270
KR9700292 KAERI/RR-1720/96 The Development of Advanced Robotics for the Nuclear Industry mn m The Development of Robotic System for Inspecting and Repairing NPP Primary Coolant System of High-Level Radioactive Environment 7] 7] 29 ~ 0 I

KR9700292 KAERI/RR-1720/96

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

KR9700292

KAERI/RR-1720/96

The Development of Advanced Robotics

for the Nuclear Industry

mn m

The Development of Robotic System for Inspecting and

Repairing NPP Primary Coolant System of High-Level

Radioactive Environment

7]

7]

29 ~ 0 I

KAERI/RR-1720/96

The Development of Advanced Robotics

for the Nuclear Industry

gg

The Development of Robotic System for Inspecting and

Repairing NPP Primary Coolant System of High-Level

Radioactive Environment

7]

1997. 7. 20

-8-

711

1996. 7. 21 ~1997. 7. 20

H.

^- -5J-7}-

7}

71-

- 1 Ji^ 5ft

- i -

m.

(1)

fe 3\**1-

- ii -

(2)

S. 71HS-S1

S.fi.S.

- in -

iv.

(1)

8m

8051^- vHig-AV-a^.^ 5962R9563801QQX =

^-(Divergency)

Window NT

RS-232C IJ-^A

- iv -

(2)

SiLB.

71 #

6

- v -

V.

(1)

S. 60

(2)

tt

- VI -

- vii -

S U M M A R Y

I . Project Title

The Development of Robotic System for Inspecting and Repairing

NPP Primary Coolant System of High-Level Radioactive Environment

n . Objective and Necessity

Possession of stable and lucrative energy resources are essential for

the economical development of the nation and the highly modern living

of her people. Korea has insufficient energy resources because of the

nature of the land. Above 50 percents of the electricity consumed

across the country are supplied by nuclear power plants (NPPs). The

Korean government has realized that it is important to efficiently

manage and maintain NPPs in Korea and to improve their safety for

the national security and development. Of particular importance is the

development of technology for emergency response such as robotic

inspection and maintenance to be used in nuclear hazardous

environments.

Many researchers have been involved in developing remote

technology for use in hazardous environment. However, the robotic

technology for nuclear industry applications developed in Korea is

- vi11 -

currently in the early stage compared with advanced one of foreign

countries.

The use of a robotic system in nuclear hazardous environemnt has

the advantages of watching and inspecting the NPP safety-related

equipment systematically and repairing damaged parts efficiently,

thereby enhancing the safe operations of NPPs as well as reducing

significantly personnel's dose rate to radioactive environment. Key

technology achieved through the development of such robotic system

can be used for aiding the rehabilitation of the industrial disasters and

can offer new approaches to many of the tasks faced to the industry

as well.

This project aims at developing a robotic system to automatically

handle inspection and maintenance of NPP safety-related facilities in

high-level radioactive environment. This robotic system under

development comprises two robots depending on application fields - a

mobile robot and a multi-functional robot. The mobile robot is

designed for use in the area of the inspection and maintenance of the

primary coolant system during the normal operations of PHWR

(Pressurized Heavy Water Reactor) NPPs. The multi-functional robot

is designed for performing the inspection and maintenance tasks of the

steam generator (SG) U-tubes and nuclear reactor vessel heads during

the overhaul periods of PWR (Pressurized Water Reactor) NPPs.

- ix -

M. Scopes and Contents

This research is planned to be performed during the period July 21,

1996 through July 20, 1999. The work conducted in the first year of

the project from July 21, 1996 through July 20, 1997 covers the

analysis of the application field and the design of the mechanical

hardware and control system. The construction of the overall robotic

system with its control softwares is implemented in the second year.

In the final year of the project, the performance and capabilities of the

developed robotic system are verified through field tests.

(1) The Development of a Mobile Robot for Inspecting

and Repairing Primary Coolant System

In the first year of the project we investigated the necessity for the

inspection of the face of PHWR and determined what parts of the face

should be inspected. We surveyed a state-of-the-art technology

relating to robotic systems being used in PHWR NPPs. A mobile

robot was selected as a means of realizing such inspection tasks

without endangering workers. Established were the inspection

methods and the detailed inspection procedures. We developed the

3-D graphic models of the PHWR face and mobile robot, and

simulated them graphically to verify the inspection methods and

- x -

procedures determined. Results obtained from the graphic simulation

were used to develop a complete mobile robot. Finally, we designed a

conceptual mobile robot which consists of mobile platform, camera and

extendable arm. An extendable arm mounted on the base of the

mobile platform was designed to support camera on its end, and its

partial construction was conducted.

(2) The Development of a Robot for Inspecting and

Rearing SG and Reactor

A state-of-the-art technology was surveyed relating to robotic use

in the inspection and repair work of the NPP SGs and reactor vessel

heads. Specifically, we investigated the necessity and feasibility of a

robot to Kori PWR NPP. A robot was required to perform tasks such

as the inspection and repair of the SG U-tubes and the sleeves of the

control rod driving mechanism of the reactor vessel head. We

developed a 3-D graphic environment of the SG and reactor vessel

head, we designed a robot capable of performing those tasks through

graphical simulation. A force reflecting master manipulator was

designed to remotely control the designed robot located in task

environment. In addition, we designed a bilateral control system for

teleoperation. Finally, we also developed a training simulator enabling

an operator via a real master to graphically try out and train for

remote tasks in virtual environment.

- xi -

IV. Results

(1) The Development of a Mobile Robot for Inspecting

and Repairing Primary Coolant System

A mobile robot was designed to enable to inspect the PHWR face

and to repair its damaged parts. This mobile robot was designed so

that it can move with mobility in unstructured environment and so

that it can carry an extendable arm on its base. The design was

made in more detail through a graphic simulation to have a maximum

stability of the robot during navigation for two cases - for the case

which it passes through ditches and for the case which it rotates with

a full stretch of the extendable arm. In addition, considered are how

feasible it is to tasks and how efficient it performs tasks.

The designed mobile robot employed crawler type of wheels in order

to pass through a ditch (75 cm in length and 25 cm in depth). A

camera with a pan/tilt motion was designed to be mounted on the top

of the extendable arm which can be extended up to 8 inches vertically

from the base. The extendable arm can guide a camera to the PHWR

front face such that the operator can inspect a total number of 360 of

the pressure tube ends one by one controlling the camera.

The mobile robot was designed to be operated by both a remote

control and a supervisory one. A remote control system embedded on

- xi i -

the robot platform utilizes a radiation-hardened processor,

5962R9563801QQX (radiation-hardened 8051), manufactured by UTMC.

This control system employs a redundancy to overcome the failure of

parts and a divergency to minimize the possibility of failing parts. A

supervisory control system uses a industrial PC operated with

Windows NT. Communication between two control systems is

managed through a RS-232C.

(2) The Development of a Robot for Inspecting and

Rearing SG and Reactor

A multi-functional robot was designed to be capable of inspecting

and repairing the safety-related equipment such as the SGs and

reactor vessel heads of the NPP primary coolant system. This robot

was designed on a basis of its kinematic analysis considering its

workspace, maximum payload, and maximum speed and acceleration.

The robot was simulated in the graphical task environments of the

SGs reactor vessel head models to examine if the designed robot

performs successfully given tasks. The robot controller design was

based on its radiation hardness to radioactive task environment. Task

scenario and its strategy were determined through a graphic simulation

of the inspection and repair procedures.

A force-reflecting master manipulator that is a man-machine

interface device that allows real-time interaction between the operator

- xiii -

and the slave manipulator was designed. This master reflects contact

forces generated by an interaction between the slave's end-effector

and the environment back to the operator, and assists him/her to

accomplish a high fidelity of teleoperation with ease and comport. This

equipment was designed to have a full 6 dof to specify a unique

spatial position and orientation and provide good backdrivability by

minimizing friction and inertia by use of cables. In addition,

considered are a mechanical decoupling of the position and orientation

of the hand for fast kinematic and dynamic models, and a mechanical

counterbalance to reduce the operator's fatigue and improve his

maneuverability. It also features a common interface to control

dissimilar robots. A training simulator enabling the operator to

graphically try out and train for remote tasks that the real slave

manipulator will perform was designed. This training simulator will

allow the operator through a real master to manipulate a virtual robot

located in virtual task environment.

V. Applications and Future Plans

(1) The Development of a Mobile Robot for Inspecting

and Repairing Primary Coolant System

The development of this mobile robot was proposed by Wolsung

- xiv -

NPP. This robot, after completion, will be tested in Wolsung Unit 3

under construction to verify its performance and capabilities. Finally,

it will be applied to Wolsung Unit 1 for practical use. To this end

we completed a conceptual design of the mobile robot this year by

having a close contact with personnels of Wolsung NPP and by

analyzing the task environment of the PHWR face. All the electronic

components of the mobile robot are planned to have radiation-hardened

tests in Korea Atomic Energy Research Institute (KAERI). And then,

this robot will be tested on the full scale mock-up of the PHWR face

of Wolsung Unit 3 before it is put into service.

(2) The Development of a Robot for Inspecting and

Rearing SG and Reactor

The multi-functional robot under development will be tested on the

full scale mock-ups of the SG and the reactor vessel head, verifying

its performance and capabilities. And then, this robot will be applied

to the practical inspection and maintenance operations in Kori Unit 1.

The significance of development is in possessing our own technology

in areas of robotic inspection and repair of nuclear hazardous

environments, thereby reducing financial burdens due to the

introduction of related technology, increasing the longevity of NPPs

through continuous maintenance as well as strengthening the

competitiveness of nuclear power on markets.

- xv -

CONTENTS

Chapter 1. Introduction 1

Section 1. Background 1

Section 2. Objective and Scope of Project 4

Chapter 2. Overview of the State-of-the-Art Technology — 6

Section 1. A Mobile Robot for inspecting and Repairing

Primary Coolant System 6

Section 2. A Robot for Inspecting and Repairing SG and

Reactor 21

Chapter 3. Contents and Results of Project 47

Section 1. A Mobile Robot for inspecting and Repairing

Primary Coolant System 47

1. Introduction 47

2. Design Criteria and Task Procedures 48

3. Graphic Simulation 58

4. Robot Mechanism 66

5. Robot Control System 94

6. Force-Reflection Control of Mobile Robot 103

XVI

7. Conclusions 116

Section 2. A Robot for Inspecting and Repairing SG and

Reactor 117

1. Introduction 117

2. Task Analysis and Graphic Simulation 118

3. Electrically Driven Robot : Design and Dynamic Analysis

1 2 9

4. Robot Control Algorithm 143

5. Training Simulator 147

6. Force-Reflecting Handcontroller 187

7. Conclusions 225

Chapter 4. Achievements and Contributions 226

Section 1. A Mobile Robot for inspecting and Repairing

Primary Coolant System 226

Section 2. A Robot for Inspecting and Repairing SG and

Reactor 228

Chapter 5. Applications and Future Plans 230

Section 1. A Mobile Robot for inspecting and Repairing

Primary Coolant System 230

Section 2. A Robot for Inspecting and Repairing SG and

XVI1

Reactor 231

Chapter 6. References 232

XVI11

1 ^

2%

2.

3.

4.

5.

6.

7.

4 2

1

4

6

6

* #7^2. %%2-^r S.S.S. 21

Ml-g- 9J 4 47

i ^ ^ ^ ^ U S - 47

47

48

58

66

94

103

116

117

117

XIX

2.

3.

4.

5.

6.

