77
Kinetics of nanosecond discharges at high specific energy release Laboratoire de Physique des Plasmas Svetlana Starikovskaia Laboratory of Plasma Physics, Ecole Polytechnique, Paris, France

Kinetics of nanosecond discharges at high specific energy ...mipse.umich.edu/files/Starikovskaia_presentation.pdfCapillary nanosecond discharge Low voltage Electrode (not grounded)

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Kinetics of nanosecond discharges at high specific energy ...mipse.umich.edu/files/Starikovskaia_presentation.pdfCapillary nanosecond discharge Low voltage Electrode (not grounded)

Kinetics of nanosecond discharges at high

specific energy release

Laboratoire de Physique des Plasmas

Svetlana Starikovskaia

Laboratory of Plasma Physics, Ecole Polytechnique, Paris, France

Page 2: Kinetics of nanosecond discharges at high specific energy ...mipse.umich.edu/files/Starikovskaia_presentation.pdfCapillary nanosecond discharge Low voltage Electrode (not grounded)

Co-authors and collaborators for this work

LPP PostDocs@PhD students: Sergey Shcherbanev, Yifei Zhu,Nikita Lepikhin, Sergey Stepanyan, Andrey Klochko

LPP fellowship PostDocs@students: Ilya Kosarev, Brian Baron,Andrey Khomenko, James Williams, Georgy Pokrovskiy,

2

Kinetic calculations and theory: Dr. Nikolay Popov (MSU)

Andrey Khomenko, James Williams, Georgy Pokrovskiy,Mhedine Alicherif

PAC/PAI: Mohamed A. Boumehdi, Guillaume Vanhove,Pascale Desgroux (Lille University)

2D streamer (early) calculations: Dr. Vladimir Soloviev (MIPT)

Page 3: Kinetics of nanosecond discharges at high specific energy ...mipse.umich.edu/files/Starikovskaia_presentation.pdfCapillary nanosecond discharge Low voltage Electrode (not grounded)

Plan of the presentation

I. Introduction

II. Problem formulation

III. Experimental tools III. Experimental tools

IV. Results and discussion: -capillary nanosecond discharge at moderate pressure -surface dielectric barrier discharge (nSDBD) at 1 atm-surface dielectric barrier discharge at high pressure, filamentation in nanosecond single-shot discharge

V. Conclusion

3

Page 4: Kinetics of nanosecond discharges at high specific energy ...mipse.umich.edu/files/Starikovskaia_presentation.pdfCapillary nanosecond discharge Low voltage Electrode (not grounded)

Low temperature – high temperature plasma: where we are?

High T plasma

6

7

8

9

10

Z-pinch

Gas lasers

Sun corona

Nuclear synthesis

Sun core

[K])

4

Low T plasma

-2 0 2 4 6 8 10 12 14 16 18 20 22 240

1

2

3

4

5Gas lasers

Streamer

PLasma torchLightning, spark

Cathode spot

Ionosphere plasma

Intetstellar plasmaPLasma of metals

lg(T

e[K])

lg(N e[cm -3])

Page 5: Kinetics of nanosecond discharges at high specific energy ...mipse.umich.edu/files/Starikovskaia_presentation.pdfCapillary nanosecond discharge Low voltage Electrode (not grounded)

Motivation: plasma-assisted combustion

• Fast flows:

150 ms x 2.5 m/ms (M=8) L= 375 m

5

• To estimate the length:TGV Eurostar: TransManche Super Train LTGV=395 m (20 cars)

Need to have shorter ignition delay

Page 6: Kinetics of nanosecond discharges at high specific energy ...mipse.umich.edu/files/Starikovskaia_presentation.pdfCapillary nanosecond discharge Low voltage Electrode (not grounded)

Decrease of ignition delay time:moderate gas densities; uniform ns discharge

103

104

105

CH4, auto, 0.4-0.7 atm

CH , auto, 2 atm

Ig

nitio

n de

lay

time,

µµ µµ s

Auto Exp, C2H6 Auto Calc, C2H6 PAI Exp, C2H6 PAI Calc, C2H6, , , C3H8, , , C4H10, , , C5H12

6

0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85

100

101

102

10

CH4-C

5H

12,

PAI, 0.2-0.7 atm

C2H

6-C

5H

12,

auto, 0.2-0.7 atm

CH4, auto, 2 atm

Igni

tion

dela

y tim

e,

1000/T, K-1

N L Aleksandrov, S V Kindysheva, I N Kosarev, S M Starikovskaia, A Yu Starikovskii, Proc. of Combustion Institute, 32 (2009) 205-212

