122
KAERI/TR-1412/99 Conceptual Design of Reactor Coolant Pump of Integral Test Facility for Simulating PWR

KAERI/TR-1412/99 Conceptual Design of ReactorCoolant …

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

KAERI/TR-1412/99

Conceptual Design of Reactor Coolant Pump of

Integral Test Facility for Simulating PWR

DISCLAIMER

Portions of this document may be illegible

in electronic image

produced from the

document.

products. Images are

best available original

~lq .- 7P??%+= E-A]S $i t? %!+=l %94%4%l%~Rl Ql %4-S%9Z-!!4

% XQl 71% 44 (Conceptual Design of Reactor Coolant pump of

Integral Test Facility for Simulating PWR)

1999, 10.29.

...-111 -

SUMMARY

I . Project Title

Conceptual Design of Reactor Coolant Pump of Integral Test Facility for

Simulating PWR

II. Objective and Importance of the Project

In the design of integral test facility currently carried out in KAERI, the

reactor coolant pump provides sufficient forced flow to primary coolant

system and provides the same temperature distributions in the primary

system to the reference plant. At the initial blowdown phase of small break

LOCA, the behavior of the reactor coolant pump can affect the core flow and

system behavior, and thus can change overall accident scenario. Therefore,

proper scaling analysis should be performed to correctly simulate the

reference reactor coolant pump. This report presents the scaling analysis

results and provides design data for reactor coolant pump of integral test

facility.

III. Scope and Contents of Project

This report includes the basic information on general reactor coolant pump

and the scaling methods for reactor coolant pump used in conventional

integral test loops. The conceptual design of reactor coolant pump is

performed using scaling laws.

IV. Result and Application of Project

This report is thought to be very useful for the design and selection of

the reactor coolant pump of integral test facility, and is expected to be used

as a guide for the detailed design

operational and accidental transients

in view of thermal hydraulics.

of reactor coolant pump to simulate the

to be occurred in the integral test facility

–iv.

CONTENTS

Summary (in Korean) .................................................................................................. iii

Summary (in English) ................................................................................................. iv

Contents (in English) ................................................................................................... v

Contents (in Korean) ................................................................................................... vi

List of Tables ................................................................................................................ vii

List of Figures ............................................................................................................... ...vu

Nomenclatures ................................................................................................................ xi

Chapter 1 Introduction ................................................................................................. 1

Section 1 Backgrounds ........................................................................................... 1

Section 2 Objectives and Applications .............................................................. 1

Chapter 2 Basic Inforrnations on Reactor Coolant pump ................................. 3

Section 1 General Pumps .....k...........................................................................O.... 3

Section 2 Reactor Coolant pump in Nuclear Power Plant -.....................’..” 11

Chapter 3 Similarity of Reactor Coolant Pump ................................................... 34

Section 1 Similarity Method of Reactor Coolant Pump ............................... 34

Section 2 Reactor Coolant Pumps of the Conventional Integral Test

Loops ........................................................................................................ 37

Section 3 Modification of the Working Point in the Single- and Two-

Phase Flow ............................................................................................. 46

Chapter 4 Reactor Coolant Pump Design of the Integral Test Loop ......-. 78

Section 1 Similarity Method of Reactor Coolant Pump ............................... 78

Section 2 Reactor Coolant pump Design Condition of Integral Test

Loop ...........................................................................................".............. 80

Section 3 Analysis of the Scaling Distortions ................................................ 84

Chapter 5 Conclusions and Further Study ............................................................ 103

References ................................................................................................................... 105

-v–

.Qqs (qla) ..................................................................................................................

SLqs (q%) ..................................................................................................................

5+2) (q ~) ......................................................................................................................