5

1

2

118

129

143

147

187

225

226

226

228

230

230

231

232

XX

2.1.1. *l*l-3. £l-sl ^ a 7

2.1.2. «x}3. 9

2.1.3. «U"3#^ afli^^l 10

2.1.4. n^S. 3.q%*]4\ ^2: 12

2.1.5. «q«3S. S^^-ul5l afl l 13

2.1.6. «*<££- S L ^ H ] «l|s. l ^ ^ ^ l 13

2.1.7. ^ ^ 5 . HSJI^uls} ?fle)xl ^-fl^.^ 14

2.1.8. CIGAR >-g-ofl (I) 16

2.1.9. CIGAR 4-§-i (H) 16

2.2.1. 1^ri1 €^>5. ^ ^ 23

2.2.2. €^}5. ^|HSl #&S. 24

2.2.3. <k$».7} ^ & 4)o]%-7-^*} &tt 25

2.2.4. ABB ^ < H * T L ^ ^ - * ' 1 W 4 ^4-8- S A S . A ] ^ ^ — 27

2.2.5. ABB S 1 I *iH-g-7"§^*l ^-^-^(Without sleeve) ^^> 28

2.2.6. ABB SJ iS . ^]<^^.^^.^-^ ^-^-^-(With sleeve) ^A> - 28

2.2.7. # 3 J E L - < H C 3 ^ ?>^ #^§ 1 29

2.2.8. Mitsubishi £-2.E.4\ ^tt&Q*) ^*-¥- ^ 4 31

2.2.9. ^^}S. 1 } 31-f 36

2.2.10. &7)ig$7] ifl^-^2: 37

2.2.11. ^-«. JE<H1 -?-3)-€ ^ " S ^ 4 ^ 39

2.2.12. ZETEC SM 5.£ 42

2.2.13. ROSA m 45

XXI

2.2.14. ROSA m *1<H7l 45

2.2.15. ROSA HI # e ] ^ f l o W ^ 46

3.1.1. ^<g £*1 (I) 55

3.1.2. * ^ £*1 (H) 56

3.1.3. **<$ £*i (HI) 57

3.1.4. 3.SLS. * l#«JMiH^ ^ 59

3.1.5. #° f l l - ^^^1^1 S.JiM 4^1 61

3.1.6. * -i-4 *l-i:elM# 633.1.7. 7>Bflef# o|-g.# ^ ^ ^ ^ Al#«flo|^ 66

3.1.8. 5 . J i ^ 71^-^- *J*fl ^ ^ JE 68

3.1.9. o l ^ s } ^ ^ - 4 ^A-^J£ 71

3.1.10. «>]*•¥• &*A ^ T ' -^ -S-^ ufl^l^ 73

3.1.11. * f l J&sl ^M}5. 73

3.1.12. ^ i s l > >H1J£ 74

3.1.13. ?Hef W ^ M ^ ^ - ^ ^ 80

3.1.14. < ei 7 H §Eflo] a . ^ 3 . <a tl-fl 83

3.1.15. ^ ^ a . <a E]-^al A>-§- o| 84

3.1.16. ^ 1 ^ °J- ^ £ . S . 4 O ^ 7-^S- 88

3.1.17. M - S ^ ^>Ml£ 91

3.1.18. ^ l l ^ ^ l ^ ^ 4 ^ ^ 1 92

3.1.19. iaf^sl m 0]$ ^A £ 93

3.1.20. o l*3JLS. *\]°]A)^<i2) ^HT^S. 94

3.1.21. ^e]^o]-^s) ^ A J £ 95

3.1.22. #2^H-¥-S) ^r-M¥ 96

xxii

3.1.23. ^ ^ W ^ M I %^%tf -a^l 973.1.24. 4°)7}2] 7l£-7l^ 100

3.1.25. *lH7l£] J i^-^-4 101

3.1.26. c-llo]^ °,mi?-<>\ Redundancy^ Diversity 102

3.1.27. -£3 2 : ^ * 1 ^ ^ S . 103

3.1.28. ^?fl€ S ° l ^ £ ) #££. 106

3.1.29. %#¥ yq 109

3.1.30. KAEROT ^ A>^1 HI

3.1.31. 111 £^ ^#*1 ^-^5. 112

3.1.32. S L S ^ ^ 1 4 H4

3.1.33. PC # 5 L ^ «r^ ^<Hl^ ^ ^ € ^ « > ^ * H 7 | 115

3.2.1. ^ 7 1 ^ 7 1 v f l - ^ -^^ S.JS.JE ^ ^ 1 7fl^JE 120

3.2.2. 5 . ^ . ^ ^ 3*K1 3.$^ S .1 122

3.2.3. ^ 7 1 ^ ^ 7 1 ( 3 . ^ "F" ) 3 *R1 ^-«fl^ 5Lt 123

3.2.4. - 7.1-s. 8(]^ 3 *M mm S.*£ 124

3.2.5. 7fl^-i^m 5-iLS.^ 7}^^^ 4%. 126

3.2.6. ^ 7 m ^ 7 | ^ ^ ^ . ^ 2]-<a A^eilc)^ 127

3.2.7. #*}£- nB. ^ ^ ^ . - r ^ ^ ^l"Bflol^ 128

3.2.8. £110] 7 l £ ^ 130

3.2.9. 1 ^ ^ ^ ^ - i&^£ 133

3.2.10. 2, 3, 4, 5 # ^ ^ ^ - ^ ^ - ^ £ 134

3.2.11. 6#-£r ^ -^ -^ ^ - ^ ^ 134

3.2.12. £\#^s\ %3- £.# 139

3.2.13. 3#^r43 ^S. i?!: 139

XXI11

3.2.14. S)#zHr£S| 33. iL# 139

3.2.15. iies] s^£ 141

3.2.16. *&AQ SJS.^^ ^ T f l i 142

3.2.17. Computed S5 .3 . * H i-^- t ^ H ^ 144

3.2.18. Joint *W*] 1"P- H ^ 145

3.2.19. 7 > ^ ^ ^ A]^<q 7fl^£ 148

3.2.20. «£-f s] ^ -^ 151

3.2.21. Boolean ^^> 159

3.2.22. Boolean < S ^ ^ . 9 . i # £ 160

3.2.23. 2]^?>^ ^iTiel 168

3.2.24. Convex ^ ^ 173

3.2.25. Concave ^ 173

3.2.26. ^ sg^4°l^ ^ii^Bj 174

3.2.27. ^^d^^i)- 7l^^E] 180

3.2.28. ^it^S ^^^7l 7fl £ 194

3.2.29. 3 1 ^ ^ ^ 7 1 71^-S}- 195

3.2.30. ^11^3 ^3:471 ^-iTfl *13 197

3.2.31. ^3i^7}$] ^ e f l ^ ^ l l rBl lo l^ 201

3.2.32. 3 : ^ 1 ^ , nfl<g^ U]jiL 204

3.2.33. 6-6^§ ^ f t ^ 1-^lf- 71^-s]- ^ f i ] 205

3.2.34. 7 1 ^ ^ - Bfl 206

3.2.35. ^Tll^^r 211

3.2.36. D.I^ £°1 214

3.2.37. 'gTll'g'rofl 4-g- ^ ^ ^ ^ €<>1 215

XXIV

3.2.38. i ^ ri M 217

3.2.39. 3^>« **<$ °m 219

3.2.40. Spherical 2:91^. ^^] 221

3.2.41. K d ^ - i l - ol-g-* ^ i ^ <*! f H H ^ -i^l 222

3.2.42. ^r^7) $3.4\- ^#O)]O|E-1 223

3.2.43. a ^ € ^ ^ ^ $1*83. ^3:^71 224

XXV

2.2.1. Framatome ^SLJEt- ol-g-^ alH^f ^ f - ^ l #*•¥• 3 4 32

2.2.2. Framatome ^ ' H ^ ^ - ^ ^ ^ ^ f - ^ ^4-§- ^^1 33

3.1.1. ^nflef W I S o^-i-s) 79

3.1.2. 7H|el- W^SSI ^ / ^ ^ - ^ ? > q ^ 79

3.1.3. <?fiS.S. A>^ ^ ^ ^ - o i ^ g j i a 82

3.1.4. -tf-^tf SS£El-<a^ ^ ^ ^ ^ ^ - 88

3.1.5. #^<& ^S.SE]-<a^ «qtg 89

xxvi

s

s. 2.1.1. *u>s *m 83 2.2.1. Mitsubishi 4 ^ ^ M ^ ^ ^ l 34-§- SJ iS . *fl*l 30

3 2.2.2. ^71^-^71 33 -S / r ^ 35

Jt 2.2.3. 5L« "F"^ ^ 7 m ^ 7 l * ( « 40

5 2.2.4. ZETEC SM-23 5-iL^ 4Q 43

6 3.1.1. z>£:ELeH ^ ^ ^ - ^ 1 ^ ^ 3]-<a 48

JL 3.1.2. 7l^3|Si ^ ^ ] 7 l ^ 49

5 3.1.3. S-^Jf^s} ^ 4 ^ 1 *l-8-*l 50

S 3.1.4. ^ ^ i €^161 ^ ^ E ] ^ * 4 - a «1-8-*l 51

S. 3.1.5. *)«• ^ ^ 4 ^ wj-4^ ^-g-^l 51

S. 3.1.6. ^ ^ ^ ^ - a * ^ ^ HW'ti *I-8-*l 53

5 3.1.7. B <=H1 4 ^ - MHJ-4-a 67

3. 3.1.8. 3.SLE 7 1 ^ ^ - *H*I 69

a 3.1.9. o l ^ - f ^1€ 75

IE 3.1.10. CCD 7>*f|2f ^ 1 ^ 78

6 3.1.11. # * # CCTV ^l^s] ^1^[ 78

S. 3.2.1. Denavit-Hartenberg 4 ^ D 1 ^ ^ 130

3. 3.2.2. I l l ^ s l ^o] 130

a 3.2.3. ^ 3 2 ] ^ ^ ^ 1 ^ 135

S. 3.2.4. -Ml-«M4! ^ ^ 141

3 3.2.5. D-H £^r 196

3 3.2.6. i ^

xxvii

50

TMI ( Three MUe Island )

20%

7 1 7 ^

- 1 -

Feeder Pipe ), « *1*1^ ( Pipe support )

Calandria ) ^ M %% 2.^- aj-«g<>l A ^ S ) ^.B.SM1 3 £ 4 .

in Service Inspection

2. ^7m>«7l ^ ^ ^ s ^ ^ J i ^ S-JB.E.

^•(Primary Coolant System)^-

•g- n]*]S.

5U4.

£7]-

5U4. 5.iLS«

- 2 -

ICRP

A]-

A>-§-o)l

ol cf.

71

71

- 3 -

*!l 2

1.

-S-g- S-iLS. A l ^

. o)

2.

- 4 -

5a4.

- 5 -

1. * A

i Mrad

Fail-Safe

A

( Pressure tube W

fe 1 Mrad^ 3.^*}$. *)<%<>.£. Af -o) ^ ^ - ^ ^ $7l

^ nfl 4- .8.31-cK 4

- 6 -

2.

Feeder Hpe

2.1.1 4|

38071)51

2.1.1.

Fig. 2.1.1. Structure of Reactor Building

- 7 -

2.1.2TT

(End Fitting),

380

(Feeder Pipe)'!-

2.1.

JE. 2.1.1. -€

Table 2.1.1. Specification of Reactor Assembly

Total Thermal Power

No. of Channels

Max. Channel Power Nominal

Feul Bundle per Channel

Primary Shutdown System

Secondary Shutdown System

Pressure Tube Material

Calandria Assembly Material

Calandria Tube Material

Core Length

Calandria Assembly inside Dia

2,061.4 MW

380

6.5 MW

12

28 Rods

6 Nozzles

Zr-2.5Nb

SS Type304L

Zircaloy-2

5.94 m

7.595 m

- 8 -

n. « tActw>tv eo»TftOk vm i *

H. SWUTOfFUW1

« . CO"aTIWM. ABSOAvC* t>"*iT

• A l f fCTOM " • " '

2.1.2.

Fig. 2.1.2. Reactor Assembly

- 9 -

5U4.

2* , 0* , -32' , -58° , -90' •§• 77^1

90° , 58° ,3

22 21 20 IS 1* 17 16 IS 14 13 12 11 10 9 • 7 • 5 4 3 2 1

2.1.3.

Fig. 2.1.3. Location of Pressure Tube

- 10 -

It21

2*0^al

( Shielding Door ) <>1 ^4*}^ ^ ^ ^ ja*H^-H]

2.1.5 <>llfe ^j

Maintenance Crane ) 4 £.5i^l7> ^^-S. *\3,

1 ^ J l ( Carrage ) 7>

2.1.4

2.1.6

2.1.7^fe ^ ^ 5 . 5L*\)%*}4\ ?fle)^l <H^#e1 ( Carrage

Assembly )«

( Gimbal ) -8-MS

- II -

2.1.4.

Fig. 2.1.4. Structure of Feulling Machine

- 12 -

REHEARSAL CHANNEL \ T y C ^ B R A

SEftVtCC PORTS

2.1.5.

Fig. 2.1.5. Location of Feulling Machine

RIEUMO IUCHM « « U «5SE«0LY

2.1.6.

Fig. 2.1.6. Feulling Machine Head and Support Cradle Assembly

- 13 -

WWU SUSPilSIOIMilt

rui *r SIIVI unAJMH8IT

isiEt ginASSMIIT

T >II«E EXCOOE1

vrn* «iH»it Din

r Mm

I™ ~ \ MACTOR

tOWII 4IH8M Wll

| * )CA»« I *OI IHOWN

2.1.7.

Fig. 2.1.7. Feulling Machine Carrage Assembly

- 14 -

3.

( Eddy current ) % # ^ &-M- 34-§- 5U±i=4

CIGAR :

( Channel Inspection & Gauging Appratus for Reactors )

( CSA ) s\

Ontario Hydro ^\7\ 1980^^

CIGARETTE ty& ^

147flSi ^<£3. ^&*\) tfl

2.1.84 ^ ^ 2.1.9fe

CIGAR ^ ofl# J5L<H cf. a tflfl-JE.

LSFCR ( Large Scale Feul Channel Replacement )

MAN Energie 3**HMfe Utilitiy 1 A ^ ^ ^«fl CIGAR 4 -

TIGER ( Tube Inspection and Gauging Equipment for Reactor ) 5-iLB.

- 15 -

2.1.8. CIGAR Al~g.4| (i)

Fig. 2.1.8. Example of CIGAR (I)

2.1.9. CIGAR Af^ofl (D)

Fig. 2.1.9. Example of CIGAR (II)

- 16 -

SFCR :

( Single Fuel Channel Replacement )

7] A>-g-Ag ^a jo ] OJ_OT^ *M<3 ^ l - ^ ^ ^ H S CIGAR

2 7 H tfl*|] '94

S ^ l ^ ^ - i - fl* LSFCR ( Large Scale Fuel

Channel Replacement ) °]

: Scrape Sampling

( Chalk River Nuclear Laboratory ) 7\

107fl

Garter Spring $*}&$ SLAR :

( Spacer Location And Repositioning )

Garter Spring*!

- 17 -

5tW, °1* ^1*1-71 fl*H Garter Spring^:

1995V!51*11

a]

^ ^ Garter Spring^ ^ ^ t b # 3 - 5 - 5 . ^ ^ 1 = 1 ^ Sft

Garter Spring^ « 1 ^ ^ ^ ^ - ^ M - ^ 4 *1 SLAR

Garter Spring 4

ASTM A106B ) #

4^)0] C S A S t d

. OJ611

sai996\d5.°11 -8^ ^ i i ^ ^ S . 40 71151

- 18 -

VIT

- R.J. Electronics^^

4.

