Kuliah_ke_3.1_pile_foundation.pdf

Embed Size (px)

Citation preview

  • 8/14/2019 Kuliah_ke_3.1_pile_foundation.pdf

    1/57

  • 8/14/2019 Kuliah_ke_3.1_pile_foundation.pdf

    2/57

    Poulos, 1980, Pile foundation analysis anddesign, by J ohn Wiley & Sons Inc.

    Bowles, J .E., 1997, Foundation analysisand design, fifth edition,, Mc Graw HillBook Company-Singapore.

    Prakash S & Sharma HD., 1990, Pile

    foundation in Engineering practice, J ohnWiley & Sons

    Coduto DP., 1994, Foundation design,Prentice Hall, Inc.

  • 8/14/2019 Kuliah_ke_3.1_pile_foundation.pdf

    3/57

    Konsep dasar daya dukung aksial pondasidalam: tahanan ujung dan tahanan friksi

    Efek jenis tanah (pasir & lempung) padadaya dukung: penggunaan konseptegangan total dan konsep tegangan efektifserta pemilihan parameter kuat geser tanah

    Efek metode konstruksi (driven, bored) padadaya dukung: perubahan pada parameterkuat geser tanah

  • 8/14/2019 Kuliah_ke_3.1_pile_foundation.pdf

    4/57

    MEA LC of

    PILES

    Full scale

    load test

    ControlledStress test

    Controlledstrain test

    Based onsoiltest

    Anlysisbased on

    Soilproperties

    Cohesion-less soil

    End

    bearing

    Skin

    friction

    Cohesive

    soils

    End

    bearing

    Skin

    friction

    Rock

    Analysis

    based on

    In situ test

    SPT

    End

    bearing

    Skin

    friction

    CPT

    End

    bearing

    Skin

    frction

    Pressure

    meter

    Based onPile driving

    dynamics

    Pile

    driving

    formula

    Wave

    equation

    Case

    method

  • 8/14/2019 Kuliah_ke_3.1_pile_foundation.pdf

    5/57

    Tiang biasanya selalu digunakan dalamgrup, tetapi untuk beban desain selalu

    ditentukan oleh tiang tunggal. Beban desain mengikuti:

    Beban ijin yg didapatkan dari membagibeban ultimate pada saat runtuh dengan

    safety faktor

    Beban terkait dengan settlement ijin daritiang

  • 8/14/2019 Kuliah_ke_3.1_pile_foundation.pdf

    6/57

    Tiang menerima axial compression load J ika (Qv)ult adalah axial compressive load yg

    bekerja pada kepala tiang maka beban

    tersebut akan dibagi pada pile tip (Qp) danfrictional resistance (Qs) sehingga :

    (Qv)ult = (Qp) + (Qs) - W

    dimana (Qv

    )ult

    adalah ultmate bearing capacity

    Qp adalah end bearing capacity dan

    Qs adalah frictional capacity sepanjang perimeter tiang

    W =berat tiang

  • 8/14/2019 Kuliah_ke_3.1_pile_foundation.pdf

    7/57

  • 8/14/2019 Kuliah_ke_3.1_pile_foundation.pdf

    8/57

  • 8/14/2019 Kuliah_ke_3.1_pile_foundation.pdf

    9/57

    Qp dapat ditulis :

    Qp = Ap [cNc + BN + DfNq]

    dimana Ap

    adalah pile end area

    c adalah cohesion dr lapisan tanah

    adalah unit weight tanah

    Nc, N dan Nq adalah bearing capacity parameter

    B adalah lebar atau diameter tiang

    Df adalah kedalaman pile tip dibawah permukaan

  • 8/14/2019 Kuliah_ke_3.1_pile_foundation.pdf

    10/57

    Qs = L pifsdimana p = perimeter tiang,fs = unit shaft friction sepanjang L dan L

    panjang tiang

    a = ca + n tana

    n =Kv

    dimana a adalah pile-soil shear strenth; ca = adhesion;n = normal stress dan a = angle of friction

    L pi fsQv = Ap [cNc + BN + DfNq] +

  • 8/14/2019 Kuliah_ke_3.1_pile_foundation.pdf

    11/57

    Untuk tiang pada clay, digunakan beban kapasitas undrainedkecuali tanahnya highly OC