+-x}(q}%) ......................................................................................................................

~~~} ............................................c..................................................................................

-J% +X} .................................................................................+.................................+.....

7]34% ...........................................................................................................................

%] 1 a AIE ...................................................................................................................

4 1 4 7HSL..............................................................................................................

al 2 a +-4% 4-%%+ ........................................................................................

x]] 2 ~} qq-~qj<~x]+jgq q@ a=5J-...................................................................

x]] 1 ~g ?Jt&$ q qz ............................................................................................

X312 ~ 7]5+l~Jq ~x}szqq-x]g.z ...............................................................

%13 % +!X=%%~~l%.=Ql %A}% ......................................o...............................`..

al 1 4 +lX}=q!q-xlqxq q=} ~sq~ .....................................................

xl 2 4 71+3 -2H2%%a Q1 %!7’iL=%ztal%l=_ .............................................

...m

iv

v

vi

vii

viii

xi

1

1

1

3

3

11

34

34

37

q 3 ~~ ~+-.- q o] A&++++ )+= ~7&4~]4 ~~}~~~~l~=q %@ %q

...................................................................................................................................... 46

*] 4 % %% +i/%+!% %}fi]~ ~~}3Z~~X]~ Z ~~] ........................................ 78

~] 1 ~ +j+~~~xl~>~ +~~}~ ~$~ ......................................................... 78

xl 2 ZS +1%1%~~1Ql %x}zL%!+x]J+12z41 +2i41=%5 ....................................... 80

~1 3 ‘~ ~~~= ~A+-1 ~ -1 . . . .. . . . . . .. . .. . . . . . . .. . .. . .. . . . . .. .. . . . . . . . . . . .. . . . . .. . .. . . .. . . .. . .. . . . . . .. . . .. . . . . . .. . .. . . 84

q 5 %} ~~ q q+ qy ......................................................................................... 103

3=L~~g ........................................................................................................................... 105

-vi-

i% 2.1

x 3.1

X 3.2

% 3.3

E 3.4

.X 3.5

X 3.6

x 3.7

z 4.1

X 4.2

x 4.3

& 4.4

71&azl +JX}agztx!+qasq 37] q q Ej .......................................

%224 aq-q Qa ..................................................................................

LSTF %!z1-Z2Ql~Xll%l= +12]+lol El ..................................................

SEMISCALE %!x1-=Qlqxl%= 44 71+2.........................................

MIST Pump Actual Versus Ideal Parameter Comparison ...-=.....

SRI Pump Actual Versus Ideal Parameter Comparison ...............

Rated Pump Parameter and Operating Condition ...........................

Rated Pump Parameters and Operating Conditions for Other

Pumps ......................................=..................................................................

~~}=%j~~~~~ +~ ~~~] tj]o]Ej ................................................

RCPPerfomm,nce Curves of UCN 3&4 ............................................

Homologous Pump Data for UCN 3&4 Reac@r ,Coolant Pumps

......................................................................................................................

Descriptions of Normalized Homologous Pump Performance

Curves .........................................................................................................

UCN 3&4 Pump Performance Data ....................................................

Speed vs. Torque Curve Data .............................................................

Pump Head Degradation Multiplier vs. Void Fraction ......=........

qx)gg 2+X]g Eq q sq q gq ......................................................

14

51

52

53

55

56

57

58

85

86

87

88

89

90

91

92

– vii –

-@l x++

Pumps ..................................................................... 15

~A}~]Zj ................................................................. 16

Velocity Relations for Flow through Centrifugal Pump

Impeller ................................................................................................... 17

Logarithmic Spiral Vane ................................................................... 18

H]+=+ ~J+~Xj ~~] ~ *% ~~ ~~+ (a) Zj~ ~+j+

(b) XQl %IE! ........................................................................................ 19

*J~$sj~~J+=z} ‘4%%} a-+~ ~=q”Ll QAJ~=Ql +i~%=+~4.

.................................................................................................................. 20

%2?-4 =71% *3N a51-71-%X4%+441 “1~1% E+

(a) 2!% ?i 371 ~1+ 4+s7} 20% ‘i?q?l% q

(b) %lzj?2 +=~]~1 =717} 20% %q!l!l% ~ .......................... 21

qxq Q %-$ gsq gq~ ............................................................. 22

Classification of Centrifugal Pumps ............................................... 23

Single-Stage Pump and Multi-Stage Pump ............................... 24

Volute Pump and Diffuser Pump ................................................... 25

Horizontal Pump and Vertical Pump ............................................. 26

Canned Motor Pump ........................................................................... 27

71~g~ qx}syljqx]qs ............................................................... 28

7]+~4 +jx}s2Qj~x~ q.z+ijx] ..................................................... 29

7]++J& +lX}jzqq-x]qjs g-g+.j.jxl ............................................. 30

71+q~ +jX}aqq-xuqg ~~7] ................................................. 31

71+Qa +gi+-~~~x] %z+ %x] ~ xl x]++x1 ....................... 32

7]+%3 %JX}j!ilqqxllqg Xix] q ................................................. 33

Head-Flow Curves for LSTF Pump ............................................. 59

Single-Phase Head Homologous Curves for LSTF Pump ..... 60

Single-Phase Torque Homologous Curves for LSTF Pump . 61

Semiscale Intact Loop Pump Performance and Operating

Curves ..................................................................................................... 62

Serniscale Intact Loop Pump Performance Curves .................... 63

...– VIII –

o ~ 3.6 SEMISCALE ~s+ 7]~% ~d% SQ/ Coastdown %~d ............ 64

~~ 3.7 Single-Phase Homologous Head Curve for MOD1 Semiscale

Pl_lmp...............................................................................""....`"...........".".- 65

~ ~ 3.8 Single-Phase Homologous Torque Curve for MOD1

SEMISCALE Pump (Corrected for Frictional Torque) =-.-”..=.. 66

z ~ 3.9 Steady-State Two-Phase Head Characteristics for the MOD1

SEMISCALE Pump ......................................................""..................... 67

~~ 3.10 Homologous Head Curves for SPES Pump ................................ 68

~ ~ 3.11 LOFT Two-Phase Head Compared to Experiment Data and

Full Size Reactor Coolant Pumps ................................................... 69

z ~ 3.12 B&W Two-Phase Homologous Head Data for First-Quadrant

Operation ..................+A.........................................................".....""...`"."... 70

z ~ 3.13 B&W Two-Phase Homologous Torque Data for First-Quadrant

Operation ................................................................................................

~ ~ 3.14 Comparison of Polynomial Fits to B&W, C-E, Creare and

SEMISCALE Single-Phase Head Characteristics ....................”.

=@ 3.15 Comparison of Polynomial Fits to B&W, C–E, Creare and

SEMISCALE Single-Phase Torque Characteristics ..................

Z% 3.16 %x}~~~x]~ Z4 -i+a-++ %~d ...............................................

x% 3.17 ax}~qzl-xll $ Eq q ~+x ~~ti~$ .........................................

z% 3.18 Zj+~+~~~ ~}ZAJ~ ‘+l~j~ ~+~%~ (a) aA$%k~

(b) Cold Leg Break (c) Hot Leg Break ......................................-

3% 3.19 ~~a+j Zq $3?J3 ...........................................................................

z% 4.1 RCS Hydraulic Resistance Limits for UCN 3&4 Head (ft)

vs. Flow Rate (1000 gpm) ................S.""."......C..."................"..............

~% 4.2(a) RCP Performance Curve of UCN 4 for 1A pump ..................

z% 4.2(b) RCP Performance Curve of UCN 4 for lB Pump ................

z% 4.2(c) RCP Performance Curve of UCN 4 for 2A Pump ..................

=% 4.2(d) RCP Performance Curve of UCN 4 for 2B Pump .-.-.....=.....

Q ~ 4.3(a) Homologous Head Graph for UCN 3&4 Reactor Coolant

71

72

73

74

75

76

77

93

94

95

96

97

Pumps ................................................................................................... 98