Page 7: Kinetics of nanosecond discharges at high specific energy ...mipse.umich.edu/files/Starikovskaia_presentation.pdfCapillary nanosecond discharge Low voltage Electrode (not grounded)

High pressure ignition of combustibe mixtures

- Ignition of lean mixtures- Multi-point ignition- Ignition at lower temperatures- Ignition of bio-fuels

7

- Ignition of bio-fuels

Page 8: Kinetics of nanosecond discharges at high specific energy ...mipse.umich.edu/files/Starikovskaia_presentation.pdfCapillary nanosecond discharge Low voltage Electrode (not grounded)

Different potential applications

Flow speed up to 100 m/s

85 min after plasma action

Pressures up to 15 bar

Page 9: Kinetics of nanosecond discharges at high specific energy ...mipse.umich.edu/files/Starikovskaia_presentation.pdfCapillary nanosecond discharge Low voltage Electrode (not grounded)

What is peculiar with nanosecond discharges? E-field range

1,0

O2 vibr

Ene

rgy

bran

chin

g N2 vibr

RF ns

9

0,1 1 100,0

0,5

O2 electr

N2 electr

O2, N

2 ion

elastic

O2, N

2 rot

Ene

rgy

bran

chin

g

E/N, 10 -16 V cm 2 N.L. Aleksandrov, E.E. Son, 1980, in: Plasma Chemistry, B.M.Smirnov, ed., Atomizdat Publ., Moscow, V.7, pp. 35-75

Page 10: Kinetics of nanosecond discharges at high specific energy ...mipse.umich.edu/files/Starikovskaia_presentation.pdfCapillary nanosecond discharge Low voltage Electrode (not grounded)

Main pathway for initiation [any] chemistry by ns discharges

100 ps- high electric fields

- excitation by electron impact

- dominant population of electronically

10

1 ns

100 ns

- dominant population of electronicallyexcited levels

- dissociation

- relaxation with the rest of the energygoing to heat

Page 11: Kinetics of nanosecond discharges at high specific energy ...mipse.umich.edu/files/Starikovskaia_presentation.pdfCapillary nanosecond discharge Low voltage Electrode (not grounded)

Aim of present work

To underline specific features of pulsednanosecond discharges under conditions of

- high specific energy density;

- high reduced electric fields.- high reduced electric fields.

To specify the most important changes inplasma chemical kinetics at the mentionedconditions

11

Page 12: Kinetics of nanosecond discharges at high specific energy ...mipse.umich.edu/files/Starikovskaia_presentation.pdfCapillary nanosecond discharge Low voltage Electrode (not grounded)

Experimental setup: discharge parameters and spectroscopy

12

DT - Discharge tube; BCS - Back Current Shunt; TG - Triggering generator; HVG - High Voltage Generator; CP - Capacitive Probe; ICCD - Intensified CCD Camera; OSC - Oscilloscope; MC - Monochromator

Page 13: Kinetics of nanosecond discharges at high specific energy ...mipse.umich.edu/files/Starikovskaia_presentation.pdfCapillary nanosecond discharge Low voltage Electrode (not grounded)

Typical discharges and discharge cells

FIW, 1-10 Torr, L=20cm

CD, 20 Torr, 8 cm

13

nSDBD, 8 bar 10cm/0.5 mm

nSDBD, 15 bar 10cm/0.5 mm (T<700 K)

Page 14: Kinetics of nanosecond discharges at high specific energy ...mipse.umich.edu/files/Starikovskaia_presentation.pdfCapillary nanosecond discharge Low voltage Electrode (not grounded)

Experimental tools

U(t),I(t): calibrated custom made backcurrent shunts;

E/N(t,x): calibrated custom made capacitivedetectors; emission spectroscopy;

14

detectors; emission spectroscopy;

v(t,x), morphology: ICCD (filtered) imaging

ne(t,x): electrical current measurements,Stark broadening

[O](t): actinometry, TALIF

Page 15: Kinetics of nanosecond discharges at high specific energy ...mipse.umich.edu/files/Starikovskaia_presentation.pdfCapillary nanosecond discharge Low voltage Electrode (not grounded)

Specific deposited energy, eV/mol

15

FIW,

10-3 eV/mol

1 atm SDBD

streamer,

0.1 eV/mol

Capillary

discharge,

>1 eV/mol

Page 16: Kinetics of nanosecond discharges at high specific energy ...mipse.umich.edu/files/Starikovskaia_presentation.pdfCapillary nanosecond discharge Low voltage Electrode (not grounded)

