17
Development of Cost-Minimized Integrated Control Strategies for Regional Ozone and PM 2.5 Reductions K.J. Liao 1 , Praveen Amar 2 and A.G. Russell 3 1 Texas A&M University-Kingsville 2 NESCAUM 3 Georgia Institute of Technology

K.J. Liao 1 , Praveen Amar 2 and A.G. Russell 3

Embed Size (px)

DESCRIPTION

Development of Cost-Minimized Integrated Control Strategies for Regional Ozone and PM 2.5 Reductions. K.J. Liao 1 , Praveen Amar 2 and A.G. Russell 3 1 Texas A&M University-Kingsville 2 NESCAUM 3 Georgia Institute of Technology. Emission Sources of Ozone and PM 2.5. Ozone. PM 2.5. SO 2. - PowerPoint PPT Presentation

Citation preview

Page 1: K.J. Liao 1 , Praveen Amar 2  and A.G. Russell 3

Development of Cost-Minimized Integrated Control Strategies for

Regional Ozone and PM2.5

Reductions

K.J. Liao1, Praveen Amar2 and A.G. Russell3

1Texas A&M University-Kingsville2NESCAUM

3Georgia Institute of Technology

Page 2: K.J. Liao 1 , Praveen Amar 2  and A.G. Russell 3

Emission Sources of Ozone and PM2.5

SO2 NOx VOC PM NH3

Ozone PM2.5

Page 3: K.J. Liao 1 , Praveen Amar 2  and A.G. Russell 3

Traditional Framework for Developing State Implementation Plan (SIP)

Cohan et al., 2007

Air Quality Modeling

Page 4: K.J. Liao 1 , Praveen Amar 2  and A.G. Russell 3

Objective

Development of optimal (cost-minimized) control strategies for:

- achieving ozone and PM2.5 targets - at multiple locations simultaneously.

Page 5: K.J. Liao 1 , Praveen Amar 2  and A.G. Russell 3

Ozone IsoplethsUnit: ppb

.,....),,(][ 3 metVOCNOxfO

http://www-personal.umich.edu/~sillman/ozone.htm

Current

Target

Multiple choices for control strategies.

VOC-sensitive

NOx-sensitive

Page 6: K.J. Liao 1 , Praveen Amar 2  and A.G. Russell 3

Air Pollutant 1

Air Pollutant 2

Air Pollutant n

Control Strategy 1

Control Strategy 2

Control Strategy n

Current LevelsAir Quality Targets (e.g. NAAQS)

Air Pollutant 1

Air Pollutant 2

Air Pollutant n

Optimal Air Pollution Control Strategy for Multi-Pollutants and Multi-Locations

Challenge:Challenge:

Air pollutants at different locations have different responses to changes in precursor emissions from common sources

Cost-minimized?

Page 7: K.J. Liao 1 , Praveen Amar 2  and A.G. Russell 3

What We Need to Optimize Air Quality Control Strategies?

Emissions

Air Quality

Emission Control Costs

Responses of air pollutants to emission controls

Optimal control strategy:

Least-cost measures for achieving air quality target

-Cost function

-Limit of control efficiency

Page 8: K.J. Liao 1 , Praveen Amar 2  and A.G. Russell 3

Air Quality Modeling

Central

Great Lake

Mid - Atlantic

Northeast

Southeast

West

Central

Great Lake

Mid - Atlantic

Northeast

Southeast

West

Central

Great Lake

Mid - Atlantic

Northeast

Southeast

West

-Two pollutants: - ozone - PM2.5

-Regional precursors:-SO2 - NOx - VOC

- Local primary PM2.5

- EPA Models-3: - MM5 - SMOKE - CMAQ-DDM

Six regions

Page 9: K.J. Liao 1 , Praveen Amar 2  and A.G. Russell 3

Assumptions

1. First-order sensitivities:

2. Ignore co-benefits of emission reductions for multiple precursors

3. Primary PM2.5 emissions only have local effects on air quality (Napelenok et al., 2006, Kim et al., 2002): Metropolitan Statistical Area (MSA)

j

ijijijpriorinewi

CSTOHSCC

,,,, ..