2@ 4.3(b) Homologous Torque Graph for UCN 3&4 Reactor Coolant

–ix-

Pumps .c................................................................................................. 99

Z% 4.4 UCN 3&4 Pump Performance Curve ............................................. 100

Z% 4.5 Speed vs. Torque Curve ................................................................... 101

z ~ 4.6 Pump Head Degradation Multiplier vs. Void Fraction ............. 102

–x–

a

aN

Mlp

Ca

c@

D

g

/7.

H

/’20

I

1.

I*

1

M

mN

NPSH

P

P.

QRe

s

T

uvww’zz

Cross-Sectional Area

Homologous Speed Ratio, N/NO

Brake Horse Power

Cavitation Number

Actual Tangential Component of Velocity of the Fluid

Impeller Inlet Diameter

Gravitational Acceleration

Constant in Newton’s Law

Head

Total Enthalpy

Inertias

Inertial of Flywheel plus Motor Assembly

Inertia of Pump

Axial Length

Multiplier

Mass Flow Rate

Speed

Net-Positive Suction Head

Pressure or Power

Water Horse Power

Volumetric Flow Rate

Reynolds Number

Equivalent Blade Pitch

Torque

Flow Velocity in Pump

Velocity or Volume

Work

Pump Motor Powe~

Number of Vane

Height

output

-xi–

Greek symbols

a

B

B’

8

v

P

X2

P

T

4w

%bscrk)ts

1

2

c.v

G

h

b

i

L

m

P

R

r

s

Ss

sub

t

u

Void Fraction

Angle of Fluid Vector Relative to Rotor Periphery

Angle of Tangential to Rotor Centerline Relative to

Tangential to Rotor

Derivation Angle at Impeller Tip

Efficiency

Slip Factor

Angular Speed

Density

Moment

Flow Coefficient

Angular Speed

Inlet

Outlet

Control Volume

Gas or Steam

Head

Hydraulic

Inlet

Liquid

Model, Two-Phase Mixture, Meridonial or Component of

Velocity

Prototype or Pump

Model-to-Prototype Quantity Ratio

Rated Operating Value

Specific or Shaft

Specific Speed

Subcooled

Torque

Void or Steam

–xii-

-1-

-2-

(2.1)

(2.2)

-3-

(2.5)

w= rJ2 = rn(r~Qc@ = r~L?cfl)

(2.7)= rn(u2c@ – UICJ

-4”

~@Specific Work = ~ = — = u2c@.– Ulcfl

m (2.8)= gc(J’&?– J’qJ > 0

J?= gc(l?~– h)J= LJca??2 (2.9)

(2.11)

A – B@m/32’/fB=1 – $@lb2’ (2.12)

1 z.=s 27rcos/92’ ()

ln~>l (2.13)

-5-

*. NPSH(Net-Rxitive Suction Head)

-6-

U}. Suction Specific Speed

Suction Specific Speed+

Cavitation~ + q 01 ‘8 ?lq.

~ = Xpm(Qmm)”2‘s (NPSH3)3’4

-7-

(2.18)

-8-

-9-

-1o-

-11-

-12-

-13-

Design Pressure 2500 psia

Design Temperature 650 “F

Flow Rate 85,400 gpm%

1 Total dynamic head 337 ft1, 1II 1,190 rpm II

[ NormalOperating Temperature II 565°F1!

1Normal Operating Pressure at2,250 psia 1

SuetionMax. Heatup/CooldownRate 100 OF/hr

, 1

1 Power 13.2kV, 3ph, 60HzI

NPSH 175 ft

Design Life 40 year

Number 4

-14-

——

I

! I

E!E-l-j

l— ,

Z ~ 2.1 Classification of pumps

-15-

-16-

(a)

t

Ca

f

Velocity

Impeller

Relations

(b)

for Flow through Centrifugal Pump

-17-

\

z% 2.4 Logarithmic Spiral Vane

Note : Vane Angle /3’ is Constant for All Radii

-18-

%ux

iv,-.

r/rein(g/m)ln/(H, f t)3/4

(a)

‘4+=J?+

-

.L!I-LLL?LSUJ

-19-

-20-

(

R, bhp

D= 10=constanL

Q

H, bhp.-. ,

(a) ‘ 1 (b)

-21-

(1)

1

—-.

-22-

NonSelf-Priming

Centrifugal Oouble Suction Open ImpelferSemi-Open Impeller

Closed fmpeller

Single Stage Single SuctionMulfistsge DoubfeSuction

1

- ~ 2.9 Classification of Centrifugal Pumps

-23-

.. . .

- a 2.10 Single and Multi–Stage Pump

(a) Single-Stage Pump (b) Multi-Stage Pump

-z4-

(a) (b)

z ~ 2.11 VOIUt,e Pump and Diffuser Pump

(a) Volute Pump (b) Diffuser Pump

-25-

S-%iii

(a)

(b)

Zq 2.12 Horizontal and

(a) Horizontal Pump (b)

Vertical

Vertical

Pump

Punlp

-26-

,.. . . ... ....... ,.:...... , :.. ... ; A

-~ 2.13 Canned Motor Pump

-27-

~=

Y

JNG

z%! 2.14

-28-

A ....

-29-

2M STAGE

W3Lwal%\\\

1stSTAGE

I

-30-

-31-

U.1

-32-

-33-

(i%),=(%+ -. +-*21+ (Flow Coefficient) (3.1)

-34-

(7%),=(7%).: ‘$?j 21+ (Energy Coefficient)

( Pl$lY)@ = ( Pl$D)m: %+21+ (Power Coefficient)

(*), = (+).: I%= Xl+ (Torque Coefficient)

(3.2)

(3.3)

(3.4)

(1)

(2)

(3)

(4)

(5)

-35-

-36-

.

-37-

-38-

1

~ dwmm dt

&=~T—1P dt

(3.6)

Ij = Inertia of Pump,

1.= Inertia of Flywheel plus Motor Assembly

dwm— = Time Rate of Change of Motor Shaft Speed

dt

*dt

= Time Rate of Change of Pump Shaft Speed

~ T= Sum of Torques Acting on the System

-39-

2)—

.

~ XLq ~ ~ ~s + al Stator Jacket +% oll $%! ‘~~1q Rotor~ Stator ‘}

01~ Fan+ ~R+ Blower~l %Q)%~fi]~ %Rlq. O]q %}+2 q~%~~ +il

~~1 + ‘~ ~%~ ril01Ej~ 947] ~ %} ~+) ~~ +=] & q++ %}~.

“ Pump speed (Capacitive probe and electronics provided)

“ Pump shaft torque (PRONY brake and load cell provided for motor

calibration)

. Pressure and temperature taps at the casing inlet and discharge

flanges, pressure between the impeller and stator (Port provided

without transducer)

“ Fluid temperature in the seal cavity (Two ports and thermocouples)

“ Shaft motion normal to the axis during checking tests (Two shaft

displacement probes and electronics)

“ Motor stator temperature (Two thermocouples implanted on the

stator)

“ Inadequate oil and water (Bearing lubrication system and the

cooling water circuit with flow switches that interlock with the

power supply)

-41-

P: average fluid density

Pump shaft torque : T.= (P/N) x Vm (3.10)P ~: measured pump motor power

N : pump speed

?~ : PLU_IIPmotor efficiency, function of pump speed and voltage

to pump frequency ratio

“43-

H(zJ,a~, a) = lYlo(v, a~) – Mb(a) [ hlo(o, a~) – IZzo(v, a~)] x Rr (3.13)

~v, aN,a) = Tlo(v, aN)– M~(ff) [ t~@(V, ahI) – t~@(V, aN)] X T. (3.14)

H : Pump head (m), N : Rotor speed (rad/s),

Q : Volumetric flow rate (m’/s), T : Pump torque (N-m),

a : Void fraction (-), Rh : Head ratio (-),

Mh : Two-phase head multiplier (-),

Mt : Two-phase torque multiplier (-),

h : Homologous head ratio head/rated head (-),

t : Homologous torque ratio = torque/rated torque (-),

v: Homologous flow ratio = Vol. flow rate/rated vol. flow rate

(-),

aN : Homologous speed ratio = rotor speed/rated rotor,

Subscript r : Pump rated operating value.

~++% 2s %= N%I”l +%~%i~.

“ 4 %A1 % (Flow rate vs. pump head at various pump speed, flow

- Tests of the water injection to the motor and bearings

. S#2E loading test (Thermal stress, shock wave %01] ?!= + $5!%z1

ql q %1 G]5=)

-44-

7. SRI

-45-

-46-

-47-

“48”

(3.18)

hl(P/Pv)= - *(+ - +) = “gT.-T:) (3.20)

-49-

AP= POhfgAT& = pghfg AT&

R? T (3.21)

c.= ‘$ ~g%gAT~ = v~hfgATsub—— ~—Pl U2T VgU2T

(3.22)

-50-

Head [d 1 la

Diemeter dti dd Id

Area a& da’ la’

Volume VM dd= . a& . V& Id’

RCPRated~hu23@3iC Q.1/2

aoR IdFlow Rme

N,-1/2 1/2

RCPRatedSpeed ad [d

P*R312

RCPPower aOR[d

T213

RCP Toraue IXIR ad b

I IIR 3/2 2[3

RCP herbs aoR L I

* Pw= @@’Hal

* From angular momentum equation :

~ dw— = Tw~g, where w = angular speed

dt

-51-

2 I 4 I 1/2‘1 Centrifugal pump Centrifugal pump

Pump typeCanned tme Shaft Sed tyFE

~ Rated flow rate, gpm ~ 855.94 I 88454.2 I 1/103.3

~Rated pump speed, rpm ~ 1800 I 1190 I 1.51/1

~ Rated pump head ft ~ 32.81 I 275.6 I 1/8.4

Rated pump torque,40.7 —

Ibf-ft

Momentum of inertia,

lb-ft212.82 —

I Water volume, fti 0.83 84.74 1/102.1

Specific speed,4.46 x 1000 6.08 x 1000

( ?ll?nG1’ ft3’4)1/1.36

-52-

n Requirement common to pumps for the operating and broken loops IIEVl%=L79at Q=0 IIQ/Q~ = 1.52at H = O (FLand Q. are the normaloperationpoint)

12500psig650’3?

Pressure:2500 psig to 1000 psig in 0.25 seconds 1000 psig to O psig

in 20 seconds

Temperature: 550 “F to 290 T in 20 secondsI

Water or steam II(a) Drive system friction torque must be sufilciently low and

repeatable to permit measurement of the normal operating

impeller hydraulic torque within ~ 20°A

(b) A torque measurement device must be provided for the

measurement of impeller hydraulic torque (calibmted motor is

acceptable)(a) The pump must withstand 200 cycles of cold start to operating

conditions through depressurization.

(b) Bearing and seal replacement between tests is acceptable, but not

desirable.

(c) 200 cold hydrostatic leak tests must be tolerated following

installation in the test systemASME boiler and pressure vessel code, Section IU, “Design of Class

II Pumps”, applies to the pressure boundary design and hydrostatic

proof test conditions.The following measurement must be provided for in the design of

the pump (Ports provided, transducers specified) :

(a) Pump rotational speed

(b) Pump shaft torque

(c) Pump pressures at the casing inlet and discharge, the seal cavity

and the impeller discharge ( between the impeller and stator)

(d) Fluid temperature in the seal cavity

(e) Fluid temperature at the casing inlet and dischargePump impeller : centrifugal, single stage

Pump casing : single axial inlet, single radial discharge, vaned statorllJ-fal

g~metrytype diffuser

iriterface with’:’

S&misele ‘ Coordinate with Semiscaie design personnel

existing piping

-53-

X 3.3 SEMISCALE %!x=q q~ % = &Z] 71+ (Contd.)

Requirement Particular to the Broken Loop pump,.‘.:, :, ; ,.’::,..?~., ,,:,