Scientific elegance: “diluted” chemistry in high fields at nanoseconds

103

FIW front structure

ne, cm -3

E/N, Td

1012

1013

16

0 5 10 15 20 25

102

[N2

+(B

2ΣΣΣΣ

+

u)], cm-3

[N2(C3ΠΠΠΠ

u)], cm -3

Time, ns

1010

1011

S.V.Pancheshnyi et al J. Phys. D: Appl. Phys, 1999, 32 2219

Page 17: Kinetics of nanosecond discharges at high specific energy ...mipse.umich.edu/files/Starikovskaia_presentation.pdfCapillary nanosecond discharge Low voltage Electrode (not grounded)

Example of application: N2(C3Πu)

quenching rate measurements

17S.V.Pancheshnyi et al Chem. Phys., 2000, 262, 349-357

Page 18: Kinetics of nanosecond discharges at high specific energy ...mipse.umich.edu/files/Starikovskaia_presentation.pdfCapillary nanosecond discharge Low voltage Electrode (not grounded)

Fast ionization waves (U=+10 kV in the cable, FWHM=30 ns)

Discharge in air at 1-10 Torr (N=1017 cm-3):

I(t): 60 A (3 A/cm2);

v(t,x): 50 mm/ns;

18

v(t,x): 50 mm/ns;

E/N(t,x): 1-5 kTd in the front and 100-300 Tdin the region of energy deposition after thefront;

ne(t,x): 1012 cm-3

Page 19: Kinetics of nanosecond discharges at high specific energy ...mipse.umich.edu/files/Starikovskaia_presentation.pdfCapillary nanosecond discharge Low voltage Electrode (not grounded)

Scale of specific deposited energy

19

FIW,

10-3 eV/mol

1 atm SDBD

streamer,

0.1 eV/mol

Capillary

discharge,

>1 eV/mol

Page 20: Kinetics of nanosecond discharges at high specific energy ...mipse.umich.edu/files/Starikovskaia_presentation.pdfCapillary nanosecond discharge Low voltage Electrode (not grounded)

Capillary nanosecond discharge

Low voltageElectrode

(not grounded)

Quartz tubeInner diameter:1.5 4 mmor

50-70 mm

HV electrode

50 mm

Flow in 10-50 sccm

(gas renewedevery 10 ms)

Gas flow out4-50 mbar

N :O mixture2 2

Grounded screen

Plasma

electrode

20U(t):

Page 21: Kinetics of nanosecond discharges at high specific energy ...mipse.umich.edu/files/Starikovskaia_presentation.pdfCapillary nanosecond discharge Low voltage Electrode (not grounded)

Electric field and current waveforms

500

600

700

E fi

eld,

Td 40

50

60

21

-10 0 10 20 30 40 50 60

0

100

200

300

400

E fi

eld,

Td

I, A

Time, ns

0

10

20

30

40

Page 22: Kinetics of nanosecond discharges at high specific energy ...mipse.umich.edu/files/Starikovskaia_presentation.pdfCapillary nanosecond discharge Low voltage Electrode (not grounded)

Specific energy and gas heating

3

4 First pulse Second pulse W1+W2 Third pulse W1+W2+W3

Dep

osite

d en

ergy

, eV

/mol

ecul

e

22

10 20 30 40 50

0

1

2

(b)

Dep

osite

d en

ergy

, eV

/mol

ecul

e

Pressure, mbar

Energy: a few eV/mol Temperature: a few kK/µs>1 eV/mol, >3000 K

Page 23: Kinetics of nanosecond discharges at high specific energy ...mipse.umich.edu/files/Starikovskaia_presentation.pdfCapillary nanosecond discharge Low voltage Electrode (not grounded)

0.1

1 Experimental Theoretical

PM

T s

igna

l, V

N2(C3Πu) emission decay in nitrogen

33 ns [1]

0 40 80 120 160

0.01

0.1

PM

T s

igna

l, V

Time, ns 23[1] Pancheshnyi, S. V., Starikovskaia, S. M., and Starikovskii, A. Y., Chemical Physics, 262 (2000)

Page 24: Kinetics of nanosecond discharges at high specific energy ...mipse.umich.edu/files/Starikovskaia_presentation.pdfCapillary nanosecond discharge Low voltage Electrode (not grounded)

0.1

1 Experimental Theoretical

PM

T s

igna

l, V

N2(C3Πu) emission decay in nitrogen

9 ns

33 ns [1]

0 40 80 120 160

0.01

0.1

PM

T s

igna

l, V

Time, ns 24[1] Pancheshnyi, S. V., Starikovskaia, S. M., and Starikovskii, A. Yu., Chemical Physics, 262 (2000)

9 ns

17 ns

Page 25: Kinetics of nanosecond discharges at high specific energy ...mipse.umich.edu/files/Starikovskaia_presentation.pdfCapillary nanosecond discharge Low voltage Electrode (not grounded)

N2(C3Πu) reverse decay vs pressure

0.08

0.10

0.12

0.91 eV/mol.