    J ika clay saturated maka = 0 dan a = 0

    Sehingga Nq,=1,N=0 (Kulhawy et,al 1983)

    Qp = Ap [cu Nc +Df] jika berat tiang diperhitungkan makaQp = Ap [cu Nc +Df] Df Ap sehingga

    Qp = Ap cu Nc

    Qs = pi LfsfS = caQu = Qp + Qs Qu = Apcu Nc + pi Lfs

    Adhesion factor ca untukclay sands dan very siff clay diberikan padagambar atau tabel berikut

  • 8/14/2019 Kuliah_ke_3.1_pile_foundation.pdf

    12/57

  • 8/14/2019 Kuliah_ke_3.1_pile_foundation.pdf

    13/57

  • 8/14/2019 Kuliah_ke_3.1_pile_foundation.pdf

    14/57

  • 8/14/2019 Kuliah_ke_3.1_pile_foundation.pdf

    15/57

    A straight-shafted drilled pile was installed through clay till to bear on clay shale.The pile had a 20 inch (500mm) shaft diameter and was 31 ft (9.5m) long.Undrained shear strength (cu) for clay till was 9501b/ft2(45.5 kN/m2) and for clay

    shale was 6576 Ib/ft2 (315 kN/m2). Estimate the allowable bearing capacity of thispile.SOLUTIONB=20 in. Df=L=31 x 12 in.Ap = (/4)B

    2 =/4(20/12)2 = 2.18ft2

    D f/ B = 31 x 12/20 = 18.6

    From Table, for (Df/B) = 18.6, Nc = 9From Table 5.8, for B = 20/12 = 1.67ft, Nc = 7The lower of the above two N, values is 7 and will be used for these calculations.cu = 6576 Ib/ft* for the c lay shale on which the pile tip will bearp =B = x 20/12 = 5.24ftFrom Table 4.7 for drilled concrete piles forCu = 9501b/ftz, ca/cu = 0.6, Ca = 0.6 x 950 = 570 Ib/ft2 - fs= ca

    Le = 31 - 5 = 26 ft (assuming that 5 ft is the depth of seasonal variation)

    Qu = Ap cu Nc +pi Lfs (fs=ca)

    (Qu)ult = 2.18 x 6576 x 7 + 5.24 x 26 x 570 lb(Qu)ult = 178 kips

    (Qu)all= 178/3 = 59 kips (262 kN), if a factor of safety of 3 is used

  • 8/14/2019 Kuliah_ke_3.1_pile_foundation.pdf

    16/57

    Reese & ONeill (1989)

    qe = Nc su 4000 kpa

    Nc

    = 6[1+0,2(D/B )] 9

    dimana

    Nc = bearing capacity factor

    D = depth of bottom of the shaftBb = diameter of shaft base

    Su = undrained shear strength

    jika B > 190 cm harga

    qer= FrqeFr= 2.5/[120 1 Bb /(Br+ 2) ]

  • 8/14/2019 Kuliah_ke_3.1_pile_foundation.pdf

    17/57

  • 8/14/2019 Kuliah_ke_3.1_pile_foundation.pdf

    18/57

  • 8/14/2019 Kuliah_ke_3.1_pile_foundation.pdf

    19/57

  • 8/14/2019 Kuliah_ke_3.1_pile_foundation.pdf

    20/57

  • 8/14/2019 Kuliah_ke_3.1_pile_foundation.pdf

    21/57

    Drained pile soil adhesion = 0 makaNq

    danN dapat diabaikan sehingga

    Qp = Ap [cu Nc]

    cu =undrained shear strength= su ; Nc=9

    Qp = Ap 9 cu

    fS = v tansQs = p LfsQs = p v tans L

  • 8/14/2019 Kuliah_ke_3.1_pile_foundation.pdf

    22/57

    Skin friction

    method (effective stress)