~~~p o&3@@ point .‘ (a) For 5.5-ft core, low flow case : Q. = 42.1, IL = 110

~ (b$@pa~~$?e and & for (b) For 5.5-ft core, high flow case : Qo = 70.2,~ = 306

fk& m~$;,;jmm ~ead .,~ (c) For 12-ft, 21-ro4 1.7 MW core : Qo = 44.1,& = 233~,, .. .... ,!: ris; in ft’:.~’ :<, (d) For 12-ft, 25-rod, 2.0 MW core : Q. = 51.3,1% = 261,., .. .. >>.~.’

(a) For 5.5-ft core : R’ (fwd) = 193. R’ (rev) = 213

Broken lQ&Rpump locked. (b) For 12-& 21-rod, 1.7 MW core : R’ (fwd) = 207,ro@ resi;@ice

(K= pf?P/k2 sec2/in2j#]R’ (H3V)= 230

(c)For 12-ft, 25-rod, 2.0 MW core : R’ (fwd) = 205,.’.. <.,.,:’::. R’ (rev) = 227..

Mir$rnum floiv area in The minimum flow area can occur in either the pump

broken kx?p~pump impeller, stator vanes, or casing, and is ‘to be 0.145 inz,:

The pump and pump drive must be capable of

powered and controlled speed over the range of 70 to

350% of the operating speed for the head and flow

specified in above table.

Brakhg must be available to reduce the speed to zero

in 2.0 seconds from the maximum speed (and hold at

zero speed).

The pump driver and braking device are to be

designed with the pump

-54-

S 3.4 MIST Pump Actual versus Ideal Parameter Comparison

0.26 0.12 2.2

340 340 340 1.0

120 107.6 1.1

32059.2 0.11I I 1 u

-55-

3E 3.5 SRI Pump Actual versus Ideal Parameter Comparison

-56-

X 3.6 Rated Pump Parameterand Operating Condition

1/48

1/1

855.94

32.81

1798

3837.1

1/100

1/1

998.6

255.9

2970

1467

1/1705.5

1/1

275

300

3500

805.2

-57-

1/427

1/1

237.8

237

3090

789

l/817

1/1

119.8

340

492.2

l/1

315

3530

3338.3

3E 3.7 Rated Pump Parameters and Operating Conditions for other

Pumps:-~.X w: ,’ WE ‘i$mp.,.<,,,=

2 .,,+,,Pa@je@ Care pimp.:...”.:..:,,:,,’ :.:,,),;,.,.,‘,: - ...+:, 1/3 of Bingham

,,+&@ 1/1 1/1 Wllliamette1/5 of Byron 1/20 of Bryon

,, JacksonPump Jackson Pump-;,.,, Pump..i’..... .