0.93 eV/mol.

0.90 eV/mol.

ns-1

1.5mm tube 1.5mm tube 1.5mm tube theoretical 4mm tube 4mm tube 4mm tube

Specific depositedenergy decreasing

25

0 10 20 30 40 50 600.02

0.04

0.06

0.08

0.58 eV/mol.

0.72 eV/mol.

1/ττ ττ,

ns

P, mbar

4mm tube 4mm tube

Page 26: Kinetics of nanosecond discharges at high specific energy ...mipse.umich.edu/files/Starikovskaia_presentation.pdfCapillary nanosecond discharge Low voltage Electrode (not grounded)

Analysis of the experimental results

Possible causes:

– Stimulated emission

– Variation of quenching rate with temperature

– Quenching by atoms

– Quenching by excited species (up to 10% of N2 are – Quenching by excited species (up to 10% of N2 are electronically excited)

– Quenching by electrons: ne=1015 cm-3

– The electron density at t>10 ns is sustained by reactions of associative ionization:

N2(A3Σ+

u) + N2(a’1Σ-u) � N4

+ + e

N2(a’1Σ-u) + N2(a’1Σ-

u) � N4+ + e

26

Page 27: Kinetics of nanosecond discharges at high specific energy ...mipse.umich.edu/files/Starikovskaia_presentation.pdfCapillary nanosecond discharge Low voltage Electrode (not grounded)

Calculated ne and excited species densities

1016

27 mbar

N (A)

N2(a)

N2(B)

Den

sity

, cm

-3

27● electron density slightly changes after discharge pulse

101 1021014

1015

N2(C)

N2(A)

Ne

Den

sity

, cm

Time, ns

Page 28: Kinetics of nanosecond discharges at high specific energy ...mipse.umich.edu/files/Starikovskaia_presentation.pdfCapillary nanosecond discharge Low voltage Electrode (not grounded)

Calculated and measured electron density in the afterglow in nitrogen

10

associative ionization

ne afterglow experimental

ne main pulse experimental

den

sity

, 10

14cm

-3

28

40 80 120 160 200 240

1

ionization

Ne

dens

ity, 1

0

Time, ns

no associative ionization

101 102

1015

1016

keC

=0 cm3/s

5x10-8

Experiment

keC

=10-7 cm3/s

N2(C

3 ΠΠ ΠΠu)

dens

ity, c

m-3

Time, ns

Page 29: Kinetics of nanosecond discharges at high specific energy ...mipse.umich.edu/files/Starikovskaia_presentation.pdfCapillary nanosecond discharge Low voltage Electrode (not grounded)

“Non-diluted” plasma chemistry: how this will influence the diagnostics?

N2(A3Σ+

u) + N2(a’1Σ-u) � Prod

N2(C3Πu) + e � Prod

A* + e � Prod?

A* + M* � Prod?

29

Page 30: Kinetics of nanosecond discharges at high specific energy ...mipse.umich.edu/files/Starikovskaia_presentation.pdfCapillary nanosecond discharge Low voltage Electrode (not grounded)

Actinometry in nanosecond capillary discharge in air, 20 Torr

1

7 ns

Inte

nsit

y, a

.u. 22 ns 8

30Actinometry: 5.3% Ar in air; OES of Ar(2p1), 750 nm // O(3p3P), 845 nm

0 10 20 30 40 50 60

0.1

7 ns

Inte

nsit

y, a

.u.

Time, ns

N2(C3)-theory

N2(C3)-experiment

0 10 20 30 40 50 600

2

4

6

O(3p3P) Ar(2p1)

Inte

nsit

y, a

.u.

Time, ns

?