3 . * ja«r«l-fe ^ 4 ^ E ) 380711S1

21711 S.±i

- 19 -

5a

- 20 -

2 ^ ^71^71

1.

7171S

^(Plugging) 52 ^3^(Sleeving)

. 1991 id

71 (Buggy) 3 3L7] M<HH «•-««• «^>5. -§-7l *fls.

o]6||

- 21 -

4-§-

2.

1991 Vl 9€ 231J 1:^:451 7 ^ ^ ^ S . ^ ^ ^ ^ ^ ^ 4 i < y -¥-71

4 10\! ^7lS- A^Slfe ^^>S- ^^-g-7lSl ^ ^ Al^4>§o|)A

«fl^ ^-^51 ^f^ol ^ ^ 5 . ^-o]s)$i4. o] ^4s . fe 155 Bar

4 ^^-^-^islfe^l 170 Bar ^ i > <y- A 1 ^ 4 207 bar

4 ¥ i i ° l 3-^51^4. 4^1 ^ ^ £ 3 H 3 <y-^iL4 ^^r 150

CCTV1

65 7flfil #Elt iL^ 3

EDF fe * « i ^ ^?1^ -

6l^r 900 MW

- 22 -

3.711 -S^S- H ^ tflJMI "L"

^^-8-71 (Reactor vessel)^ ^ ^ ifl-f^l "C" S 3.*]%.

o] 0^4. 2.2.2 fe ^"^-8-7] Sf l^ 3,4 £71)

2.2.1.

Fig. 2.2.1. Overview of PWR

- 23 -

270*

2.2.2.

Fig. 2.2.2. Top view of the reactor head

- 24 -

Yfe t(Thermal)#elti.7l-

2.2.3

71

01

IQIH

flTAMLSSS STEEL O04U

JJCJUELO

FERprnc STEEL

STAINLE

..tfMl ALLOY

2.2.3

Fig. 2.2.3. CRDM penetration with sleeve

- 25 -

3.

7\. ABB

2.2.4^ ABB AH 7 f l t $ ^ . ^ . E A ] ^ ^ ^ - oj-g- V

x-Y-z

- MIZ 18, MIZ 40, DDA-4 ECT ^*1

- 4D Probe Pusher Puller, Probe Guide Tube

- Gap-Scanner

S! Endoscopy #*]

MRPCdntegrated

coil, Surface coil)# 4-8-^3. #51^71- ^ -^-s ]^ ^^r

fe MRPCdntegrated coil) s|- GPC(Gap pancake coil)-i-

fe 3; lo| ^ . ^ ^

3*]«M1 € 4 . ^ . ^ 2.2.5

7r Si^

2.2.7^

- 26 -

Probeholder

Sup

Reaktor VesselClosure Head

Vessel HeadStorage Stand

Manipulator Cross Supon Plate

270° \ ^ ~ \ ~ V / .0"

90°

Manipulator Rotating Capability 360°TKMl

2.2.4. ABB

Fig. 2.2.4. ABB Robot system for CRDM penetration inspection

- 27 -

2.2.5. ABB 3.2£ms] *H-8-nMM|-*l #*§•*?-(Without sleeve)

Fig. 2.2.5. Inspection of CRDM penetration

without sleeve by ABB robot

2.2.6. ABB S-iLJEfi] ^ H - g - ^ ^ l ^ ^ ^ ( W i t h sleeve) ^ 1 -

Fig. 2.2.6. Inspection of CRDM penetration with sleeve by ABB robot

- 28 -

2.2.7. #el«.-

Fig. 2.2.7. Sleeve-Adapter Gap scanner

- 29 -

Mitsubishi

2.2.1

2.2.8^ Mitsubishi

^ Bore, annulus, ale part-length

SIS. Al

£ 2.2.1. Mitsubishi *}s>\ ^ H ^ ^ ^ l ^ 4 - § - 3..S.B.

Table 2.2.1. Specification of the Mitsubishi CRDM inspection robot

^ «

^J^lolEi

^^d^^-g- ^^«H1<>1E^

^ «3,480 x 1,070 mm

250Kgf370

Max. 0.3 rpm

1,640 mmMax. lOOmm/sec.

1 rpm

* ^ - S-EJ230 mm

10 mm/sec.#7} 3_£\

- 30 -

Coot rot unitECT

itiumeniDatar ecord«(

2.2.8. Mitsubishi 3,*LE.2\

Fig. 2.2.8. Inspection of CRDM penetration with sleeve

by Mitsubishi robot

Framatome

2.2.1 £ 5 # ^ Framatome

Mitsubishi

. ABB

- 31 -

5514. A

4

2.2.2

2.2.1. Framatome SiLS.1- «l-8-«-

Photo 2.2.1. Inspection of CRDM penetration by Framatome robot

- 32 -

V 2.2.2. Framatome

Photo 2.2.2. Framatome CRDM penetration inspection deveces

3.

7\.

2.2.9 7}7}

- 33 -

2*}

. ZJ-

o.5. -u"

"U"

ojofl

3)

- 34 -

3. 2.2.2.

Table 2.2.2. Inspection/maintenance tasks on steam generator

Inspection

Cleaning

Repair

Eddy current test

Ultrasonic

CCTV inspection

Tube pulling

Sludge lancing

Chemical cleaning

Plugging

Shot peening

U-bend heat treatment

Nickel electroplating

Sleeving

AVB replacement

Examination

Examination

Examination

Preventive

Preventive

Preventive

Preventive

Preventive

Curative

Curative

Preventive

- 35 -

STOW S8i£RAT0e

««a

2.2.9. -S4S. 1 > 31 f-

Fig. 2.2.9. Primary coolant loop

36 -

Performancedeterioration- Steam pressure- carry-over

StratificationWater - Hammer

Secondary sidedesign

Tube bundlevibrations

Cleanliness

PrimarySecondaryChemistry

Tube plugging- techniques- criteria

Separatoroperation

SG water levelcontrol

Anti vibration bars

Damageto tube bundle- corrosion-wear

Access openingleaktightness

In service inspection

2.2.10. ^71HMJ7}

Fig. 2.2.10. Internal structure of a steam generator

- 37 -

CCTV §•-

4 43iT^ 34

-s. 347}

Length) 347>

47] q<$*] *Ss]3i 5a

2.2.11 4 £ £

S. 2.2.3 4 -Cf. ^ 3

ZETEC 4 4 Westing House 4 ,

Framatome 4 , Q^ Mitsubishi 4^14 7H^€ S.J4S. -i- l >fl

ZETEC, Westing

- 38 -

house

jii:::::::::::::::::::::::::::::::::: : : : U s : i ! : ! ! ! ! ! : : ! : : :

:::::::::i:::::::r• • • • • ! : • •>•••*•••••>i k i i a t «>•••••> t i

• •> •< •> • • • • • • • • • • • • • • • AK t t i i l t a • •<•>•• • • • • >•>••>.-,-'ia>>i>aaa>'at •> • • • • • • • • • • • • . ' .; a V

- 3 8

f:i:::::s::::::::::::::::.:::::::,::::::::::::• J : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :::::::::::::::LV

;i::::::::::::::::::::::;:. a : : : : : : : : : : : : : : : : : : : : : :

.'jBiaaBBaaaEaiaaBaaaaaaaaiaaiaaa!{••ii'aiiiaairBiiaiBiBva'aaaiaa'BaaiaaaKBlaaaaaaaiBBiaa laaaaaaaililliaaaaaaaiaaaaaaBBBi iBBBBlaaliaiiiaiaaa

! > • • • • • »»;•_•_•>>.•> < ¥•> H • • • * B • • . " r s V Y V i

iiliiifiiliiiiilliliI::::::::::!:::::::

Ls

M 09 Of 7S 70 B9 Bfl 33 30 13 IB 33 30 « l» 15 l» 3

2.2.11. -W-ti. ^ E O I ]

Fig. 2.2.11. Tube bundles on tube sheet

- 39 -

3. 2.2.3.

Table 2.2.3. Specification of the S/G(model "F" type)

Pitch7 ^

RmaxRmin

Tangent RowUpper

Tangent RowLower

Section TSection W

0.875 ?1*10.050 ?!*10.281 ?1*11.281 ?1*13,388 7i

357.16 ?1^159.844 $1*12.1857 ?!*1

893/888 ?1*121.03 ^1*10.15 ?1*10.22 <?]*1

SA 508 Class 2

49.75 t!*l3/4 "?] 1

1.2812 91*]Round

0.750 ?1^1SA 2845 Gr.C

44 £136 £13 $11 id

o.387 -y^i0.387 <?]*1Inconel 600Alphatized

NominalNominal

7 7ll

Round

- 40 -

(1) ZETEC SM i l l

ZETEC 4 3 SM 4 B] a S.^.^ -2.3. 7fl

30 Kgf

2.2.12

"Camera arm"

arm <H^l-e]^ ECT

"Trunk/manway"

Trunk/manway

Camera

. Arm

^r Si 4 . H * ZETEC 4 3 Eddynet95, Probe Pusher, Acquire,

Inspection Planning system, ^ Inspection Management system ^ ^ ^

2.2.4 ^ SM

- 41 -

Camera armassembly

TrunH/tnanway Hangs

2.2.12. ZETEC SM 3.JLK

Fig. 2.2.12. ZETEC SM Robot

- 42 -

5. 2.2.4. ZETEC SM-23 S.JB.S.

Table 2.2.4. ZETEC SM-23 Robot specification

•¥•711

5LE1

39 Kg

13.6 Kg

24 V(DC)

12 V, Halogen

Sony HVM 52C

# 3 30-60 ?1*1 ^

(2) Westing House ROSA HI

ROSA m £• * 1 ^ Westing House

4.

S J i M S

7 m . ROSA IK ^ ^ 7 1 ^ 7 1

-^•^ e

. ROSA ffl 7>

- 43 -

3} 41 (Plug Removal)

Peening)

2.2.13 £r ROSA III si fil^ o.s.

6

Configuration)* # 1 W . 20,000

^ O . T ^ 30 Kg °11

. 4

^ VME «l^^-5l CPU il^Sl- t ^ o ] j/O

etfs} 7lHV ^5] ^cHAli^AS.-?-Bl ^g^

Ethernet* f-*H «>^^°> ^r^^-^-sl 5 . J £ ; E # ^H«1-JL 1 A ^ tfl

. ^ ^ t } 4 . ^ ^ 2.2.14

2.2.15 fe

- 44 -

2.2.13. ROSA m

Fig. 2.2.13. ROSA HI

2.2.14. ROSA HI

Fig. 2.2.14. ROSA m Controller

- 45 -

2.2.15. ROSA HI

Fig. 2.2.15. ROSA HI Supervisory Controller

- 46 -

1.

71-«

71 .^.

RS-232C

1 MRad

- 47 -

2.

>. 7fl JL

3807113

. a 3.1.

i 3.1.1. ££HeK

Table 3.1.1. Inspection of Calandria Face

- 2l7l] 3 : ^ ^ 7l«H«h^ ^ ^^ r -fr# ^^

- 48 -

M-.

5 3.1.2. 7 1 ^ ^ ?!

Table 3.1.2. Kinematic Design Criteria

- ۥ ^ 4 : feo] 2m4 1.5m

- * ^ - 4 : ?idl 25cm3- 75cm

7l^3«?! -8-41

- #o} A] 4^^ : 8m 4^1 ^- #°) 8m ^-^^1 °1^3.SLIM

3.1.3

^(Seal)

3.1.4

, S. 3.1.6

- 49 -

3. 3.1.3.

Table 3.1.3. Radiation Damage to Parts of Motor

71 71 ^

Brush Holder, Linen-filled phenolformald

Brush Holder, Paper-filled phenolformaldGrease Seal, NeopreneGrease Seal, Buna-N

Grease Seal, FeltInsulation tape, Rubberized ClothInsulation tape, Polyvinyl chloride (PVC)

Insulation tape, Natural RubberInsulation tape, Teflon-coated fiber glassInsulation tape, Fiber glass and silicone resinInsulation tape, Acetate clothInsulation tape, Buna-N-treated fiber glassEnd Punching, Teflon-coated fiber glass

Slot Insulation, Teflon-coated fiber glassShaft Insulation, Fiber glass melamineShaft Insulation, MylarShaft Insulation, TeflonShaft Insulation, Mica with shellacShaft Insulation, Mica with MylarShaft Insulation, Paper-filled phenolformald

Shaft Insulation, Asbestos-filled phenolformaldShaft Insulation, Kel-FShaft Insulation, Fish paperShaft Insulation, Varnished cambricShaft Insulation, Polyvinylchloride

Shaft Insulation, Cellulose acetate

25% a l ^ E *

(Rads)3E6

8E66E64E6

5E65E6

1.2E8

2.6E73E45E8

1.6E74E63E4

3E46.4E71.2E8

3E4

4E71.2E8

8E6

5.3E81.7E7

5E75E6

1.2E81.6E7

- 50 -

3.1.4.

Table 3.1.4. Radiation Damage to Wire, Relay, and Connector

Wire Insulation, Teflon

Wire Insulation, Formvar

Wire Insulation, Fiber glass and silicone resinWire Insulation, NylonWire Insulation, NeopreneWire Insulation, PaperRelay, Switch base, Asbestos-filledphenolformaldRelay, Switch base, Unfilled phenolformaldGaskets, Buna-N rubberGaskets, Hycar-PAConnectors, PolystyreneConnectors, Polyethylene

25% *l*8£-t-^ *&*}$.<$

(Rads)3E4

9.7E7

5E84E66E65E6

1E9

1E7

4E63E66E99E7

3.1.5.