Rati2$j flo$&Xe,: 104,200 87,000 11,200 3,500 181(219)

. .{.~w$,,

Rated total head397 252 390 252 252

(fi) ‘.

‘R++ .+@xl1190 900 3,580 4,500 18,C00

(~

Ri@ tofq$e35,280 38j500 22,840 3,696 47(58)

{in-i@]Spi+6ific s&ed

4319 4200 4317 4,200 4,200(rpya~&j#4)

:,.Fl~~ Sv’w WV S/w Nwtk s/w

Pressure A/Wat9015-2250 15-2250 20-120 15- 1,250

(psia) S/W at 400

-58-

‘f,’

+..= ‘

RrAed Candition

(1800 rpM, 194.4 m3/h)

\

~.

I -150 -1oo -s0”050/.

240 w

—-s -

PC-AData120 rpm

x- -x PC-8 rata

-lo -

n% 3.1 Head–Flow Curves for LSTF Pump

-59-

\

o

l-i: Pump Head ~

w: “Pufnp Speed

Q: Flow Rate

Subscript R :

Rated Condition

h=H/tiR”

a sW/ld oR

t

-1 0

-. ,.

h/a2,

h/ .iz

z ~ 3.2 Single–Phase Head Homologous Curves for LSTF Pump

-60-

o

0

-1 0

T-fl=

‘f

‘R - ‘fR

1 Q)AA

A

A

A

/“ 1

-/

T : Shaft Torque . “

u : Pump Speed

Q: Flow Rate “Fig. 5.2.44 Single-phase Torque

Homologous Curvesfor PCIA

ZY4 3.3 Single–Phase

-1/

b Subscripts R, f :

Rated Condition andA

Frictional Torque

Torque Homologous Curves for LSTF Pump

-61-

1 AH = 7.14X 104 R02

+- P---------------—----MOO-2 imactloop IOpe.ratin9ceint I,.

I

.. ..... .... .. . ..W@S withPWIIP(R,oi= 19.9=22%104.}

in serieswith pump FI’lot=l 2.3=52%tow)

‘;l~=ZlmlCO

SEMISCALE Intact

Operating Curves

Flowrate(gpm)

Loop Pump Performance

aINEL.A-7W

and

-62-

60C

40C

2C4

o

-20C

-40(

=: -60C

+

-m

-1OOC

-1200

-140(

-160C

-180C

:1 1“”imp -3031 rpm with R’=3.37 in serie

\Y\ IoIal H =us. ,.

\\ ~,+ 1“ imp, 3500 rpm with R“=17.0in.

\ &series. total R“=19.9

\

\\- ~ .. . . ,.

1\ PWli N=G.76 No

i /’+&f

\\\

i \*

\\ PWR. N=NQ hkwkm

\\\\

\\ \

\ \

\.\* \

N=o (locked

19.9?1 \ \

o 100 200 300 400 500 [(9wX INEL-A-7905

7

+

o

~ ~ 3.s SEMISCALE Intact Loop Pump Performance Curves

-63-

-64-

,d I HVN / I

I

● ● M/Mt

● * 0/0,● ● It/M,

Es:.,,

Oldpollrn t-O, +N) {~:

Morml*tT*?bIms (-O.-W { ~~

~ ~ 3.’7 Single–Phase Homologous Head Curve for MOD1

SEMISCALE Pump

-65-

I -0.5 c

z ~ 3.8 Single–Phase

SEMISCALE

I

“-1.0

—-L5 I

)av-or-wa

Homologous Torque Curve for MOD1

Pump (Corrected for Frictional Torque)

-66-

\\\%

:;~”..Kpho’”\ \\ \

——

a - VOM rroetlwl (%)

Q - VOl.m*tfle flow (Q*)

\\

\\

ti - Pump Hood(tt )N - lmp.lf.r SP@sd(rpm)

\ \ ‘\\

\

\

\

\ ‘, i,

‘\ ‘\ \

15.0O/Ii (lt2,pm/tpm)

= ~ 3.9 steady–state Two–phase Head Characteristics for

MOD1 SEMISCALE Pump

-67-

0’5I.}0 .ae -06 -0.4 -0.2 0.0

.~.a5”--, ./-” --

“%.. .. .. .. .

.1.0

-1 s

-2a

Homologous Head Curves for SPES Pump

-68-

0 “02 0.4 0.6 0.8 1.0

z% 3.11

Void fraction (a) W87008.1

LOFT Two–Phase Head Comparedto Experiment

Data and Full Size Reactor Coolant Pumps

-69-

1.6

1.4

1.2

1.0

0.8

0.6

m

~0.4

8N

$ 02

~’

8 0

mS2

j .0.,

2

2.0.4

.0.1

-0.

.1.

.1.

.1.

“\& ---

----. --<w void Fractmns

y * - .-\\

-- —. (o-3)

\ -_____ --{sJo)

/

/( 10-20)

I

i

Pwnp-SpeedP1OWRate, a#v or v/aN

z 9 3.12 B&W Two–Phase Homologous Head Data for

First-Quadrant Operation

-70-

1.4

1.2

1.0

0.8

0.6

-0.6

0.{

.1,(

.1.:

.1.

(‘G:‘ylo to 15X)(WUUN) ~-~.

/

A-. = -= -----== -“--/ -- tom%

-----Oten -------- ~- (38elo5)

-----~----

a----(0 t> s%)

..

~-(10 to Zcl)

Pwmp-Speed Flow Rete, a v or v/aNd

z ~ 3.13 B&W Two–Phase Homologous Torque

First-Quadrant OperationData for

-71-

1.6Creare

1.5

1,0 — Semi scale\

0.5 —

I0.03.0

Homologous Flow Paramatar,

-0.5 —

-1.0 —

1-

3 ~ 3.14 Comptison of Polynomial Fits to B&W, C–E, Creare

and SEMISCALE Single–Phase Head Characteristics

-72-

1.6

1.5 L

0.0 t * I\

I 1t * , I I *

I I 4I t 1 ,

“ 1.0I

‘/\I I I

20 3.08

Honwlogous F1OWParameter,

-0.5

-1.0

[

\,* \

\\

,

i’

\\\

\ \

v/aN

Z= 3.15 Comparison of PolynorninalFits to B&W, C–E, Creare

and SEMISCALE Single-Phase Torque Characteristics

-73-

I1*”**”’’””’’’””’””””””*~’~’

I

-74-

-75-

a) b) o c]

-In.