Page 10: K.J. Liao 1 , Praveen Amar 2  and A.G. Russell 3

Ozone Sensitivity (CMAQ-DDM)

4th MDA 8h ozone concentration (ppbv)

115.2 | 126.6 | 120.2 | 114.6 | 91.3

-10.0

0.0

10.0

20.0

30.0

40.0

50.0

Atlanta Chicago Houston Los Angeles New York

Se

ns

itiv

ity

(p

pb

v)

SOUTHEAST_ NOx GREAT_LAKE_NOx CENTRAL_NOx WEST_NOx

NORTHEAST_NOx MID-ATLACTIC_NOx SOUTHEAST_ VOC GREAT_LAKE_VOC

CENTRAL_VOC WEST_VOC NORTHEAST_VOC MID-ATLACTIC_VOC

(July 2001)

Page 11: K.J. Liao 1 , Praveen Amar 2  and A.G. Russell 3

Sensitivity of PM2.5 and Primary PM2.5 Concentrations (CMAQ-DDM)

Average Total PM2.5 (µg m-3)

24.7 | 23.8 | 26.3 | 24.1 | 22.6

0.0

5.0

10.0

15.0

20.0

25.0

Atlanta Chicago Houston Los Angeles New York

Pri

ma

ry P

M2.

5 c

on

ce

ntr

ati

on

or

Se

ns

itiv

ity

g m

-3)

Primary PM2.5 SOUTHEAST_ SO2 GREAT_LAKE_SO2 CENTRAL_SO2

WEST_SO2 NORTHEAST_SO2 MID-ATLACTIC_SO2 SOUTHEAST_ NOx

GREAT_LAKE_NOx CENTRAL_NOx WEST_NOx NORTHEAST_NOx

MID-ATLACTIC_NOx SOUTHEAST_ VOC GREAT_LAKE_VOC CENTRAL_VOC

WEST_VOC NORTHEAST_VOC MID-ATLACTIC_VOC

Obs. 23.5 18.2 9.7 21.0 13.1

(July 2001)

Page 12: K.J. Liao 1 , Praveen Amar 2  and A.G. Russell 3

Per-ton Cost of Emission Reduction(EPA AirControlNET)

SOUTHEAST

0

5,000

10,000

15,000

20,000

25,000

30,000

0 20 40 60 80 100Emission Reduction (%)

Co

st

(19

99

$/t

on

)

SO2

NOx

VOC

GREAT_LAKE

0

5,000

10,000

15,000

20,000

25,000

30,000

0 20 40 60 80 100Emission Reduction (%)

Co

st

(19

99

$/t

on

)

SO2

NOx

VOC

CENTRAL

0

5,000

10,000

15,000

20,000

25,000

30,000

0 20 40 60 80 100Emission Reduction (%)

Co

st (

1999

$/to

n)

SO2

NOx

VOC

WEST

0

5,000

10,000

15,000

20,000

25,000

30,000

0 20 40 60 80 100Emission Reduction (%)

Co

st

(19

99

$/t

on

)

SO2

NOx

VOC

NORTHEAST

0

5,000

10,000

15,000

20,000

25,000

30,000

0 20 40 60 80 100

Emission Reduction (%)

Co

st

(19

99

$/t

on

)

SO2

NOx

VOC

MID-ATLANTIC

0

5,000

10,000

15,000

20,000

25,000

30,000

0 20 40 60 80 100Emission Reduction (%)

Co

st

(19

99

$/t

on

)

SO2

NOx

VOC

Page 13: K.J. Liao 1 , Praveen Amar 2  and A.G. Russell 3

Per-ton Cost of Primary PM2.5 Emission Reductions

(EPA AirControlNET)

0

20,000

40,000

60,000

80,000

100,000

120,000

0 10 20 30 40 50 60

Emission Reduction (%)

Co

st (

1999

$/to

n)

Atlanta

Chicago

Houston

Los Angeles

New York

Page 14: K.J. Liao 1 , Praveen Amar 2  and A.G. Russell 3

OPtimal Integrated Emission Reduction Alternatives (OPERA)

k

kPMprimarykPMprimaryji

jiji CostCost ,5.2_,5.2_,

,,

kgettarOkpriorOji

kjiOji CCS ,,,,,

,,,, 333

kgettarPMkpriorPMkPMprimarykPMprimaryji

kjiPMji CCCS ,,,,,_,_,

,,,, 5.25.25.25.25.2

kPMprimarykPMprimary

jVOCjVOC

jNOxjNOx

jSOjSO

R

R

R

R

,_,_

,,

,,

,,

5.25.2

22

0

0

0

0

Minimize

Subject to:

