar&Piran(02)

Pulse width

Page 15: Kunihito IOKA (Osaka Univ.) · Fireball Ri E 14 34 TEii10 52 R,7 MeV entropy const ⇒TR33=const exp()2 20keV:thin nm±∝−eBckT⇒Tp≈ ()91414 RT±=≈ipTRi61×0E52 Ri,7 cm energy

4. Afterglow

External shock

rm sm mm

2m r s r rm mγ γ γ= ⇒ ≈34

3s pm R nmπ=

2 3 2 243r r p rE m c R nm cπγ γ= =

16 1 3 2 3 1 351 2 010 cmR E nγ − −!

Hydrodynamics3 2 24

3 pE R nm cπ γ!n2T R γ!

3 8Tγ −∝R

Page 16: Kunihito IOKA (Osaka Univ.) · Fireball Ri E 14 34 TEii10 52 R,7 MeV entropy const ⇒TR33=const exp()2 20keV:thin nm±∝−eBckT⇒Tp≈ ()91414 RT±=≈ipTRi61×0E52 Ri,7 cm energy

Relativistic shock

n2 ,n U

( )( )

2

2

4 3

1 p

n n

U nm c

γ

γ

= +

= −Jump condition

① Electron Fermi acceleration( ) ( ) 2.21 , (Fermi acc.)e e e eU U O Nε γ γ −= ∝!

( )1B BU U Oε = !

Electron synchrotron emission1 / 3ν∝

ν

( )

( )

22 2

22

43 8e T e

e ee

BF c

qBm c

νν γ σ γ γπ

ν γ γ γ

=

=

② Magnetic field

Page 17: Kunihito IOKA (Osaka Univ.) · Fireball Ri E 14 34 TEii10 52 R,7 MeV entropy const ⇒TR33=const exp()2 20keV:thin nm±∝−eBckT⇒Tp≈ ()91414 RT±=≈ipTRi61×0E52 Ri,7 cm energy

{ }

{ },max

, , ,

, , ,

e B

a m c

E n

ε ε

ν ν νc

Spectrum

Page 18: Kunihito IOKA (Osaka Univ.) · Fireball Ri E 14 34 TEii10 52 R,7 MeV entropy const ⇒TR33=const exp()2 20keV:thin nm±∝−eBckT⇒Tp≈ ()91414 RT±=≈ipTRi61×0E52 Ri,7 cm energy

52

3

10 erg0.1 50cm0.10.01

e

B

Enεε

−−!

!

!

!

Collapsar, Hypernova

Page 19: Kunihito IOKA (Osaka Univ.) · Fireball Ri E 14 34 TEii10 52 R,7 MeV entropy const ⇒TR33=const exp()2 20keV:thin nm±∝−eBckT⇒Tp≈ ()91414 RT±=≈ipTRi61×0E52 Ri,7 cm energy

reverse shock forward shock

Shock emission

Optical flash

Page 20: Kunihito IOKA (Osaka Univ.) · Fireball Ri E 14 34 TEii10 52 R,7 MeV entropy const ⇒TR33=const exp()2 20keV:thin nm±∝−eBckT⇒Tp≈ ()91414 RT±=≈ipTRi61×0E52 Ri,7 cm energy

5. JetJet & Relativistic beaming

1−Γ・ Relativistic beaming・ Jet

1−≈ Γ

Jet in afterglow11 −− ≤⇒+≈ ΓθΓθθ ii :sideways expansion

Energy, Event rate, Model

3 2 2 243 pE R nm cπ γ θ!

2 2T R γ γ−! !