    = K tan sfS= v =K tan s v

    method (total stress)

    fS= cu = ca =adhesion

    factor

    Qs = p LfS

    Qu = Qp + Qs

  • 8/14/2019 Kuliah_ke_3.1_pile_foundation.pdf

    23/57

  • 8/14/2019 Kuliah_ke_3.1_pile_foundation.pdf

    24/57

  • 8/14/2019 Kuliah_ke_3.1_pile_foundation.pdf

    25/57

  • 8/14/2019 Kuliah_ke_3.1_pile_foundation.pdf

    26/57

  • 8/14/2019 Kuliah_ke_3.1_pile_foundation.pdf

    27/57

  • 8/14/2019 Kuliah_ke_3.1_pile_foundation.pdf

    28/57

    A certain OC clay has a Su/ v =0.61 and drained friction angle of 220 ,

    unit weight of soil 110 lb/ft3, unit weight of water 62.4lb/ft3 . GWT is at 5 ft

    below the ground surface

    Using beta method compute the allowable axial capacity of 50 ft long and 12

    inch square prestressed concrete that will support permanent structure. The

    foundation is to be built with poor control (SF=2.8)

  • 8/14/2019 Kuliah_ke_3.1_pile_foundation.pdf

    29/57

    Classification

    of structure

    Acceptab

    le proba-

    bility of

    failure

    Design

    Good

    control

    Factor

    Normal

    control

    of Safety

    Poor

    control

    F

    Very

    poor

    controlMonumental

    10-5 2.3 3.0 3.5 4.0

    Permanent

    10-4 2.0 2.5 2.8 3.4

    Temporary

    10-3 1.4 2.0 2.3 2.8

  • 8/14/2019 Kuliah_ke_3.1_pile_foundation.pdf

    30/57

    Ca = 0 dan cNc =0

    fS= h tan s fS= Ks v tans

    Qs = p LfS =p Ks tansv Ls= 2/3

    Qp = Ap [ DfNq] . v =Df

    Q = Qp + Qs

    Kulhawy 1983 :Qp= Ap [BN+ d(Nq-1)]

    method = 0.18 + 0.65DrDr=re la t ive d e nsity sa nd

    fS= v

    s = sudut geser antara tiang dengan tanah

  • 8/14/2019 Kuliah_ke_3.1_pile_foundation.pdf

    31/57

    Bearing capacity factors for piles in cohesionless soils(Coyle and Castello,1981

  • 8/14/2019 Kuliah_ke_3.1_pile_foundation.pdf

    32/57

    Values Nq and

  • 8/14/2019 Kuliah_ke_3.1_pile_foundation.pdf

    33/57

    Qp = Ap [ Df Nq]

    Qs = p LfS =p Ks tansv L

    v =Df

  • 8/14/2019 Kuliah_ke_3.1_pile_foundation.pdf

    34/57

    Bored piled

    qe= 0.6 rN604500 kpa

    dimana

    r= reference stress = 100 kpaN60=mean SPT N60value

    qe= net unit end bearing resistanceJ ika B>120 cm maka;

    qer

    =4.17 (Br

    /Bb

    ) qe

    Bb

    120 cm

    Br= reference width = 0.3m=30cmBb = base diameter of drilled shaft

  • 8/14/2019 Kuliah_ke_3.1_pile_foundation.pdf

    35/57

    method (Effective stress analysis)

    fs= v

    = K tan s

    atau Reese & O neal 1989

    0.25

  • 8/14/2019 Kuliah_ke_3.1_pile_foundation.pdf

    36/57

    A closed ended 12-in. (300 mm) diameter steel pipe pile is driven into sand to 30-ft (9 m), depth.

  • 8/14/2019 Kuliah_ke_3.1_pile_foundation.pdf

    37/57

    A closed ended 12 in. (300 mm) diameter steel pipe pile is driven into sand to 30 ft (9 m), depth.

    The water table is at ground surface and sand has = 36" and unit weight () is 125 lb/ft3 (19.8

    kN/m3). Estimate the pipe pile's allowable load.