Constraints for emission control efficiency

Ozone target

PM2.5 target

Page 15: K.J. Liao 1 , Praveen Amar 2  and A.G. Russell 3

• the objective function in OPERA: nonlinear and non-convex

• using the Matlab “fmincon” function: Quasi-Newton method and multiple initial points

Solving Method

[Mathworks, 2009]

Page 16: K.J. Liao 1 , Praveen Amar 2  and A.G. Russell 3

Atlanta10%

Chicago10%

Houston 10%

Los Angeles10%

New York10%

All Cities 10%

All Cities 15%

All Cities 20%

Anthropogenic SO2 emissions

SOUTHEAST_ SO2~ 0 ~ 0 ~ 0 ~ 0 2.0 5.7 41.3 infeasible

GREAT_LAKE_ SO2~ 0 10.9 ~ 0 ~ 0 ~ 0 10.8 55.3 infeasible

CENTRAL_SO2~ 0 ~ 0 ~ 0 ~ 0 ~ 0 ~ 0 25.4 Infeasible

WEST_ SO2~ 0 ~ 0 ~ 0 ~ 0 ~ 0 ~ 0 ~ 0 Infeasible

NORTHEAST_ SO2~ 0 ~ 0 ~ 0 ~ 0 ~ 0 ~ 0 ~ 0 Infeasible

MID-ATLANTIC_ SO2~ 0 ~ 0 ~ 0 ~ 0 ~ 0 ~ 0 ~ 0 Infeasible

Anthropogenic NOx emissions

SOUTHEAST_ NOx31.6 23.8 22.4 5.1 11.5 31.9 63.6 Infeasible

GREAT_LAKE_ NOx16.8 62.9 ~ 0 ~ 0 30.3 64.5 72.4 infeasible

CENTRAL_ NOx19.3 34.2 39.7 20.8 21.2 37.9 77.2 Infeasible

WEST_ NOx~ 0 22.4 ~ 0 ~ 0 ~ 0 ~ 0 64.0 Infeasible

NORTHEAST_ NOx~ 0 ~ 0 ~ 0 ~ 0 ~ 0 ~ 0 ~ 0 Infeasible

MID-ATLANTIC_ NOx~ 0 ~ 0 ~ 0 ~ 0 47.9 41.3 53.7 Infeasible

Anthropogenic VOC emissions

SOUTHEAST_VOC ~ 0 ~ 0 ~ 0 ~ 0 ~ 0 0.8 17.5 Infeasible

GREAT_LAKE_VOC ~ 0 59.6 ~ 0 ~ 0 1.1 57.1 89.1 Infeasible

CENTRAL_VOC ~ 0 3.3 3.1 ~ 0 ~ 0 3.4 28.7 Infeasible

WEST_VOC ~ 0 0.7 ~ 0 46.6 ~ 0 40.2 74.3 Infeasible

NORTHEAST_VOC ~ 0 ~ 0 ~ 0 ~ 0 75.5 66.9 86.7 infeasible

MID-ATLANTIC_VOC ~ 0 ~ 0 ~ 0 ~ 0 60.4 43.0 78.0 Infeasible

Primary PM2.5 emissions

Atlanta_PM2.522.4 ~ 0 ~ 0 ~ 0 ~ 0 15.4 4.5 Infeasible

Chicago_PM2.5~ 0 11.3 ~ 0 ~ 0 ~ 0 12.3 20.0 Infeasible

Houston_PM2.5~ 0 ~ 0 17.4 ~ 0 ~ 0 19.2 23.3 Infeasible

Los Angeles_PM2.5~ 0 ~ 0 ~ 0 42.4 ~ 0 11.8 14.2 infeasible

New York_PM2.5~ 0 ~ 0 ~ 0 ~ 0 38.0 22.0 22.3 Infeasible

Cost (millions of 1999$) 1,766 14,205 2,422 3,649 10,427 23,459 77,887 -

Page 17: K.J. Liao 1 , Praveen Amar 2  and A.G. Russell 3

Conclusions

• OPERA needs responses of air pollutants to emission controls, cost functions of emission reductions and emission control efficiencies.

• Responses of air pollutants to emission controls are quantified using CMAQ-DDM.

• Cost functions and emission control efficiencies are developed using AirControlNET.

• OPERA is efficient in developing cost-minimized control strategies for achieving prescribed multi-pollutant targets at multiple locations and could help policy-makers improve their decision-making processes.