Page 21: Kunihito IOKA (Osaka Univ.) · Fireball Ri E 14 34 TEii10 52 R,7 MeV entropy const ⇒TR33=const exp()2 20keV:thin nm±∝−eBckT⇒Tp≈ ()91414 RT±=≈ipTRi61×0E52 Ri,7 cm energy

Break in afterglow PolarizationA few %

Total

Page 22: Kunihito IOKA (Osaka Univ.) · Fireball Ri E 14 34 TEii10 52 R,7 MeV entropy const ⇒TR33=const exp()2 20keV:thin nm±∝−eBckT⇒Tp≈ ()91414 RT±=≈ipTRi61×0E52 Ri,7 cm energy

Total energy

5110 ergE ≈

Page 23: Kunihito IOKA (Osaka Univ.) · Fireball Ri E 14 34 TEii10 52 R,7 MeV entropy const ⇒TR33=const exp()2 20keV:thin nm±∝−eBckT⇒Tp≈ ()91414 RT±=≈ipTRi61×0E52 Ri,7 cm energy

6. Central engine①Collapse of massive star

② Mergers of compact objects・Baryon free

・Location within host galaxies・GRB-Supernova (e.g.,SN1998bw)?High ambient gas density

??

Collapsar, Hypernova

??

Page 24: Kunihito IOKA (Osaka Univ.) · Fireball Ri E 14 34 TEii10 52 R,7 MeV entropy const ⇒TR33=const exp()2 20keV:thin nm±∝−eBckT⇒Tp≈ ()91414 RT±=≈ipTRi61×0E52 Ri,7 cm energy

Host galaxy

Page 25: Kunihito IOKA (Osaka Univ.) · Fireball Ri E 14 34 TEii10 52 R,7 MeV entropy const ⇒TR33=const exp()2 20keV:thin nm±∝−eBckT⇒Tp≈ ()91414 RT±=≈ipTRi61×0E52 Ri,7 cm energy

SN1998bw-GRB980425( ) 46 65.5 0.7 10 erg/s : 10 dimLγ

−± ×! !

Lightcurve Fe line

Page 26: Kunihito IOKA (Osaka Univ.) · Fireball Ri E 14 34 TEii10 52 R,7 MeV entropy const ⇒TR33=const exp()2 20keV:thin nm±∝−eBckT⇒Tp≈ ()91414 RT±=≈ipTRi61×0E52 Ri,7 cm energy

7. Links with other fieldsCR, HEν, HEγ

44 3

19 21

10 erg/Mpc /yrUHECR (10 - 10 eV)

≈≈

Cosmology

Page 27: Kunihito IOKA (Osaka Univ.) · Fireball Ri E 14 34 TEii10 52 R,7 MeV entropy const ⇒TR33=const exp()2 20keV:thin nm±∝−eBckT⇒Tp≈ ()91414 RT±=≈ipTRi61×0E52 Ri,7 cm energy

8. Luminosity-lag ApJ,554,L163(01)

peakLLuminosity

γ:Time

T∆X:

Time

↓⇔↑ T∆ Lpeak ・Standard candle ?・Brighter than SNe Ia・Less extinction

Page 28: Kunihito IOKA (Osaka Univ.) · Fireball Ri E 14 34 TEii10 52 R,7 MeV entropy const ⇒TR33=const exp()2 20keV:thin nm±∝−eBckT⇒Tp≈ ()91414 RT±=≈ipTRi61×0E52 Ri,7 cm energy
Page 29: Kunihito IOKA (Osaka Univ.) · Fireball Ri E 14 34 TEii10 52 R,7 MeV entropy const ⇒TR33=const exp()2 20keV:thin nm±∝−eBckT⇒Tp≈ ()91414 RT±=≈ipTRi61×0E52 Ri,7 cm energy

Viewing angle of a single jet?

⇒Luminosity-lag relation ?

Page 30: Kunihito IOKA (Osaka Univ.) · Fireball Ri E 14 34 TEii10 52 R,7 MeV entropy const ⇒TR33=const exp()2 20keV:thin nm±∝−eBckT⇒Tp≈ ()91414 RT±=≈ipTRi61×0E52 Ri,7 cm energy

Thin jet

( ) ( ) ( ) ( )

( )

�� �

0 0 0ν

vv

v

j r, t A f ν t t r r

cos θ cosθ cosθH θ θ θ H cossinθ sinθ

δ δ

φ

= − −

∆ −× ∆ − − −

Emissivityθ∆

( )( )Bβ -α /sα s� �

�� �0 0

ν νf ν =ν ν

BB1+

1+

~Band spectrum

Spectrum ( )’’f νν

’ν( ) Bαν+

∝2’

( ) Bβν+

∝2’