-76-

A

H ,

no Case c)

LOOP RESISTANCE

Case b)

1. -

/

,/’

/’

/ Reference Pump,/

1,

-77-

al1 z! a~E=wbwl=q +..WWJ%

-78-

-79-

Lower Power Shutdown

“ Pressure Drop

-81-

-82-

-83-

-84-

-85-

X 4.2 RCP PerformanceCurvesof UCN 3&4

H’aQZ+bQ+c

where, H

Q

a,

Operating RCPS

: head in ft

: flow rate in gpm

b, c : constants determined from RCP performance test

a) Hot Condition ( 564.5 “F and 500 %’ at 2250 psia )

Unit RCF ,a’.:: . ‘“b “c3 1A jAl 94*10A-9-— -0.005439 793.5

lB +i.372E-09— -0.004012 730.42A “_ -9.01 5E-09 -0.003434 701.52B -5.71 7E-09 -0.004302 742

.—. _ 1A4 _3.793*1 OA-l o -0.00541 793.6— -–.M–– -_-3.486E-09.--..—,. -0.004778 770.4

2A -8.024E-09 -0.003752 _ 721.4.. ... .-.,—- .. ..-—. ..”“.. .. ..2B 3.072*1 O*=8 -0.005821 816.1

b) Cold Condition ( 200 % and 100 % at 2250 psia )

Unit RCP a.” b. c.,,3. _ .......IA.. !133.!3*UYX!. ,.,.,.......3.JXKXZ. . . ...f!2U?.-._..

. . . . . ... .....1. J2&Q2. . . . . ........QX!!MXM... . . .. ..........z%l..z...... ....g.... . ...-5.! MEQ.. . . . .. ... .................... . . ...... ...... . ......yo..+ ........-0004005

-8.494E-09 -0.003844

. . .M..... !....1Q9.*K!:Z%.. -,-.9.M!5!W..”.. .-......+””Tz----4.-1. .OI.74.E.*9,., ,-,,,””~.,.gg51a

.. g,.. ....3..!XWE3? ..-.....+xmsll... .......ZVM........2.567*1 0“-9 -0.005683 794.4

Inactive RCPS

a) Locked rotor condition

I H=7.424*1.O’’-8*Q’ 1

b) Sheared shaft ( rotating rotor )

I H=3.709*1OA-8*Q’ [

-86-

3E 4.3 Homologous Pump Data for UCN 3&4 Reactor Coolant

Pumps

x The homologous data provided in this table

is based on “best-efficiency (b-e)” values

instead of rated values.

b-e flowrate : 81,144.5 gpm

b-e head :365 ft

b-e hydraulic torque : 28,883 ft-lbf

b-e speed :

b-e density

1190 rpm

:45.87 lbm/ft3

-&

a=+ $ ~=(%)(%)R : b-e value

-87-

X 4.4 Descriptions of the Normalized Homologous Pump Performance

Curves

SectionLabel

HvN

Description

hlvz Vs. uNfv - in the norms 1 pumping quadrant. Flow coefficientvaries from very high valuea (aN/v=O) to rated flov coefficient. (tiN/v=l)The negative portion of the curve shows a pressure drop through thepump in the direction of flow.

HAN

HAD

IivD

h/aN2 va. v/aN - in the normal pumping quadrant. Flow coefficientvsr~es from rated flow @/aM=l) to shutoff head (v/aM=O).

h/uN 2 vs. vfaN - in the .Jisaipation quadrant. Flow direction isreversed while speed and head remain in the nomal direction.

h/\32VS. a @ - in the diaaipation qusdrant. Flow ia reversed whilespeed and !ead remsin in the normal direction. At aNJv=O, speed isZero (Or flow ia infinite) .

HVT hlv~ vs. a /v -1“

in the normal turbine quadrant. Flow and speed arereversed w he, head is in the normal direction. kcieasing aN/vimplies increasing speed.

HAT

BVN

hla 2 vs. vja~ -4“

in the normal turbine quadrant. Decreasing .v/azimp lea increasing speed.

“p/@ vs. a /v - in the normal pumping quadrant. Shaft torqueincreases !!xom negative values at very high flows (aN/vSO) to positivevalues in order to produce a positive pressure rise.

BAN

BAD

BVD

BVT

BAT

P/aHz vs. vja

Y

- in the normal pumping quadrant. Torques decreasefrom rated va .ue iv/aN=l) to the value at zero flow.

P/au2 vs. v/t%H- in the dissipation quadrant. Torque and speed arepoaltive agsinst reversed flow.

p/vz vs. t$AJ - in the diaaipation quadrant. Torque and speed arepositive against reversed flow. At aN/v=O, ~@2 gives the lockedrotor torque with reverse flow.

$/vz vs. aN/v - in the normal turbine quadrant. Both speed and floware reversed. Shaft torque is in the same direction as in normal pumpoperation.

$taH2 vs. V!aIi

- in the normal turbine quadrant. Shaft torquedecreases wit increasing speed (decreasing v/a ), cro6$ea the

vabscisaa (at turbine runawsy speed) and then re eraea.

-88-

X 4.5 UCN 3&4 Pump PerformanceData

GUN .1 I-VN’Z” T/(rho)NV: ““o 0.000347962 0.000386847

6.819 0.00034023 0.00036906113.6,38,._,,, . 0..000332497 - _..0.:QQP&6A6f15–

20.457 0.00032992 0.00036016827.276 0.00031961 0.000369061

....... .. . .. .... .. .....–cwum...x...................Q.9eox35g8_. ...34.09540914 _o.0003041_45_ _,-O.000386847—...—-_,.L_”——__47.733 0.000293835 0.00039129454552 0 O0028~5~5,A__ .,,00&O0413526....-..,.-,=.-...—-. .......61.371 0.00026806__ 0.00042686668.19 ~00025775 0.000444652

-89-

3E 4.6 Speed vs. Torque Curve Data

All values are for 100 % Voltage.

Synchronous Speed = 1200 rpm

Rated Torque = 30013 ft-lbf

-90-

X 4.7 Pump Head DegradationMultipliervs. Void Fraction

Void Degradation

Fraction(a) IvlMiplier(rm)

.-t ..,,,.,,,,. ,,, .,,, .,.,,,,00“__. ...__..__ ———

._o.15 0.05

.. 9zfl_ ._.. - __.L8._..,-..–:._.. ...Q&3___.— .0.96 _

_..-.-!M-... 0.98097....0.6 .... .. . . ..?........ ..

.0,8,,,,...,.,....,-.,,,,,,,,,.0,.9,,-,,,,,,..........0.9............. ............ ......Q.-B.... . .