  • 8/14/2019 Kuliah_ke_3.1_pile_foundation.pdf

    38/57

    Scope untukpenyelidikan pondasi

    Klassifikasi tanah Coarse-grained soil

    Fine-grained soil

    Organic soil

    USCS

  • 8/14/2019 Kuliah_ke_3.1_pile_foundation.pdf

    39/57

    Penyelidikan tanah untuk menetapkan luas, ketebalan,properti tanah dan batuan dan MAT lapangan

    Kedalaman explorasi harusmemperhatikan vertikal stress ygdiakibatkan oleh konstruksi yg barulebih kec il10% dari stresssebelumnya pada level yg sama

    Minimal satu bore-hole dilakukan sampai menembus lapisanbedrock

    Lapisan bedrock ditembussampai minimal 3 m

    MAT dicatat selama waktu tertentu untuk mendapatkankeseimbangan MAT

  • 8/14/2019 Kuliah_ke_3.1_pile_foundation.pdf

    40/57

  • 8/14/2019 Kuliah_ke_3.1_pile_foundation.pdf

    41/57

    Contoh preasumsi soil parameter dalam suatu biding penyelidikan tanah

  • 8/14/2019 Kuliah_ke_3.1_pile_foundation.pdf

    42/57

    Penyelidikantanah danmetoda percobaan

    Penyelidikan tanah

    Boring method

    Auger boring

    Hollow-stem augerboring

    Wash boring

    Rotary drilling

    Percussion drilling

    Rock core drilling Wire-line drilling

  • 8/14/2019 Kuliah_ke_3.1_pile_foundation.pdf

    43/57

    Penyelidikan tanah dan metodapercobaan

    Test pits Hand excavated Backhoe excavated Dozer cuts

    Soil sampling

    Disturbed soil samples

    Undisturbed soil samples

    Rock coring

    Pengukuran GWT/MAT dg : Open standpipe piezometers

    Porous element piezometers Electric pizometers Pneumatic piezometers

  • 8/14/2019 Kuliah_ke_3.1_pile_foundation.pdf

    44/57

  • 8/14/2019 Kuliah_ke_3.1_pile_foundation.pdf

    45/57

  • 8/14/2019 Kuliah_ke_3.1_pile_foundation.pdf

    46/57

  • 8/14/2019 Kuliah_ke_3.1_pile_foundation.pdf

    47/57

  • 8/14/2019 Kuliah_ke_3.1_pile_foundation.pdf

    48/57

  • 8/14/2019 Kuliah_ke_3.1_pile_foundation.pdf

    49/57

  • 8/14/2019 Kuliah_ke_3.1_pile_foundation.pdf

    50/57

  • 8/14/2019 Kuliah_ke_3.1_pile_foundation.pdf

    51/57

  • 8/14/2019 Kuliah_ke_3.1_pile_foundation.pdf

    52/57

    Field testing

    Standard penetration test (SPT)

    Dynamic cone penetration test Static cone penetration test (CPT)

    Flat dilatometer test

    Field vane shear test

    Pressuremeter tests

  • 8/14/2019 Kuliah_ke_3.1_pile_foundation.pdf

    53/57

    Laboratory testing untuk melakukanklassifikasi dan menyediakan parametertanah untuk desain

    Tingkat variasi tanah dilapangan

    Informasi tanah dari explorasi sebelumnya pada areayang sama

    Karakteristik tanah

    Kebutuhan struktur terhadap diffrerential settlemet

    Atterberg limit

    Unconfined compressive strength Parameter konsolidasi

    Shear parameters

  • 8/14/2019 Kuliah_ke_3.1_pile_foundation.pdf

    54/57

  • 8/14/2019 Kuliah_ke_3.1_pile_foundation.pdf

    55/57

    Strength parameter

    Angle of internal friction untuk tanah non kohesif Undrained shear strength Su untuk tanah kohesif

    Su = Cu =v (0.1 + 0.004 PI)

    Soil pile adhesion c a, sangat tergantung pada:1)Soil consistency, 2) metoda instalasi, 3) material tiang

    dan 4) waktu

    Elastic soil parameterSchmertmann (1970) : qc= hasil dari SCPT dan pc =preconsolidation pressure

    s= c qc c = 1.5 - 4 ( pasir)

    s = c pc c = 4060 (clay)

    Parameterdesain

  • 8/14/2019 Kuliah_ke_3.1_pile_foundation.pdf

    56/57

  • 8/14/2019 Kuliah_ke_3.1_pile_foundation.pdf

    57/57