B B1, 1, 2.5, s 1γ θ α β∆ = = − = − =

Page 31: Kunihito IOKA (Osaka Univ.) · Fireball Ri E 14 34 TEii10 52 R,7 MeV entropy const ⇒TR33=const exp()2 20keV:thin nm±∝−eBckT⇒Tp≈ ()91414 RT±=≈ipTRi61×0E52 Ri,7 cm energy

( ) ( )( )( )

( )( )

( ) ( )

20 0

ν 22 2

00

∆ T2cA r γF T = f νγ 1 βcosθ TD γ 1 βcosθ T

cβwhere 1 βcosθ T = T Tr

φ − −

− −

Page 32: Kunihito IOKA (Osaka Univ.) · Fireball Ri E 14 34 TEii10 52 R,7 MeV entropy const ⇒TR33=const exp()2 20keV:thin nm±∝−eBckT⇒Tp≈ ()91414 RT±=≈ipTRi61×0E52 Ri,7 cm energy

v 0θ ! 1v 2θ γ −!

1vθ γ −!

Lag:

Luminosity-Lag Relation

Page 33: Kunihito IOKA (Osaka Univ.) · Fireball Ri E 14 34 TEii10 52 R,7 MeV entropy const ⇒TR33=const exp()2 20keV:thin nm±∝−eBckT⇒Tp≈ ()91414 RT±=≈ipTRi61×0E52 Ri,7 cm energy

Pulse profile

Luminosity-width

FRED(Fast RiseExponential Decay)

8232

.−≅⇔−≈+−=∝

obs

BκFWHM

peakν

κ: nobservatioακ where WFν

Page 34: Kunihito IOKA (Osaka Univ.) · Fireball Ri E 14 34 TEii10 52 R,7 MeV entropy const ⇒TR33=const exp()2 20keV:thin nm±∝−eBckT⇒Tp≈ ()91414 RT±=≈ipTRi61×0E52 Ri,7 cm energy

Viewing angle①Peak luminosity-spectral lag relation② Peak luminosity-variability relation③ Luminosity-width relation

GRB980425A typical GRB⇒Association of GRBs with SNe

Page 35: Kunihito IOKA (Osaka Univ.) · Fireball Ri E 14 34 TEii10 52 R,7 MeV entropy const ⇒TR33=const exp()2 20keV:thin nm±∝−eBckT⇒Tp≈ ()91414 RT±=≈ipTRi61×0E52 Ri,7 cm energy

9. X-ray flash

Page 36: Kunihito IOKA (Osaka Univ.) · Fireball Ri E 14 34 TEii10 52 R,7 MeV entropy const ⇒TR33=const exp()2 20keV:thin nm±∝−eBckT⇒Tp≈ ()91414 RT±=≈ipTRi61×0E52 Ri,7 cm energy

Off-axis GRB

Page 37: Kunihito IOKA (Osaka Univ.) · Fireball Ri E 14 34 TEii10 52 R,7 MeV entropy const ⇒TR33=const exp()2 20keV:thin nm±∝−eBckT⇒Tp≈ ()91414 RT±=≈ipTRi61×0E52 Ri,7 cm energy

Flux/Fluence RatioApJ,571,L31(02)

Page 38: Kunihito IOKA (Osaka Univ.) · Fireball Ri E 14 34 TEii10 52 R,7 MeV entropy const ⇒TR33=const exp()2 20keV:thin nm±∝−eBckT⇒Tp≈ ()91414 RT±=≈ipTRi61×0E52 Ri,7 cm energy

3 1 3 2 2 110 yr 5 3 10 yr− − −× × ≈Volume Viewing angle

Page 39: Kunihito IOKA (Osaka Univ.) · Fireball Ri E 14 34 TEii10 52 R,7 MeV entropy const ⇒TR33=const exp()2 20keV:thin nm±∝−eBckT⇒Tp≈ ()91414 RT±=≈ipTRi61×0E52 Ri,7 cm energy

10. SummaryGRB : Internal shockAfterglow : External shockJetViewing angle

Various relations, X-ray flashCentral engine ???

Collapsar? Merger?CR, HEν, HEγ, GW, Cosmology