... ... ..0.96... ...... ........... .......0...?..... ~~1 0

-91-

SL-L’L,L -RCS fluiddensity, rated concfificmRCP speed rated condition—— .. ..J”_%ecific Srx?ed(in units of mm, gpm, and ft)——-- . .i-tycfraulictorque, rated conditionBrake horse power at design frowratePurrwinertia (include value for ctinationGDUIYPinmellerand rrotcxand irrceller byi~.cl!) .at,.rated..c.qditi.orl,.W.!w . .. . . .. .. .. .Pumpinertia (include value for combinationoPUmJirmeller and rmtor end irmeller byitaelfl,~ed ccrldition,I’llXor.K–factorsare based on cold leg area of —RCP torque nwllfpfiertor a range of void

l-----------:::------:-----------fraction—.—— .. “---------- .-..——.—..- _________xJ~q&q

—— .—.—.Liquidvolume @r RCP—.. “. .- . ..- . .Elevaticmdifferencebetween inlet and outletc~er” yle,.,,,-,-,_____–_–_._”,--.~,Elevaticn differencebetween top of weir endbottomof discharge leg, (I.e., the heightofthe liquidin discharge leg rwst reach beforeit will backflow into RCP suctionleg wilh

.KWf?w?!K?WN).......... . . .. . . . . .Minirrum total flow for bur purqx at the ratechead of W7R.. . ... ... ... ... . . . . .. . . . . . . .. . .,.Mexirrumtotal flow fm fourpurrTx at the~,at@,head of 337tj............. . .The afxdute value of tie slope of the pu~performancecurve(head vs. flow rate) at tierated flow of..5,@Q.w..,..,... .The rr=inum spread in PUnp head beiween.R?W.w.m. ?[.m.eIat9Ql.w...Qw,ww.QmQm.The rrinirrwmhead that the PUnp shallbecapableof normaloperationat the rated [W

71Z93*(P)

4

m. . . .. . . . .m

@

%45.. ............. . . .W5CKI—.854C0——

337——.—45.87

Ilw

442f .24

m

6533——

2915.7

115W

4.9t..—— . ..—

1-.-- ...-,.-.,.-

w..__—.__. .,122.9

S2.57-.—~-. ..—

24.75

341,Oxl

244,axl

2)

297

Era?

*

427—.t 337..——-.

~ fbrnrf13 45.87~ .-—-—

*b-ft2----”-1.03

. .

lb+ I 40.70

... .. ...1....—....-——-.-

fu? 0.02455..—-.--—. .. .. . . .

1—-—-.— . ..— .--...__m?-----.._.”A?”. -...

tu 0.W-5

in I 93.57—.,...-—.”—--—.-..-...

-d-l

4

~,,,_

m

?2?3

%4.5

412.5

427

237—.—4587

16829

442f .34——146.325

33.105

1.Cr3

40.76

0.0245—— ------

1

44.-.—-..-...0.664s

93.57

24.75

1720

3.5WN

.,.a

297

11. .—11——

UfW16@Uf33f47W

1

1——

1

1

1. ..- —e—.. -

1

1

1.. ...—.

1..—..——

1

1.. .

1

1

1. .

1

-92-

Hot Isothermal Condition

500

450

400

350

/

300

250

150

100

50

0

564.5 “F

. . . . . . . . . . . . . . . . . . . . . . . . . .. !-----------------------

. ..-. ------

. . . . . . . . . . . . . . .

. . . ..-. . . .

. .

.

. .

v . . . . . . . . . . .

. . . . . . . . . . . . . . .10-$Q2

. . . . . ------ --

. . . . . . . . . . . . . . . .

. . . . . . . . . ..-.

. . . . . . . . .

. . . . .

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160

FlowRate, X 1000 gpm

z ~ 4.1 RCS Hydraulic Resistance Limits for UCN 3&4

Head (ft) vs. Flow Rate (X 1000 gpm)

-93-

500I

..,:. v:.:\...-.:..,:

.:.400 .,.

.,..,

1A pump-~Condition“..::

.:....1A pump-&Condition

300/ I

.....:.

FRCS Hydraulic Resistant e .,,.,

,. \- ~ pump max. limit .:,.

\.’..

200.>..

.....

/100

‘.’... ..‘.”... ..

0-0

z %14.2(a) RCP

50000 100000 150000

Flow Rate, gpm

Performance Curve of UCN 4 for 1A Pump

-94-

..

i=’

s-

500

400

300

200

100

....‘. .,

‘, ...‘. ‘..

‘,, ‘..,.,,/ ‘$ .,

IB pump-~ Condition

I

‘\ ‘..‘. ‘...

‘. ...‘. ‘.

.

‘. “.. )‘. ‘..,

‘,‘.

‘\‘.

Kcs , .Wara uftc ueaisra{ Ice

4 oumo max. limit

‘),RCS Hydraulic Resist

1 oum D min. limit

I1B pump-~ Condition

...

,.,,

*

‘. .,\‘. ..

‘. ‘.

‘. ‘...‘. ...

‘. “..‘., ‘...

o0 50000 100000 150000

Flow Rate, gpm

z%! 4.2(b) RCP Performance Curve of UCN 4 for lB Pump

-95-

500

400

300

e

= 200

100

0

.,.

>;::,/

‘.....‘...

2A pump-w Condition

.. .,... , /., .

,.. \...’.\

‘... \.. \.. .

3CS Hydraulic Resistan< e.....

..:.,1pump msx. limit ..,:.

\,

RCS Hydraulic Resis lance ........

1 oump min. limit. .

..,\,...

0 50000 100000 150000

Flow Rate, gpm

z% 4.2(c) RCP PerformanceCurve of UCN 4 for 2A Pump

-96-

500

400

300

~

i200

100

0

.. .

... .... .

20 pump-~ Condiiion

2B pump-hJQ Condition

?CS Hydraulic Resistant e.... .,

‘.1 mimo max. limit

\,

‘.RCS HydraulicResis ante ““.. .,

,.. .,1 oumvmin. limit

... .\

o 50000 100000 150000

Flow Rate, gpm

Z a 4.2(d) RCP Performance Curve of UCN 4 for 2B Pump

-97”

. . .

1. . .

Single phase ho ologous head

cuwes for UCN 3 4

4b\\\+0+\\

o ‘\\ ‘\O\‘\+‘\.\+

‘b \‘o.&

“~-m-g.m-=-,.m“% -m.