Table 3.1.5. Radiation Damage to Resister, Capacitor

71 71 JjLf-

Resister, Carbon composition slug

Resister, Carbon composition film

Resister, Metal filmResister, Carbon filmResister, Oxide filmResister, Wirewound on ceramic

25% a l 'gJE*^ f e *&*}£<&

(Rads)1E71E8

1E111E91E6

1E12

- 51 -

71 7] ^ g -

Resister, Wirewound on epoxyResister, Film potentiometerResister, Wirewound variableResister, Film variableCapacitor, PaperCapacitor, CeramicCapacitor, GlassCapacitor, MicaCapacitor, PlasticCapacitor, Tantalum slug, wetCapacitor, Tantalum slug, dryCapacitor, Tantalum foilTransformers, relayQuartz crystalFoil-clad laminates( Printed Circuit Boards )Connectors, Duroc ceramicConnectors, Melamine plasticSilicon varnish insulationVarister, SiliconVarister, Selenium and copper

25% a i 'SH*

(Rads)1E9

1E71E91E7

1E7

1E101E101E91E71E7

1E91E7

1E91E7

1E7

3E8

3E8

1.4E91E91E5

- 52 -

S. 3.1.6. ^<2 ^

Table 3.1.6. Radiation Damage to insulating materials and

Elastomers

7} 7} ^f-

Silicon-treated MicaSilicon-varnished glass fiberPolyethelyne

Mylar

TeflonPolyurethane glass fiberPolyvinalchloride ( PVC )PolystyreneBakeliteEpoxy resin

Glass-bonded micaDiallyl PhthalateNylonNatural rubberButyl rubberNeopreneViton A

Silicon rubberBuna-N

25% *l^:£-&

(Rads)1E71E71E7

1E71E4

1E81E51E81E81E4

1E8

1E81E51E61E61E61E71E61E5

- 53 -

Air Lock AS.

(5)©

- 54 -

3.1.1. 4 ^ *>H (I)

Fig. 3.1.1. Task Procedure (I)

- 55 -

vwrK3.tif

% 3.1.2.

Fig. 3.1.2. Task Procedure (II)

- 56 -

3.1.3.

Fig. 3.1.3. Task Procedure (m)

- 57 -

3.

7\.

nfl-f

s 7

- sis.

- 58 -

Transform* HonBaiw«en

Re»! and Vlrlual Worlds

3.1.4.

Fig. 3.1.4. Configuration of Robot Simulatior

- 59 -

5fl4.

• &

4.

rcj-e}-

5H4.

- 60 -

(c )

(b)

(e)

3.1.5.

Fig. 3.1.5. Robot Configurations while performing obstacle climbing

- o>efl 75cm

3.1.64

- 61 -

(a)

(b)

- 62 -

(c)

(d)

3.1.6. *

Fig. 3.1.6. Ditch passing simulation

- 63 -

(a)

(b)

- 64 -

(d)

3.1.7.

Fig. 3.1.7. Inspection simulation using camera

- 65 -

4. SJiS

SU4.

7flfo|

3.1.8

- 66 -

3.1.7

( 1 Mrad

fe 1 Mrad

a 3.1.7. 4^] 4#

Table 3.1.7. Radiation dose limits of materials

Material

Carbon steel

Alumina

Silicon rubber

Precision rubber ( O-ring )

Copper OFHC

Nylon

Iron

Radiation dose limit ( rads )

109

10"

10B

5 X 108

2.2 X 10"

10b

2 X 10"

- 67 -

3.1.8.

Fig. 3.1.8. Grobal architecture of mobile robot

- 68 -

S. 3.1.8. 3.SLS.

Table 3.1.8. Specifications of mobile robot

°1 * *

( ? W ^ Pan/Tilt )

7) ^

^ ^ y ^

Arm^ 2.71 ^o]

& *

1 «

7>^^ a.sel-

350 mm

70 Kg

400 mm

1,300 mm

M,M7H;SHf7lr i

500 mm

15 ea

1.0 m

8.5 m

14 Kg

±70°

200 mm

3.8 Kg

S.El,7l<H (Pan, tilt)

87.8 Kg

1.8 m

9.5 m

- 69 -

7\.

o\ 25 cm ^

kg, *fe«l 180 cm

S 1 S 7 } o] ^ -^ -^ f-Jij- 1- nflofl SJSLS

3.1.9 fe 75

Ulllllllllllllllllllll/llllll

I1iiiiiiiiiiii''mil 'inn

- 70 -

—f

WIIIIIUIIIIWI'Illllllllllllllllllllh

i—COIllllllllllillllr/llll,

3.1.9.

Fig. 3.1.9. Mobile robot's ditch passing sequences

- 71 -

DC

€ • § •

±90° 3.

5a4.

, 3.1.11 £

7} 3 3 € ^*«^I -S--MIEO14. a 3.1.9

3 L 1 0

3.1.12

- 72 -

•§-*«3.1.10.

Fig. 3.1.10. Configuration of mobile robot and its driving motors

3.1.11.

Fig. 3.1.11. Details of flip-type arm

- 73 -

3.1.12.

Fig. 3.1.12. Details of driving wheel

- 74 -

3. 3.1.9.

Table 3.1.9. Specifications of Mobile system

Track size( mm )

Maximum width

Height

Length

Maximum

Normal

Minimum

Weight ( Kg )

Power sourceBattery

AC/DC converter

Vehicle speed ( mm / sec )

Mobility

90° Turn

180° Turn

360° Turn

Slope climbing

Slope travesing

Stair climbingSlope

Turning area (mm'')

Pass through door way ( wide )

Ditch crossing ( mm )

Railroad track

4 €

430

760

1400

1140

760

110

Two 17 AH ( 12V )

120 VAC/24 VDC

0-400

YES

YES

YES

45°

35°

45°

910

460

610

ALL

- 75 -

I t

Pan/TUt 3 3 # * l x r Extendable

40

10 kg o}^-ol s ] ^ , ^l-S-5.S-fB) 9.5

361 5^4. «*f) 7fll&^?l Extendable arm5l ^?fl &%°] 5 kg A

5 kg

5,000

CCD

CCD ^ " f l ^ ^ 7>^^ AI^OIJA^ ef 100 ^

1-^rflalfe 50

109 rad^Ai i

^H^> ^«J CCD

Krad ^A^ CCD 7\

- 76 -

^ 4451

^ DC 24V 4:3 3.^ ( KM3429A

97:1 ) * ^ l ? b ^ ^ 1 ^ ^ : Al~8-*|-5a4. ^"fl^fe WAT-308A

MOTORIZED ZOOM CCTV LENS ( SSL 06072G ) *

->M|-*H ^ ^ 1 * 44^«H a i * } i ^ ^5*4 . Tilting

Tiliting^] ^ ^ ^ H ^ ^Ajzl-o. ±70-71-

3.8 kg oltf. n ^ 3.1.13

- 77 -

3. 3.1.10. CCD

Table 3.1.10. Specifications of CCD Camera

CCD

Horizontal resolution

Minimum illumination

Lens

Fountion

Operating temperature range

Power supply

*fl «1/3 inch, 280K pixels

400 TV lines

0.05 lux at fl.4

CS mount

Auto electronic shutterauto iris

-20° ~ +40° C

12V DC ( 140mA )

3 3.1.11. 3 ^ §• CCTV fcs]

Table 3.1.11. Specifications of Motorized zoom CCTV lens

71 ¥

Model

Focal length ( mm )

Aperture ( F )

Mount

Max. format cover

Filter screw size ( mm )

Dimention ( mm )

Weight ( g )

Zoom

*fl «

SSL 06072G

6.0 - 72

1.2 - 360

CS

1/3"

M49.0 P = 0.75

62.0 x 69.0 x 74.1

600

Mot

- 78 -

3.1.1.

Photo 3.1.1. Camera Pan/Tilt assembly

Photo 3.1.2. Attach/dettach machasm of camera Pan/tilt

- 79 -

3.1.13.

Fig. 3.1.13. Drawing of camera Pan/tilt

- 80 -

( Extendable arm )

(1)

«• «W

-3 7]

Telescopic arm, Telescopic antenna, Extendable

antenna, Mast ^ cf^tb ^ ^ A S . ^s^ 7\j\ ={•%

sx

Si 4 . ^ ^ 3.1.3 ^r REMOTECA}o?M 7fl## Surveillance robot <>1

iL^^cf. n ^ 3.1.14

, 3.1.15

- 81 -

3.1.3. ««

Photo 3.1.3. Surveillance mobile robot of ANDROS CO

- 82 -

(A-type)

TMM&1SS

HOX-555(B-type)

3.1.14

Fig. 3.1.14. Crank-up tower of variety style

- 83 -

(A style)

m

(B style)

3.1.15. 3.$3. $ ^ ^ ^ A}^- ofl

Fig. 3.1.15. Use example of crank-up tower

- 84 -

(2) 7H1S-

2 kg

3.2 m

kg^l

SEAL

4.

- 85 -

13) 3 # eJS.7]- 75 mm

3 # ^

Power supply!- *}-8-*H ^^^" ^"^ ^ r XlH - ^7fl«|-Sft4.

3.1.12 fe Extendable arm S.S.S,^^ ^Tfls] $#•&, D.% 3.1.16

Extendable arm 5S.£^°J2] ^^1 ^-^JE* 4 ^ 4 . A>?1 3.1.4

Extendable arm 5] ^ f i a ^ * | « ! 1 ^ fl^7l<H

4^! 3.1.5 ^ Extendable arm

- 86 -

3. 3.1.12.

Table 3.1.12. Specifications of Extendable arm Proto type

<>1* #5L

400 mm

1,300 mm

250 mm

4

elJB 75 mm, 3 # 4 ^ 1 -

50 : 1

0 — 75 mm/sec

- 87 -

.yfm^A.

•:rf

U^S

Mt*>

'.In

-r

n_

" ROBOTIC SYSTEM

3 ^ 3.1.16.

Fig. 3.1.16. Drawing of Extendable arm Proto type

A}*! 3.1.4. Extendable arm S

Photo 3.1.4. Transmission part of Extendable arm Proto type

- 88 -

3.1.5. Extendable arm S

Photo 3.1.5. Total view of Extendable arm Proto type

- 89 -

(4)

Extendable arm

51 ^

42, 43,

5 c m

end cap

5 c m

- 90 -

3.1.17 ^r 4 ^ i # ^ V4S.& M-^-ifljl, ^ ^ 3.1.18

3.1.19 fe M ^ i

.L : BRONZQ.Ty : 1 EA

1 /

\ -UJILAS.

ffiWTK

3.1.17.

Fig. 3.1.17. Details of screw

- 91 -

3.1.18.

Fig. 3.1.18. Drawing of locking machanism

- 92 -

3.1.19. ^

Fig. 3.1.19. Nut transmission sequences at screw

- 93 -

5.

7\.

Local Site^ £ ifl«ifl fe Remote site^

3.1.20^

i — , ,—•t_t-.t^-*—~*?a>k

3.1.20.

Fig. 3.1.20. Global architecture of control system for mobile robot

- 94 -

7}-

^-o) HTRI ^ Human Tele-Robot Interface )

JiH, ^1-fi, ^

fe HTRI

o]

l i , ^31) 5 > 71

3.1.21.

Fig. 3.1.21. The architecture of supervisory control system

- 95 -

v V » F I MI «• I .

:r—\i rannlng

3.1.22.

Fig. 3.1.22. The main function of supervisory control system

- 96 -

Dolch 4^1 27fls] Pentium III- *}-§-£}jl 10 #*- i - %# 7}

°1 ?l-€^: Rugged Megapac Potable Computerl- 4-8-*FSi4.

Window NT1- 4-g-^f^^, Visual

RS-232C 3. RS-232C

3.1.23.

Fig. 3.1.23. The Design of supervisory controller

- 97 -

INTEL 8051^

lMrad

S 4-8-^

a ] ^

UTMC

5962H563801QQX

T^fi]

fe -f

- 98 -

(1) *d*HM-£| « * K 1 A &

lMrad °]^ tflHM-SJj- o]^siLS^I| ^ <£^r # 3 . el 4

ANDROS

S ANDROSi ^ - § - ^ 7 ) ^ 4 -frAyisH 7]

-s. 60

711 fe CMOS ( Complement Metal Oxide Semi-

conductor ) ±*\m # £ 7)-^# ^-fe u ^ l ^ ^ ^Hfol^sf JFET ^

^ COTS ( Commercial Off-The-Self )•& ^

(2) M

Safety System °H^ olc] ^7flAH Redundancy^ Diversity

61

71 ^^-ofl ?g7l^A> 71 # ^ 1 7141

- 99 -

i*c

S051

SSBBBBS?

Mem or]

Drivers

D/As / >

a) Dedicated Control Subsystem

3051

Mem or 3

b) Dedicated Data Acquisition Subsystem

3.1.24.

Fig. 3.1.24. The basic function of controller

RS-232C )• W.

- 100 -

vc

8051

MemoT

1 «"' JL

JOJL

1

1 ..../

TDt

b) Data AcqvititiDii SuBisysteMwith Emergency Contrel Bat k ^

3.1.25.

Fig. 3.1.25. The fault tolerance function of controller

Redundancy D/A

Diversity

3.1.26

Redundancy^ Diversity

- 101 -

3.1.26. n°m tm^f-S] Redundancy^ Diversity

Fig. 3.1.25. The redundancy and diversity of data acquisition system

- 102 -

6.

7\. 71) -S-

(master manipulator)

robot)*

Environment

Communicationblock

3.1.27.

Fig. 3.1.27. Block Diagram of Tele-operated System

- 103 -

313 ^ ^ 1 ^ ^ 313

, 7>

^Ji(vision information)^

*W

SI71 nfl£

171

7}

71 el

313

, 5E«-

- 104 -

M * 3}

. 01

814.

•§• 5 7>

AS^ 6]

- 105 -

(spring-damper) H<H $14. el

3^ aoli

5a 1 #±

x ^ ( y

x ^ , y

l ^

DC

3.1.28.

Fig. 3.1.28. Section-Drawing of Designed Joystick

- 106 -

X ^ , y

ffl71

71S]

(3.1.1)

- 107 -

F, :

Fx : S<>1

Fy : ^ 1 ^

ns : ^1^1 1] (sensor beam) 5]

fc?,2 if d^poF ,= (3.1.2)

10 otherwise

I X if , ^

(3.1.3)sgn(x) • Xmax otherwise

oj nfl

p0 : ^ ^ t i . ^l£-f(active window)^

f-^r(saturation function)^)

(3.1.2), (3.1.3) $ zl- S!^!-

- 108 -

DC

3.x]

Mobile robot

3.1.29. ^

Fig. 3.1.29. Force Reflection Method

Coulomb^ Dfl-f

^ s K e l e c t r i c point charge)^

^ (3.1.1)*

i sc^-^s l (spring-damper)

- 109 -

re=JT(q)F (3.1.4)

KQ) '• *}.2Ul<y- *|l(Jacobian matrix)

Q : ^ J U M 4

(3.1.1)

DC 2Z.E}

(3.1.5)

- no -

(1)

3.1.30.

Fig. 3.1.30. Photograph of KAEROT

2.$) ^ ^ 7 l f e 3.7\] 4

SLS)

- I l l -

(a)

A/Dpart

\

\

1 1Joystick

with 2 motors

VxWorks

t\ f

LAN module

>

Visual Display System(UNIX environment)

D/Apart

/

(b)

3.1.31.

Fig. 3.1.31. The architecture of global experimental unit

- 112 -

ziafl^ 3-SH ^ 7 ] ^ - UNIX ^9M^(workstat ion)

3 ^ 2:*l^eW JMfr€ DC

(real-time OS)?1 VxWorks7|- A)-g-s]^cf. ^-«| o ]^^ - VxWorks^ i-ilS.

^(network) 7 ] ^ # Hfl-*hai ja^-^, A

3.1.31^]^

(2)

3-A

XI4.

fe 4-8-4

- 113 -

J <\i-

B

3.1.32.

Fig. 3.1.32. Simulation results

^ kF

3.1.32^^ M. ^ ^ - . o ] A 4

1- ^ 9X4. ^leitb A ^ B

B

^ ^ o ] 250-5-5.

*}

350

- 114 -

KAEROT^ll

(3)

PC

3.1.33. PCS] flJE-f

Fig. 3.1.33. Force reflection controller in window environments

- 115 -

3XA

7}

75cm

71 -

- 116 -

2 ^ ^

1.

(Control rod driving mechanism penetration)

sis.

- 117 -

PC 7ltiV°}

2.

^71^71

"F"

- 118 -

62.81 1/4

16

^l 3 7

S-iiSS. ZETEC 4 3 SM

Kg «fl

Westing house 4^1 ROSA IH «>14. ROSA m

o] yq 6.

- 119 -

S.iLS7l-

3.2.1.

Fig. 3.2.1. Conceptual design of a robot installation into the S/G

- 120 -

X-Y

5)71

4. 3

(1)

fe 6

Base-Shoulder-Elbow- Roll-Pitch-Roll *1)?m#-§-

3.2.2

4-g-

- 121 -

e robotl.tif

J ;

robot2.tif

L

II

3.2.2. S.^.E.2

Fig. 3.2.2. 3D graphic model of robot

- 122 -

(2) ^

3.2.3

"F"

% 3.2.3. ^ 7 l ^ ^ 7 l ( i « "F" ^ ) 3

Fig. 3.2.3. 3D graphic model of the S/G(model "F")

- 123 -

(3)

1. 2

3.2.4. Q*}£. *flJ= 3

Fig. 3.2.4. 3D graphic model of the reactor head

- 124 -

-. 3

3X7)

•§-

• i -

3.2.5 fe-

3.2.6 ^

3.2.7

- 125 -

3.2.5.

Fig. 3.2.5. Kinematic specifications of the conceptually designed robot

- 126 -

e ro:

e_robot 6

3.2.6.

Fig. 3.2.6. Graphic simulation of the S/G inspection/maintenance tasks

- 127 -

3.2.7.

Fig. 3.2.7. Graphic simulation of the reactor head

inspection/maintenance tasks

- 128 -

3.

B.^ <$ 20

400 mm

7}

71^-

©l-g-*|-5a4. ^ ^ ^ S-JiSS] 71^-

^ Denavit-Hartenberg

3.2.83J-

3.2.14

- 129 -

Lz Ls

3.2.8 3.J5LS. «|Fig. 3.2.8. Basic structure of robot

S. 3.2.1. Denavit-HartenbergTable 3.2.1. Denavit-Hartenberg Parameter

1

2

3

4

5

6

e0 i

02

03

04

05

06

d

0

0

0

0

0

u

a

Li

L2

L3

U0

0

a

90'

-90°

90°

joint type

revolute

revolute

revolute

revolute

revolute

revolute

3. 3.2.2. S.S.E.Table 3.2.2. Robot link lengths

#fl mmLi

200

L2

680

L3

470

U175

U240

U109

- 130 -

Denavit-Hatenberg

71 =

71 =

T4 =

asi00

C3S300

C5S500

0010

0010

SI-a

00

-S3 0C3 00 10 0

S5-a

00

LL

LL

01001

\C\.iSl01

3<33S301

T\ =1 2

T3 —4

j5 _6 ~~

rc2S200

aS40

. 0

C6S60

. 0

~S2(200

00

- 10

-SSC600

0010

Z,2(

L2S201 .

-S4 L4aa00

00I0

L4S401

010

L51.

C1S6S234-C6S1S5 + C1C5C6C234 -aOBS234+5155SB-ClC5C2345BSlS6S234 + C5aBC234Sl -aS5SB-C6SlS234-C5C234SlSB

C234SB+C5CB5234 C6O34 - (3SBS2340 0

-C1C5 + C234S1S5S5S234

0

3

L,Sl + L2C2S[ + Z.3C23S1 + L4C234S1 - L5QCS + L5C234S1S5L2S2 + L3S23 + L45234 + L5S5S234

1

- 131 -

Jacobian-i-

— L : S I - L2asi- L3ae-Laaa fl)sss LS

3 4 4

- «)S2S5 + L5aC255S34 - L5QC(fl - «)S2S5 + L5aC2S5S34

- / 3 ) -+ L5aC3S5S24

5 = - L5 S1S5 + L5C1G1C5C( (2 - S) + L

, 2+L5 a a a e -= - L2S1S2 + L3SIS( - a + S) - L4aB - fl)SLS2 + L4C2SIS34

a )7 23 = -3 S1S(Q - & - L 4 a 2 - «)51S3 + L4C351S24 - L5C( fi - «)S1S3S5

+ L5C3S1S5S24

4C1S1S23 - L 5 a 12 - S)S1S4S5 + L5aS155S23

25 = -

7 32 = L2 C2 + L3C23 + LtS4S( - 2 + B) + L5aC23S5 + L5S455S( Q. - 8)

J % = L3 C23 + L4aC23 + LtSiS( Q - B) + L5CiC23S5 + LSSIS5S(, Q. - fi)

7 ?4 = L4 C 4 a C - 6) - L4S4S23 + L 5 C4a C - fl)55 - L5S1S5S23

71 ; = i - s « C5S23 + L 5 C5a fi - B)Si

— a 7s5 = -SlS234 7ss — QC5 + C234SIS5

- 132 -

tb

7]-

3.2.9 ^

3.2.1H

3.2.10i 2, 3, 4, 5

3.2.9.Fig. 3.2.9. Section view of 1st driving unit

- 133 -

3.2.10. 2, 3, 4,Fig. 3.2.10. Section view of 2nd, 3rd, 4th, 5th driving unit

3.2.11.Fig. 3.3.11. Section view 6th driving unit

- 134 -

a 3.2.3.Table 3.2.3. Mass property of links

\

1

2

3

4

5

6

Pe(mm)

1794

1659

856

466

324

104

^ #(Kgf)

59.0

37.6

26.8

16

12.2

7.6

(m)

0.725

0.973

0.415

0.190

0.084

(-)0.085

(Kg.m2)

54.28

43.52

6.207

0.742

0.169

0.013

Radiusof

Gyration(m)

0.959

1.077

0.481

0.215

0.118

0.041

^ $(Kgf)

84

62.6

51.8

41

37.2

32.6

f^(m)

1.043

1.247

0.628

0.358

0.245

0.06

(Kg.m2)

134.7

112.3

24.53

6.171

2.793

0.283

Radiusof

Gyration(m)

1.266

1.339

0.688

0.388

0.274

0.093

SJSLJM

£-2-351

(1) SSS

- 135 -

3.7)] Newton-Euler^$ 4

22.^3 Newton-Euler^^^cf

Lagrange-Euler»9-^-ir

(2)

- 136 -

1=1 ?* (3.2.1)

3J11- M.#(interpolation)Sr

^ * l - f l ig-?>^(Linear Interpolation with parabolic blends)

di+v,4.

ai=q,{tk),

Ci2tb

Q,itk) + Qj

tkt<. tk+ltk+l

Vitk+1 + g,( tk) - g,( tk+l) + 2tb[ (dq t{ t k - j ) - vt]

(3.2.2)

3.2.12 ~ ZL% 3.2.14^

4-3-4

4-3-4

- 137 -

(3.2.3)

(3.2.4)

~ao, d2,

af,

C=

1

0000

14//,\2/i{

0000

0l - / f i

01

l/t200

00

— 2/A1

2/t2

21A0

00

— 2/*21

3/*26 / |0

0000

— 3//.6/*i

1

0000

-12/1- 1

(3.2.5)

- 138 -

3.2.12.Fig. 3.2.12. Joint angle path interpolation

3.2.13. 3 3 ^ 3 33.Fig. 3.2.13. Joint anglular velocity interpolation

na

3.2.14. ^ ^ z ^ - ^ S . ^ 3 3 .

Fig. 3.2.14. Joint anglular acceleration interpolation

- 139 -

(3)

£-3 , harmoinc drive

Simulation 1 :

Simulation 2 :

Simulation 3 :

A

margin^

3.3L 3.$)

3.2.16^: SJiS.

- 140 -

S. 3.2A. ^ l l re iH^ £ 4Table 3.2.4. Results of the simulation

• — — — _ _ _ _ _

Simulation 1

Simulation 2

Simulation 3

1 max

Tav

Tea

Nmax

Nav

Imax

Tav

Tea

•IN m a x

Nav

•1 m a x

Tav

T«,

Nmax

Nav

1 ^19

11.42

7.351000

533

24

138.2897

48035

12.2

6.9

1097361

2 #

573

428373

4160

1323

567

407

34222001190

581404

316

4080581

3 ^229

153

1082852

700

314

291

160625333

232177

143

31251060

4 ^

74

54

452500

1133

48

28

151196302

5943

33

1501889

5 ^

1.85

0.970.97

0

0

3.51

2.05

2.050

012.14.7

4.7

00

6 ^-

-

-

--

0.31

0.2

0.1827001440

--

-

-

-

3.2.15.Fig. 3.2.15. Assembled view of robot

- 141 -

3.2.16.Fig. 3.2.16. Outline drawing of Robot

- 142 -

4.

, q) + FV +FeKq) + G(q) + Td=i (3.2.6)

(3.2.7)

(3.2.8)

= q'lt)-q(t) (3.2.9)

(3.2.10)

^(3.2.5)1- 4^1

(3.2.11)

r) (3.2.12)

w=M~lra (3.2.13)

- 143 -

(3.2.14)

^(3.2.12)

(3.2.15)

computed

[Nonlinear inner loop

-& M(q)

NLinear system

Robot Arm

Outer loopfeedback

3.2.17. Computed S.SLEL *\}°\ 1-^- tFig. 3.2.17. Block diagram for computed torque

q.q

- 144 -

0.2 - 0.3

m/sec

kinematic

fe- PID

Ziegler-Nichols^i

3.2.184

DCS>

^ ^ 3.2.18. JointFig. 3.2.18. Block diagram for joint control

N :

J :

R : [Q]

E. [Kg.m2]

- 145 -

L : 5^3}

KT : SSL=

KE : W -

B : 3-^5

KP : Hi $ <

D : ^ 3 £

°J^€^ [H]

l ^ v ^ [N.m/A]

^•^r [V/rad-s"1]

^ [N.m]

< » 1 ^ K D

()

V(s) ~ (sL + R)(sJ + B) + KEKT

PID

= C1(s)0d(s) + C2(s)D(s)

+ Kps+Ki)KT

n(Ls2 + Rs)( )JLs4 + (JR + BL)J?+ (BR + KEKT + KdKT)s2 + KpKTs+ KdKT

- 146 -

5.

A.

Goertzsf Chatten^r «14-2-

« •

fe 4 «l^]a) LCD* #•& HMD (Head Mount Display),

flf}- 6 * H r £ ^ electromagnetic

3 -g- ^a

HMD*

- 147 -

3.2.19.