“%W‘V3 d

-X-X.1 -J’~‘A-A-A.A_A-A~/d

J “?O/I /r /“

(

%K-%-x-~-

—m—HAN

—o— HVN

—A— HAT

—v— HVT

-o- HAD

—+— HVD

—x— HAR

—x— HVR

-1.0 -0.5 0.0 0.5 1.0

AIV or VIA

Normal Pump (’CL +N) : HAN, ~

Energy Dissipation (-~ +N) : HAD, HVD

Normal Turbin (-Q, -N) : HAT, HVT

Reverse Pump (+Q, -N) : HAR, HVR

~~ 4.3(a) Homologous Head Graph for UCN 3&4 Reactor Coolant

Pumps

-98-

.

3’

2

1

0

‘>iiiLo -1

‘mZ

-2

-3

-4

-5

Single phas

+\ curves for U‘\+’+\+

O\ ‘+\+o\. ‘+,+

‘o\ ‘+.0,

0‘O.O

omologous torque

i 3&4{

“-vb■-du+p-=-=;v’I

‘y:w -/0

e .@ =

d/AA=-

AA,

/*p

I

-1.0 -0.5 0.0 0.5 1.0

AIV or VIA

Normal Pump (+Q, +N) , BAN, BVN

Energy Dissipation (-Q +N) : BAD, BVD

Normal Turbin (-Q, -N) : BAT, BVT

Reverse Pump (+Q -N) : BAR, BVR

—m— BAN

—o— BVN

—A— BAT

—v— BVT

-o- BAD

—+— BVD

—x— BAR

—x— BVR

= ~ 4.3(b) Homologous Torque Graph for UCN 3&4 Reactor Coolant

Pumps

-9!3-

4.5

4.0r

Yo

: 3.5

‘z “

3.0t-

+

\e —--’---m

m—————E /0’

,/ ●

-10 0 10 20 30 40 50 60 70

QIN (gpm/rpm)

z ~ 4.4 UCN 3&4 Pump Performance Curve

-1oo-

2,5

2.0

0.0

Speed Torque Curve

All values are for 100% voltage

Synchronous Speed = 1200rpm

Rated Torque = 30013 ft-lbf

w-”/-’

_-.---m-= _-——m—.——————=

\

, I 1 I 4 1

0.0 0.2 0.4 0.6 0.8 1.0

Speed/Synchronous Speed

= w 4.5 Speed vs. Torque

- 101-

Curve

1 1 I1.4 Pump Head Degradation

-s Multiplier vs. Void Fractiong 1.2 ~

I 1 I I t 1 [ I0.0 0.2 0.4 0.6 0.8 1.0

Void Fraction (a)

tip Head

Fraction

DegradationMultiplier vs. Void

-102-

5Z4F.

-103-

-1o4-

IET-RE-DD3, %~%a~l-q $!3742,

Document Collectif, Equipe

Description,” SETh/LES/90-97.

q SEmj

BETHSY, 1990, “BETHSY General

EG&G IDAHO, INC., 1979, “System Design Description for the MOD-3

SEMISCALE System,” Contract EY-76-C-07-1570.

Felicione, F. S., 1975, “LOI?I’ primary coolant pump separate-effects

tests,” ANCR-1187, Aerojet Nuclear Co.

-105-

“Fluid System and Component Engineering Design Data for Plant Safety

Containment and Performance Analysis,” IET-FS-DD1, %}%% x}= q?~,

q3Wm~fl.

Gill, A. B., “Power Plant Perforrnance~ Butterworths.

Gloudemans, J. R., 1989, “Multiloop Integral System Test (MIST) : Final

Report,” NUREG/CP-5395-Vol.7.

Hicks, T. G., 1957, “Pump Selection and Application,” First Edition,

McGraw-Hill Company.

Hydraulic Institute, 1975, “Hydraulic Institute Standards for Centrifugal,

Rotary and Reciprocating Pumps,” Thirteenth edition.

Karnath P. S., and Swift W. L., 1982, “Two-phase Performance of Scale

Models of a Primary Coolant Pump,” Final Report, EPRI-NP--2578.

Larson, T. K., 1987, “An Investigation of Integral Facility Scaling and

Data Relation Methods (Integral System Test Program),”

NuREG/cR-4531.

Loomis, G. C., 1975, “Intact Loop Pump Performance during the

Serniscale MOD-1 Isothermal Test Series,” ANCR-1240, Aerojet Nuclear

Company.

Timothy, J. B., Thomas, K. L., Glen, E. M., and James, L. A., 1990,

“Scailing Analysis for a Savannah River Reactor Scaled Model Integral

System,” EGG-EAST--9382.

The ROSA N Group, 1984, “ROSA-IV Large Scale Test Facility (LSTF)

System Description,” JAERI-M-84-Z37.

-1o6-

White, F. M., 1986, “Fluid Mechanics,” Second Edition, McGraw-Hill

Company.

-107-

BIBLIC)GRAPHIC INFORMATION SHEET

Performingorg. sponsoringorg.

Report No,StamdardReport No.

ReportNo.INIS Subject Code

~-1412/99

Title / SubtitleConceptual Design of Reactor Coolant Pump of Integral Test Facility

for Siulating PWR

Main AuthorWon Ho Choi (ThermalHydraulic Safety ResearchTeam)

and Department

Researcherand Sang Ki MOOUChul Hwa Song, Moon Ki Chung

Department (Thermal HydraulicSafety Research Team)

PublicationTaejon Publisher

Publication

Place Date1999

Page 107 p. Ill. & Tab. Yes(V), No ( ) Size 26 Cm.

Note

classified Open( V ), Restricted ),_ class Document

Report Type TR

sponsoring org. ContractNo.

Abstract(15-20 Lines)

In the design of integral test facility currently carried out in KAERI, the reactor coolant

pump provides sufficient forced flow to primary coolant system and provides the same

temperature distributions in the primary system to the reference plant. At the initial

blowdown phase of small break LOCA, the behavior of the reactor coolant pump can affect

the core flow and break flow, and thus can change overall accident scenario. Therefore,

proper scaling analysis should be performed to correctly simulate the reference reactor

coolant pump. This report presents the scaling analysis result and provides design data fox

reactor coolant pump of integral test facility. This report summarizes basic inforrnations

about reactor coolant Pump. Also, this report includes the parameters of general reactor

coolant pump and the scaling methods for reactor coolant pump used in conventional

integrel test loops. Fhmlly, the conceptual design of reactor coolant Pump is performed using

scaling laws. This report is thought to be very useful for the design and selection of the

reactor coolant pump of integral test loop, and is expected to be used as a guide at the

detailed design of reactor coolant pump to simulate the operational and accidental transients

to be occurred in the integral test looP in view of thermal hydraulics.

Subject Keywords Reactor Coolant Pump, Integral Test Loop, PWR, Conceptual Design,

(About 10 WOrdS) Similarity,Scaling,Flow Characteristics,Homologous Curves