Fig. 3.2.19. Sketch of Virtual Reality System

Winey fe Argonne E-2 « f i

NASASl Arms Research Center <HMfe

Wright-Patterson Air Force Base Aerosj)ace Medical Research

Laboratory <^Hfe ^

- 148 -

7) F. Brooks

c»l controller)

tfl-g-O]

5d711

7}

- 149 -

Indigo2 4H T ^ W 1 } . °1 3 ^ 3 ^ 64

bit ^ ^ 1 R4400 CPU1: ^ ^ * n^3.^-(desktop) =LA^ *}±?iSL3.

24 H|E z

1248 X 1024^

*H(primitive object)

(1)

Toolkit Bl-ol «.

- 150 -

3.2.20£

widget^-

4 . DrawingArea widget^ 2

OpenGL

asfl^i

DrawingArea widget^-

GLwMDraw widget-i-

widget £

fe. DrawingArea

GLwMDraw widget *1 5U

f. X

x

widget^l

widget SLS. GLwMDraw widget

PushButton

A ^ OpenGL

loplevel-.TopUvelshstl I | mainframe: Frame j j malnfornv/'orru I

! l|| |conir-oi| |vie»mQ| |~fi i f~l Idesign] | editI

mainmenu: Form

systemmenu: tfenuBari

subfornv Form

1

3.2.20.Fig. 3.2.20. Configuration of window

- 151 -

(2)

(71-) 2 ^ 3 21-3]

cfl^-l-(component)

(SoUd, Wireframe) % ^%$ v]^^^o] ^^( 7}

Boolean ^^(Union, Common, Substract)^

^^-^(assembly)

^ ^ r 71 ^

21- : 2 ^ 3 £15] >d| - >a^ gj 7H2(visibiUty)

- File 2 1 - :

- 152 -

- Place S.f- :

fe 3-D geometric modeling

- wireframe modeling

- surface modeling

(D polygonal representation

(2) parametric representation sculptured surface)

- solid modeling

• wireframe modeling

2-D 3h& 3-D -&^1« ^ £ 3 %n&^2. M- flfe ^

ty$± 7\% #£?>}A #^J11- q-^iflfe ^'goiq-, 3-D

• surface modeling

°] 3-D geometric modeling ^ ^ - S - 3.7$ polygonal representation

- 153 -

parametric representation-5-3-

polygonal representation : <=>1

polygon^- °l-g-*M **I|S] a ^ - i - H-EhlM 3*}

parametric representation or sculptured surface

representation : «1

B-spUne, Bezier

curve, cubic-spline-^J1)- ^ ^ r parametric curvesM- surfaces

solid modeling

solid primitives* 6l-8-*M

B-rep(representation) :

B-rep^8: solid object^ ^ ^ 1 S T 2 -^* ! -^ faces, edges,

and vertices!- °l^-«>^ - i - ^ 1 * M - ^ H E 4 .

CSG(constructive solid geometry),

CSG 7 l^^ r solid primitives^ Boolean operational ^

sweeping

sweeping^ ^ ^ ^•'H^l ^ S . # tyty point, curve or

- 154 -

surface

5.JSLS*

(assemble)sM

(Wire)

- 155 -

A

boolean

typedef struct {int id;char *name;int asid;

int type;float prop[3];

int color;int fill,"char visible;float rp[3],"float rx,ry,rz;int *nvof;int np;float (**vtx)[3];float (*normal)[3l;

*/} objectinfo;

/* coord, of reference point *//* rotation angles */

/* # of vertex in each polygon *//* # of polygon in the object *//* pointer of vertex vector */

/* normal vector of each polygon

- 156 -

"Display" 7)

"Palce"

71-3., , y, z)

71

A x, y, z 6.S

(y/2 > -MIS. >-y/2), (z

(x/2 > 71-3.

0)

7l^H7l(m , feet, inch, cm, mm)

4.

n x 3

"Control"

n

35

- 157 -

n

-51} ^ £ 3 o>^4 4 ^ 3 2

x n 7fl3 3 4 ^ ^.^-4 o}efl «.«. - s.^^€>7l ^ 2

4 )^ S M ^ 1 4 x n

"Control"

4. r SAS. £ M ^ ^ 3

>^ n 7fl3 -a- fl-S-S. i«^*|-5a4. °13 £ £ " ^ ^ S .2.

3 3 ^ * n o]2} *|-3 t ^21 r r n x ( n/2 +1) 7V

(4) Boolean

3.2.21 - ^13 ^ ^ boolean 3 # # iL^^3L 5U4. ^ ^ 3.2.213

(a)3 Q°] #^1 A3 **« B,

- 158 -

tun.

(a) (b)

(c) (d)

ZL% 3.2.21. Boolean <3#

Fig. 3.2.21. Boolean Operation

- 159 -

Boolean

3.2.21

3.2.22^

*

(dHr

3.2.22. Boolean

Fig. 3.2.22. Flow chart of Boolean Operation

- 160 -

B*\ s.^ 4 4 ^ 1

A5]

«• e]iE

B7>

Bl-

B7>

A,

37M

- 161 -

. 574

4.

- 162 -

5U4. o] ^ i L # s^} Ai^-5] P§^1 Bflfil §^6( 7 ^ 2 584.7)-,

$i4.

^4.

"assemble"

LasidH

- 163 -

rfl

Silo] A i ^

o.

link) %

«: r 584.

link)#

4

- 164 -

(3)

. Workcell

S.&E. ^fill- fl^ ^^-^(External Axis)

workcell^i

- 165 -

(4) 3 ^(External Axis)

typedef struct {char *comp",int jnt;struct component *extcomp;

} extjntinfo;

5a

4f. ^ 6

S A ^ 2 7fl *l3l^£ *fe ^ ^ #

i f C i wokrcelM- ^^ t j - j l T 1 ^ * B 3 2 Si^ ^ ^ ^ *><H S.S.

. c 7> 5.J5LE. End

6 ^ 3°fl 2

^ (a t t ach )

. ^ S-iLS. End effectoHl

7}

- 166 -

4. ##^^i 71 a

S-JiM-g- <>l-8-*M ^ ^ ^ ^ f l ^ l fl«fl>Mfe on-Hne^-

On-Une

3 4:7} 21

.7\?\7\

CimStation^l ^ e | A>-§-S1J7 ^[cf. o]

i

- 167 -

fe O]

7JIAJ.aJ.7l

(1)

3-8AH

line 2

3.2.23. -^

Fig. 3.2.23. Minimum distance between two straight lines

- 168 -

fe 4-8-4

( 1 - = o

= 0

input :

l : point A -

point B -

2 : point C -

point D =

(Xu, X2A, X3A)

( XlB. X2s, X3B )

(Xlc. X2c, XZc)

(Xu, X2D, X3D)

- 169 -

Step 1.

A =

A = %{Xh-Xicf -

(a) [ A = 0 or A = 0

m-, -f- segments ^

°] segment i parameter

Step 4 S. Jump 3M.2..

(b) [ A = 0 or A = 0 ]

m, ^ segment7]- 4

t - u = 0 -5.

Step 5 3.

(c) [ A ^ 0 or A * 0

(A A

f- segments7l-

(d) (a), (b),

Step 2

- 170 -

Step 2.

°\7

t 7}

ifif

AA-H Si =

S2 =

0<t< l $

f < 0f < 1

i(

t * ^1

11 $J

tt

~xic

M l

1*1 &-

= 0= 1

Step 3.

A

( i i )

Step

U7> C

Step

ol-§-§H

if a (if u >

4 5 . 7}>*

5 sL 7}*

01

.1*.

•1-5-.

M = 0M = 1

- 171 -

Step 4.

if f < 0 to f = 0if t < 1 f/^« ^ = 1

Step 5. ^ ^ step^l^ ^Q tty u&-& o]&m] actual minimum

distance!- ^

DD =

Xic- XiA

(2)

A "%"&<>] 5U4. ^ t i t ^ ^ - S 4-8-slfe ^ ^ ^ - ^ CAD packaged4fe #

polygon^-

vector cross product*

r

hidden line removal, shading ^ H nj-f -ft-8-

172 -

3.2.24^1^i

polygon6!

convex polygon^:

3.2.24. Convex

Fig. 3.2.24. Convex polygon

o]6\] 3.2.25°])^

polygon^

concave polygon^

3.2.25. Concave

Fig. 3.2.25. Concave polygon

- 173 -

convex polygon^}- concave polygon ^fl^-g- polygon •§• °]^-*)-(^ -2-

3 * } ^ £•*( 3 . ^-#sM3, convex object^ <$$$ ^ ^ 4 *<}•>£ 1- o]

ll concave object^

3.2.26«fl>H

. o]

Polygon 1

3.2.26. ^

Fig. 3.2.26. Minimum distance between two planes

- 174 -

( P - Q ) • ^ 3 is) ^-tf^ef = 0

( 1 - 1 ) • ^ 2^ H#**)Ei = 0

polygon *\°}2\ tt^Qo] 5- polygon

371 # £fe ^ polygon

r polygon^ S)^| e ^ ^ l f e convex and/or concave

«1^ global ^ ^ T l s l l - 0

Polygon-!- ol^-sV^ ^^1

polygonal ^-fi.S}4. # ^ l « e4*)-7l ^t!- polygon^

polygon 4 o l i | ^ i T l e l l - <»l .fe. ;g-§-

Polygon^ 1*11 5-A> s l 0 ! ^ convex object ^ convex object

71 ell- ol^Rr ^6.5.51 ^ e ^ l a . ^ i l s .S . &£•

Convex object 4 convex object

- 175 -

3E concave o b j e c t ^ global

t\ z\v]^5L y? #i(l|A>o]sl -rfl fl^|6|| i4e). global %

%SL3. ^ 5 - ^ - .SL=8-*M ^fetf. n ^ H S convex objects ^H 6 ! !^ S.

^ - ^ ^ . S global ^ i ^ e l l - 7H#sKr£fl o ] ^ . ^ ^ . j , . ^ ^ ^ . c o n c a v e

objectsfe aj-8-^- ^ Sicf. Polygon^] $]*% M-^-^^l concave object*

- convex polygon-!:

A polygon^ ^ ^ - i : 7\A^, ^ polygon £ £ ^

A]a 3*1*1 &^, polygonal

• zj- w|fil normal vector

polygon^ polygon 4°1^1 ^ ^ ^ e ] (local minimum)!- 3l#SM °1

- 176 -

3 ^ 1 7 E] (global minimum)* °l^Hr atf-g- #-&

polygon^)- polygon

4?qo))(convex ^ ^ - concave) #

polygon!- ol-8-^^i # c]

polygon*] ^ . 8 . ^ 4 . Polygon ^7> S°>^]^ polygon

polygon4 polygon

polygon

polygon^ polygon

polygon^- polygon

el l -

- 177 -

^( tolerance)*

distance < max. fewijtfft of Polygon 1+ max. /e«gt/& 0/ Polygon 2+ tolerance

distance : -r- ^

max. length of polygon 1 and 2 :

tolerance : object A ^ ^ ^ ^ ^ ^ ^ I 4 ^ ^ -£€-

"tolerance"

"tolerance"« tfl^lth^. o]i)- 7k

"tolerance"^ $±7]?)<>\ rfl^)4^^- nj) ^

"tolerance"^ ^nl

- 178 -

polygon-4 polygon * H ^ ^^)S.^-B\ ^4:^e | (global minimum)

f| A>oi^ ^ ^ T 1 e) (global minimum)^

normal vector 4 O 1 ^ dot product7]-

operation) 7 l ^ S } ^^^oflA^ ^ t f l ^ l ^ ^

^ 7 ] ^ ^ normal vector * H 3 dot product7>

W8 ?!)£} 3:1

(-)O)4. =LZ]l

fi2^\- vector

f^r ^- H- normal vector A}°\'

4 ( W2 ^ ^ »3 ^ ) ^ ^ ^ " ^

f j ^ dot product7> <g=(+)o]u}i

normal vector n%Q vector

isms («2 ^ 4 «, «W ^

5a^-4, ( n4 « 4 W8 ^)5] £

2} dot product7> -g-

A1fe normal vector

, ( «4 ^ 4 - «8 ^ )

v4^- dot product7]-

- 179 -

3.2.27

Fig. 3.2.27 Normal vectors and reference vectors

- 180 -

I) 4 7fls} 3**1 $ 0 . 3 . ^ € polygon^ 3-f (#z\% polygon)

2

2

2

» *

- , z

$•3. = (*<>. y

2

yo+3w2

2

=(*2 . to. *z

= (x. y, z)

H) m 71] o]^-^ ^ i ^ o . s ^ - y ^ polygon^

x ~

y =

z ~

- 181 -

2 : $• g £ | ^ fe m7fl (/ = 1 - m)

4

• normal vector

Step 1. set i — 1 (for object 1)

; = 1 (for object 2)

global minimum distance = positive big number

Step 2. H4 a i ^ t r a ! & ^ ^ # Normal Vector^ dot product7l-

if **H-)*lfc,

Step 3 5.S. 7>JL,

else if <a:ir(+)ol^,

Step 9 (ID 3. def-

end if

Step 3. 4

Step 4. "t

"y = object 1 # 2 ^ - o#ert 2

* «>H #^1 i c] (-J) 6)^ i- j) 2fe

Step 5. 4 ^ normal vector^)- ^ t f l ^ ^ . s . ^ 1s\ dot product7>

if **^(+) 6 1 ^ ,

Step 6 S. 7}3L,

- 182 -

else if ,

Step 9 (II) 3,

end if

Step 6. «*fl ^ iS

tmp_dist -

- <¥ ^ ^ 3 4 A

if (tmp_dist) < (tolerance) °1^ ,

Step 7 3. 7>JL,

else if (tmp_dist) ^ (tolerance)

Step 9 (II) 3.

end if

Step 7. ^<^M1 4^8-a- U J 4

I) 4 ^6j)A-l vector 1

y = object i

* -S-lfl^oi^fe - 1 71-

H) ^ ^<^14 search direction

s = v — \v n) n

* 1 # normalize

* n •& polygon^ normal vector

ID) search direction, 1 1 Kuhn-Tucker condition

if ¥ ^«H)4 II 5»2 = 0 <>1<S,

2) Step 9 (I) 3. ?>tf.

- 183 -

else

1) ^ search direction

2) Step 83.

end if

Step 8. (I) search direction^

(1) ¥ %&%*]

1) SN % S ^ # ^14fe search direction, s

2) 4 ^ ^ofl oj^. search direction,

4 .

(2) t l ^-£

1) ^-S^o) edge°11 ¥°lfe ^<>1|^t- °] edgel-

-I: T f!: search direction-5-5.

2) tftmgaiH search direction^:

a)

b)

c) ol^ol ^-cfl^i f-<8€ -fr ^14^ f-^€ edge

- 184 -

d)

#-§• $)$: search

(3) ^ #2:3W S ^ edge fl fl

1) ^-^^^1 ¥°lfe 4 edgel- 4 ^^1^1 4-g-

tb search direetion-S.3.

(H) ^4i^Ell- #71 3 $ 4-8- Ti

Step 7^ (3) 6.S ?>4.

Step 9. fl«H ^ ^ ^ # 2 : ^ 4 ° 1 ^ ^ i T l ^ l - ^^V^, o] 7 Hi7> 3*}

(I) update global minimum distance

if (global min. distance) > (current min. distance)

global min. distance = current min. distance

* ^ , ^ ^ %}QQ 2}4:7ie)(current min. distance)7r

7]s](global min. distance) J£tf *t°.&, ^

^ 1 : A>o|o]lA^ 3

end if

(II) update polygon number / and/or ;

(1) if (j < nt) °)^L i = j +

Step 2 3. ?>cf.

(2) else if ( ; = m) °)IL

if (i < n) o ] ^ ; = i

- 185 -

Step 2 3.

else if ( i - n)

Step 10 £.3.

end if

end if

Step 10. ^ »*|| ^l0!6!) ^ ^ *f\*\7\ ^§1-^ ^5] Step H>H Step 9

global minimum distanced %

-fe "tolerance"^.

- 186 -

6.

technology)

i^XHuman operator)^

, Slave manipulator)^

fe A12J-, $zj- f

(Input device)7> -S .^€4 . °)z\& <im%Z\^ ^ 4 1 (Master

manipulator) £•&, ^S.^-mi-e1(Handcontroller)Hl-

- 187 -

ifl-g-g-

71

^#<HM(Stweart platform)^ ^ »i

7)

(Replica type)3|- ^ - § - ^ (Non-replica type or Universal type)-S-S.

1:1

3 W(Joint-to-joint space control).

7|7>

- ^tWCartesian space

control).

Joint-to-joint

188

4.

• Cartesian reference framef*

I I S . 1-JE.S.

717114

1980

- 189 -

-g-o]

Cartesian control^

A

- 190 -

(Transparency)* £7\)?>}7)

of Telepresence)*

Transparency

Transparency

Transparency*

-i7||

JEfil Decoupling.

- 191 -

71

7>^(backdrivable)*

safe

- 192 -

(1)

£ ^ (Decoupling)^ 6^-fi-S.

i?lS(Wrist joint)S] Yaw,

Pitch, Roll A ^ l r £ : Gimbal

3.2.29^

DC

4.

^i^-Sr^-i- *l-fe- 1 Si^ ^(Z # ) ^ -Tflfe ^ I-(Counterweight)^

^5-^(Counterbalancing)* olf-Sfli^,

^^H-^r ^^#(Counterweight)4

l ^ ^ ) 3L

- 193 -

3.2.28. ^l

Fig. 3.2.28. Schematic of serial link handcontroller

J f l S H * 4s

- 194 -

Pitch

Yaw

3.2.29. ^%*%3.

Fig. 3.2.29. Kinematics of serial link handcontroller

(2)

- 195 -

3 3 tfl^o] l}-g-o|H

1 = 1,2,3)7}-

{2} {3}

(7J-)

Denavit-Hatenberg(D-H)

3.2.30^8:

4 . ZL^ 3.2.30^:

Q, 6 =0, 05= /2

^efl<y {0}£ ci-0 ^ n

(0), {1}

e ^ (2 , 3, 4, 5, 6)1-21

3.2.5^ ^ 3 : ^ 7 1 ^ D - H ^

a, . , , a , . , , rf,-, ^.fe AA ^3. length, ^ 3 . twist, 3:?]^. offset,

angle* ^ - E } ^ ^ , L3

3. 3.2.5. D-H £^r

Table 3.2.5. D-H paramerters

i123456

0-x/2n/20

ff/2

-n/2

ail

000000

di

di

d2

L3+d3

U00

0i0

n/20<^05

06

- 196 -

3.2.30. 1

Fig. 3.2.30. Coordinate assignment of serial link handcontroller

- 197 -

matrix)!-^- ^(3.2.16)4 ^<^|

(Transformation

2 r _3 1 ~

?T =

1 0 00 0 - 10 1 00 0 0

1—1

000

0100

0010

010d\1.

0-L3 - ,

01

iT = 0 0

o5 o 5

0 0- 1 00 00 1

,= cos(

IT =

IT =

5 r _6 -* ~

i=l,2...6

0 - 1 0 00 0 1 d2

- 1 0 0 00 0 0 1

c4 ~s4 0 0S4 C4 0 00 0 1 L4

. 0 0 0 1

0 0$6 C60 0

0 0- 1 00 00 U

(3.2.16)

(3.2.17)51

l i S.$<£ {OH S^°J {6}^

IT =55 CR

— C4 C5 C6 —0

"4 $6

S4 *6

— Si C 5 S 6

C 4 C5 SR-

0

~ C4

- stSi S5

~ C4 S50

L3 + L4 +

&\1

(3.2.17)

- 198 -

(0}°fl ^ 4] (3.2.18)4

Op 0 T 6pHandgrip 6 J r Handgrip

6 p

rp,Handgrip

L 3 + L 4 + fl?3d2

(3.2.18)

of

i= 1,2.3).

(3.2.19)^

Handgrip

(3.2.19)

r2Z r23

(3.2.20)4

- 199 -

d2 = Py

d3 — px — L$ — L +

di = AtarQ.(si, c.) for z = 4,5,6,

= - r1 3 ,

vl „ 2 r ~ r 1 2«5 ' " S5

(3.2.20)

g. ^ (3.2.17), (3.2.18),(3.2.18)4 ^o ) ^

3.2.314

- 200 -

3.2.31.

Fig. 3.2.31. Graphic simulation of serial link handcontroller

- 201 -

7<H3, 3^$ , 3^5. ^2Ul *fl*M -fro^-fr

. #^«(Stweart platform)^

71

^ 3 - ^ (counter

balancing)^ ^*S-H 4 ^ sfl^* ^rfe SiAi4 ^ ^ ^ - 7 l ^ ^ 5 - ^ ^ ^ l ^

71

7V

^ 4 . 2: 71^7)- ,

- 202 -

effector) 3 3

5U4. ^ ^ ^ - ^

3.2.32<H1

^^-g-7) (prismatic joinOS-H ^ - ^ 4 ^>^r 4 ° )

1 6-6

«f^:(base platform)i

- 203 -

4.

(1)

(7r)

A A

3.2.334

Basev

(a) General type

(T) Prismatic Joint©Hook Joint(3) Spherical Joint

(b) Merlet type

3.2.32. a ^ l m

Fig. 3.2.32. Comparison of joint alignment.

- 204 -

B4 B3

3.2.33. 6-

Fig. 3.2.33. Kinematic definition of 6-6 type Stewart

Platform.

^Jo] oj^cf. n)-5H

(3.2.21)4

(3.2.21)

- 205 -

3.2.34.

Fig. 3.2.34. Kinematic configuration.

(3.2.22m

= U«Vj • JJ + UiyVj • (3.2.22)

Viysy+ Vu

- 206 -

\K,

K4

an •••

nx

ny

sx

(3.2.23)

^UixVu , a&= UaViy ,^UtVi, , a6=UiyViy,

(3.2.23)4, n, s, afe

(14)

(3.2.24)S

n , S,

3..2.34

^ q (3.2.25)4

po7}-

A IF2-(Pax- Pay)2 (3.2.24)

(3.2.25)

(3.2.26)

- 207 -

(3.2.27)4

5^4.

(3.2.27)

(3.2.27)fe

df

(3.2.26)-!-

dt{2 (3.2.28)

(3.2.30)4

(3.2.29)4

MTM

MaMA3

MTM

M%,MM

MTm

MTm

MTm

Ml*MisMis .

\Px]PY

Pz<*i

a2

(3.2.29)

- 208 -

[Zlt Z2, Z3, Z4, Z5, £ 6 ] r : 6711

[ Px, PY, PZ, ax, a2, az]T : end-effector^

MAI MA2 MAZ MM MAS, MAS

MB\ Mgi MB3 M& Mfc Mg&

^ el (Twist)

(3.2.30)

. 2

(fori=l.-,6)

- 1

2 M23)

(fori=l,-,6)

= — S2 C3f/i(+ Si C2CzU

= -C 2 S 3 ^ - (S 1 S 2 S3

= (Ci S2S3 — 5i C3) £4,

z==~ S2S2 Ua + Si C2S3 f/

- 2PBiXPuiX-2PBiYPuiY)

- 209 -

(3.2.30)«»ll W£2) « el (principle of virtual work)!

^ safe^l, °lfe 4 (3.2.31)31-

(3.2.31)

M=[i, mV : end-effector^l ^ ^EKwrench)

3.2.35-H1

^(singularity)*!-

- 210 -

(2)

Merlet^ ^ ^ ^ ^ . 1-^f-^r 71^-

3.2.35.

Fig. 3.2.35. Design parameter

7]=?7} ?- #o|3(singular paint) 4

a]- (Dexterity Index, DI)^

°1 jej- sj-ig jfi] z^ 1 (column)^,

-id

- 211 -

(3.2.32)**

-SOI -S06.

(3.2.32)

A *

A±JTAJ (3.2.33)

(3.2.34)4

(3.2.34)

JL-fh^(eigenvalue) . V * °l-g-*r

(3.2.35)

^(reciprocal)?] ^-Tfl^^ ^l^j(basis)*

(3.2.36)4

- 212 -

^ f l (modified singular value decomposition)-^ °]-8-^r°i J

7} ^o]^ *]£. %+t j ^ A| (3.2.37)4 ^ol *««« ^ 5114.

/ = £/Vr (3.2.37)

4*1 ^ (3.2.38)4 ^-o) 1 4 ^ ^ ^ ^ 4 .

^ [ i / j lC /z ]^ 3 " (3.2.38)

(3.2.33)4 (3.2.34)5. -¥-^ / r A / =

(3.2.39)

(3.2.40)4 Qo] ^ ^ ^ ^ 4 . °1 n A ^ °^^ tb^ (positive definite)

DI * IdU (3.2.40)

- 213 -

go] 7^.3.

3.2.36(a)4 0.591

(a)

3.2.36(b)).

« •

rpdb

(b)

3.2.36. D.I3 ^<^1

Fig. 3.2.36. Tendency of D.I

- 214 -

IO 1.5 t o ' ' :>o - i s - 1 0 -06 0.0 O.B 10 1.& t O

(a) rp/rb ( b )

4.0 '- —

.0 -1 ft -1

/

(/

//

f

/*

v i i /

^ M

|!

r

3.0

1 5

~/^~

/

i1 * \Jr/

\

(c) Z^i/rb (d) lF/rh

=L^ 3.2.37. ^Tfl^ofl 4 1 - ^ ^ ^ ^ ^°1

Fig. 3.2.37. Workspace tendency for design

parameters

3.2.37- 1

3.2.37(a»,

3-2-37(b), (c))t

3.2.37(d)). ^ A/

7}

- 215 -

4. ° l i l * *fl*H£s) <H3-§-§- # # * M , ^ ^ ^ H M 3 3 ^ $#?! 6-6

(3)

3.2.38)2? ^ ^

baU bushing )•§• J L ^ ^ « ^ 1 ( flange

- 216 -

jfe- .•

3.2.38.

Fig. 3.2.38. Assembled hand controller

0° 41

10° 3. ^ « B 5 l 4 . # # aV , rp$)

0.57}

10* s.

-2.El41

3-71

- 218 -

223.6imS.,

^ § f ^ 4 . *>]«!«- 7 l^ -^^?

3.2.39S)-

213 mm

(a)

X(b)

155 mm

3.2.39.

Fig. 3.2.39. 3-D plot of workspace

- 219 -

S. 3.2.6. ^2:3-712] A]

Table 3.2.6. Comparison of design parameters between prototype and

rebuilt prototype

rj(mm)

r^(mm)

<t>b, ^ ( d e g )

IF (mm)

zJ/(mm)

70

29

20

182

100

2.40XNT3

110

55

10

224

155

4.99xlO"3

joint)5+

joint ) ^

iMspherical

3.2.40^

- 220 -

set screw

-shaft

bearingsnap ring

universal joint

3.2.40. Spherical 3:?lKFig. 3.2.40. Design of Spherical Joint

- 221 -

Base Plate

Ball Bushing Unit

Shaft

Wire Tension Unit

Motor

2a

Pulley

Wire

Pulley

3.2.41.

Fig. 3.2.41. Design of Linear Actuator using Wire

Mechanism.

3.2.420)] ^

- 222 -

motor

155 ~ 368 mm

Hook Joint

shaft

250 mm

wire and pulley

3.2.42.

Fig. 3.2.42. Links and Actuators of Handcontroller

- 223 -

Handle

Upper plate

155 ~ 368 mm

Linear Actuator Unit

250 mm

Controller Unit

200 m m

3.2.43.Fig. 3.2.43. Assembled Force-Reflecting Parallel Link Handcontroller

- 224 -

cf.

^371

- 22R -

75cm, So l 25cm

8m

8051^- ifl^4<d^- ^ 5962R9563801QQX1- 1

cf^^(redundancy)s)- 4€-

fe ^t^-(divergency)

- 226 -

fe Window NT

RS-232C * ^ o.

- 227 -

2 ^ 3

Ji^r

VME ^ CPCI 7la> Embeded DSP

7fl

6 *l"fr:E ^2:71-

- 228 -

71

sa-a- ^ . e .

- 229 -

- oez -

FHv&[fr klb^Mv^E PHr-fr &<£7r 09

&tti

e ^ i § ^ #lo --b^ iris fell* S-frte IbU^T

2 ^ ^71^7)

#-§-€

- 231 -

[1] AECL CANDU Design Manual, 86-03320-DM-001, AECL, 1986.

[2] J. Lochard, "Cost Effectiveness of Robotics and Remote Tolling for

Occupational Risk Reduction at Nuclear Facilities", IAEA-CN-49/44

[3] White, J.R., et al., "Evaluation of Robotic Inspection Systems at

Nuclear Power Plants", U. S. Nuclear Regulatory Commision Rep.

NUREG/CR-3717, 1984.

[4] J.R.White, Demonstration Testing of a Surveillance Robot at Brown

Ferry Nuclear Plant, Report No. NUREG/CR-4815, 1987.

[5] Wayne S. Thayer, " A Remote Control System for SURVEYOR,"

SPIE Proc. Mobile Robots, Vol. 727, pp. 17-24, 1986.

[6] T.L.Irving, " Experience with the SURVEYOR Mobile Robot in

Radioactive Work Environments," Proc. 34th Conf. on Remote

Syst. Tech., pp. 109-114, 1986.

[7] Omer Merrier, " From A.R.A.M.I.S. to FRASTAR 2, a Strategic

Vision in Nuclear Robotics, " FRAMATOME 3N91, D-30,

FRAMATOME, 1991.

[8] G. Brudermuller, " The Nuclear Emergency Service Company in

the Federal Republic of Germany, " IAEA-SM-316/43, pp. 541-

551, 1972.

[9] \m, ft," m?t><*) & OH 3 3 . ^ mm, - u n i n , m 30 m

1 i , pp. 51-60, 1984.

- 232 -

[10] C.T.Raddatz, D.Hagemeyer, " Occupational Radiation Exposure at

Commercial Nuclear Power Reactors and Other Facilities, " Report

No. NUREG/CR-0713, 1988.

[11] C.V.Chester, Improved Robotic Equipment for Radiological Emer-

gencies, Report No. ORNL-6081, 1984.

[12] J.R.White, " A Mobile Robot for Power Plant Surveillance and

Inspection, " Proc. 36th Conf. on RST, Vol. 2, pp. 35-38, 1988.

[13] ftlf, * , " mTtl£MRl S-fi-JM sitb ^BM i a s ^ s } «f£, "

H * S . i i m p # i ^ Vol. 2, No. 3, pp. 62-67, 1984.

[14] Taro Iwamoto and Hiroshi Yamamoto, " Stairway Travel of a

Mobile Robot with Terrain-Adaptable Crawler Mechanism, " J. of

Robotic System, Vol. 2, No. 1, pp. 125-134, 1985.

[15] Takenori Matsubara, Kakeo Ohmichi and Shigetage Hosaka, "

Development of Mobile Manipulator for Maintenance and

Inspection in Containment Vessel of Nuclear Power Plants, "

Remote Handling in Nuclear Facilities, OCDE, 1985.

[16] ^ ^ t f ^ - S - %&5L2-HL 7}^7m, t R - t i ^ - S ^ . , Report No.

KAERI/RR-1359/93, 1993.

[17] Fred R. Sias and David A. Williams, " Design of a

Radiation-Hardened Microcomputer for Robots and Teleoperated

Systems, " Proc. 40th Conf. on RST, Vol.2, pp.36-43, 1992.

[18] Fred R. Sias and Robert M. Fox, " Selecting Radiation-Resistant

Semiconductors for and Teleoperated Systems, " Proc. 40th Conf.

on RST, Vol.2, pp.31-35, 1992.

- 233 -

[19] Sammy Jones and James Tulenko, " ADNROS Gets Ready for the

Hot Jobs, " Nuclear Engineering International, pp.28-29, Feb.,

1995.

[20] Nirode Mohanty, Space Communication and Nuclear Scintillation,

Van Nostrand Reinhold, 1991.

[21] L. W. Ricketts, Fundamentals of Nuclear Hardening of Electronic

Equipment, John Wiley & Sons, Inc., 1972.

[22] "7>-^^.^ 3A}7r<a « * 1-^-9-^ TfiSjA-T KAERI, 1992.

[23] ASME Code Section XI, "Rules for Inverse Inspection od Nuclear

Power Plant Components", 1986.

[24] ASME Code Section V, "Nondestructive Examination", 1986. US

NRC Regulatory Guide 1.83, Revision 1, "Inverse Inspection of

Pressurzed Reactor Steam Generator Tubes", 1975.

[25] US NRC Reguratory Guide 1.121, "Base for Plugging Degrated

PWR Steam Generator Tubes", 1976.

[26] KAERI-PCP-600-1, Rev.2, "^13i|-^ A>«^ « # | ^ M i

<$*]^7}u, 1992.

[27] KAERI-PCP-600-2, Rev.2, " 3 4 ^ 1 ^ 2fl£-#eT, 1992.

[28] KAERI-PCP-600-3, Rev.2, " ^ S ^ ^ ^ %qn, 1992.

[29] KAERI-PCP-600-4, Rev.2, " « # *W*\ 3*r 7 1 4 ^ " , 1992.

[30] KAERI-PCP-800-3, Rev.4, "sf^^- ^ #±$7} ^*}*)n, 1992.

[31] J. D. Foley, and A. Van Dam, "Fundamentals of interactiveComputer Graphics". Reading, Massichusetts.: Addison-Wesley,1984.

[32] J. D. Foley., A. Van Dam., S. K. Feiner, J. F. Hughes, and R. L.

- 234 -

Phillips. "Introduction to Computer Graphics". Addison-WesleyPublishing Company, 1994.

[33] M. E. Mortenson, "Geometric modeling". John Wiley & sons,

1985.[34] V..B. Anand., "Computer Graphics and Geometric Modeling for

Engineers". John Wiley & sons, 1993.[35] W. Rodriguez, "The Modeling of Design Ideas". McGraw-Hill,

1992.[36] A. A. G. Requicha, "Representations for Rigid Solids: Theory,

Methods, and Systems". Computing Surveys 12(4) (December1980):. pp. 437-464.

[37] P. Bezier, "Numerical control Mathematics and Applications".London: John Wiley & Sons, 1972.

[38] W. J. Gordon, and R. F. Riesenfeld, "B-Spline Curves and

Surfaces". In Computer Aided Geometric Design, pp. 95-126.Edited by R. E. Barnhill and R. F. Riesenfeld. New York:Academic Press, 1974.

[39] E. Catmull, and J. Clark, "Recursively Generated B-splinesurfaces on Arbitrary Topological Meshes". Computer AidedDesign 10(6) (November 1978): pp. 350-355.

[40] S. A. Coons, "Surface Patches and B-spline Curves". InComputer Aided Geometric Design, pp. 1-16. Edited by R. E.Barnhill and R F. Riesenfeld. New York: Academic Press, 1974.

[41] A. A. G. Requicha and H. B. Voelcker, "Solid Modeling: AHistorical Summary and Contemporary Assessment". IEEEComputer Graphics and Applications 2(2) (March 1982): pp.9-24.

[42] V. J. Lumelsky, "On fast computation of distance betweenline segments". Information Processing Letters 21 (1985) pp.55-61

[43] J. T. Schwartz, "Finding the minimum distance between twoconvex polygons". Information Processing Letters. Vol. 13, No.4, pp. 7-9

[44] J. E. Bobrow, "A direct minimization approach for obtaining

- 235 -

the distance between convex polyhedra". The InternationalJournal of Robotics Research. Vol. 8, No. 3, (June 1989) pp.

65-76[45] G. Hurteau and N. F. Stewart, "Distance calculation for

imminent collision indication in a robot system simulation".Robotica Vol. 6 (1988): p p . 47-51

[46] R. C. Smith, "Fast robot collision detection using graphicshardware". IFAC Robot Control (Syroco '85). Barcelona. Spain.(1985) pp. 277-282

[47] M. C. Lin. " Efficient Collision Detection for Animation and

Robotics". Ph.D. dissertation, U. of California at Berkeley,Berkeley, California, 1993.

- 236 -

*\ *1 3) &• # ^

KAERI/RR-1720/96

*fl* / +*

fleM«iL*AHSJt

«« 1>1 2*^X|^ « JL i l l ,

# # *1

^ °1 xl^•JIA)-^-

INIS^iS-

i < 7fl^

^ -y i (^^-^ £.SL^ Lab)

^IS .1«S SS? r^n! .^«^3S'266 P. -a-(o), •¥•() 3. 7}

1997. 7. 20

19 x 26 cm

'96 ^^7)^4

3 T1 fl 3" 71 #

^jl)- ^-^- Hl^^S

EA]^^j!}- ^ ^ i -

O| ^ - /*)1 <^ ^ ° f l A-] >

"& *9 ~?" °fl "H fe °

3J" 7l ^ Tfl A"TlJfl

-JiJ

%-<

7

4;

Tfl «J= « i

« ^ iL 3L Ai

H -o] ^^ l s l ^c f . ^ - ^ 4 ; 7>:§- f1 $ # 1

|A °l^-^-§- 7V 11 A-) ^^ - f r ^ r 8 ! ^ ^

§•71^-^71 J ^xJ-iLSl ^ ^ ^ ^ H -f|-xl#

^^^-^Xlo^l -?]^1^ £ i £ - § 3L^^$-.

^ A S . «l-fe- ^ ^ i 1^>^1^ j i ^ i - y ^ L ^

7|^-«-> »8-A].A 6(] 7{J-o]-£ ^0)7] J ^ ^ ^

<g^ 7fl^ ^ asi -S-^-i: ^^- 7>^ 4 c

S L E A ^ ^ =. 7)]

& #A] ^ T M I ^1-

°flAi 01-f-S.JB.S.l-

k * l ^"°fl ^ 7 f l ^

BIOBLIGRAPHIC INFORMATION SHEET

Performing Org.Report No.

Sponsoring Org.Reoprt No.

StandardReport No.

IMSSubject Code

KAERI/RR-1720/96

Title / SubtitleThe Development of Robotic System for Inspecting and RepairingNPP Primary Coolant System of High-Level RadioactiveEnvironment

Project Manager and Dept. Seungho Kim (Nuclear Robotics Lab)

Researcherand Dept.

Kiho Kim("), Seungho JungC), Byung Soo Kim("), Suk Yeoung HwangC),Chang Hoi Kim("), Yong Chil Seo("), Young Kwang Lee("), Yong Bum Lee("),Jai Wan Cho("), Jae Kyung Lee("), Yongdeok Lee(TCNC)

Pub. Place Taejon Pub. Org. KAERI Pub. Date 1997. 7. 20Page 266 P. Fig. and Tab. Yes(o) , No ( ) Size 19 x 26 cmNote '96 Long Term Project

Classified Open(o), Outside ( ), Class Report Type Research ReportSponsoring Org. Contack No.

Abstract

This project aims at developing a robotic system to automatically handle inspectionand maintenance of NPP safety-related facilities in high-level radioactiveenvironment. This robotic system under development comprises two robots dependingon application fields - a mobile robot and a multi-functional robot. The mobile robotis designed to be used in the area of primary coolant system during the operation ofNPP. This robot enables to overcome obstacles and perform specified tasks inunstructured environment. The multi-functional robot is designed for performinginspection and maintenance tasks of steam generator and nuclear reactor vesselduring the overhaul periods of NPP. Nuclear facilities can be inspected and repairedall the time by use of both the mobile robot and the multi-functional robot. Humanoperator, by teleoperation, monitors the movements of such robots located at remotetask environment via video cameras and controls those remotely generating desiredcommands via master manipulator.

We summarize the technology relating to the application of the mobile robot toprimary coolant system environment, the applicability of the mobile robot through 3Dgraphic simulation, the design of the mobile robot, the design of itsradiation-hardened controller. We also describes the mechanical design, modeling, andcontrol system of the multi-functional robot. Finally, we present the design of theforce-reflecting master and the modeling of virtual task environment for a trainingsimulator.

Subject Keyword( About 10 Words)

Mobile robot, multi-functional robot, robotic inspection and maintenance, teleoperation,radiation-hardened controller, force-reflecting master, virtual task environment,training simulator