Page 31: Kinetics of nanosecond discharges at high specific energy ...mipse.umich.edu/files/Starikovskaia_presentation.pdfCapillary nanosecond discharge Low voltage Electrode (not grounded)

Temporal behavior of Ar* and N2(C)

31

Page 32: Kinetics of nanosecond discharges at high specific energy ...mipse.umich.edu/files/Starikovskaia_presentation.pdfCapillary nanosecond discharge Low voltage Electrode (not grounded)

Temporal behavior of O*, Ar*/O* ratio and rates of O* production/decay

32

Page 33: Kinetics of nanosecond discharges at high specific energy ...mipse.umich.edu/files/Starikovskaia_presentation.pdfCapillary nanosecond discharge Low voltage Electrode (not grounded)

O-density: 3e16 cm-3; am expression for the discharge phase

33

Page 34: Kinetics of nanosecond discharges at high specific energy ...mipse.umich.edu/files/Starikovskaia_presentation.pdfCapillary nanosecond discharge Low voltage Electrode (not grounded)

O-TALIF: scheme of the levels

34

Niemi, K., Schulz-von der Gathen, V., and Döbele, H. F., Plasma Source Science and Technology, Vol. 14, No. 2, 2005, pp. 375-386

Page 35: Kinetics of nanosecond discharges at high specific energy ...mipse.umich.edu/files/Starikovskaia_presentation.pdfCapillary nanosecond discharge Low voltage Electrode (not grounded)

TALIF: O-atoms density in the afterglow

35

Page 36: Kinetics of nanosecond discharges at high specific energy ...mipse.umich.edu/files/Starikovskaia_presentation.pdfCapillary nanosecond discharge Low voltage Electrode (not grounded)

Long time trend: actinometry and TALIF

1016

1017

O(3P), TALIF: w/ Q(T) O(3P), TALIF: no Q(T)

2.

1.NO

N(4S)O(3P)

O a

tom

s, c

m-3

1E16

1E17

1E18

Den

sity

, cm

-3

e O

36

100 101 102 103 104

1014

1015

N(4S)

N2(B+C)/5

O( P)

O a

tom

s, c

m

Time, ns1 10

1E14

1E15

Den

sity

, cm

Time, ns

O2 N2 Ar N2(C3)

Page 37: Kinetics of nanosecond discharges at high specific energy ...mipse.umich.edu/files/Starikovskaia_presentation.pdfCapillary nanosecond discharge Low voltage Electrode (not grounded)

Capillary discharge (U=+10 kV in the cable, T=30 ns)

Discharge in air at 27 mbar (N=7x1017 cm-3):

I(t): 60 A (2.5 kA/cm2);v(t,x): 15 mm/ns;

37

v(t,x): 15 mm/ns;

E/N(t,x): 1-3 kTd in the front and 200-400 Tdin the region of energy deposition after thefront;ne(t,x): 1015 cm-3;[O](t): 50-100% dissociation of O2 at 2 µs

Page 38: Kinetics of nanosecond discharges at high specific energy ...mipse.umich.edu/files/Starikovskaia_presentation.pdfCapillary nanosecond discharge Low voltage Electrode (not grounded)

Scale of specific deposited energy

38

FIW,

10-3 eV/mol

1 atm SDBD

streamer,

0.1 eV/mol

Capillary

discharge,

>1 eV/mol

Page 39: Kinetics of nanosecond discharges at high specific energy ...mipse.umich.edu/files/Starikovskaia_presentation.pdfCapillary nanosecond discharge Low voltage Electrode (not grounded)

Atmospheric pressure nanosecond SDBD

39

2014 S.A.Stepanyan, V.R.Soloviev and S.M.Starikovskaia J.Phys.D.:Appl. Phys, 47, 485201 (13pp)

Page 40: Kinetics of nanosecond discharges at high specific energy ...mipse.umich.edu/files/Starikovskaia_presentation.pdfCapillary nanosecond discharge Low voltage Electrode (not grounded)

Propagation by ICCD imaging (ICCD gate is 1 ns, N2(C

3Πu) emission)

40

2003 First time: D.V. Roupassov, A.Yu.Starikovskii, MIPT(GE Project //PhD Thesis)

Page 41: Kinetics of nanosecond discharges at high specific energy ...mipse.umich.edu/files/Starikovskaia_presentation.pdfCapillary nanosecond discharge Low voltage Electrode (not grounded)

nSDBD modeling; difference between–U and +U

-U

41

+U

100 µµµµm thickness

20 µµµµm thickness

Page 42: Kinetics of nanosecond discharges at high specific energy ...mipse.umich.edu/files/Starikovskaia_presentation.pdfCapillary nanosecond discharge Low voltage Electrode (not grounded)

Distribution of parameters near the surface streamer head

Q

Te

422016 N.Yu.Babaeva, D.V.Tereshonok and G.V.NaidisPlasma Sources Sci. Technol. 25 044008

E

ne

Page 43: Kinetics of nanosecond discharges at high specific energy ...mipse.umich.edu/files/Starikovskaia_presentation.pdfCapillary nanosecond discharge Low voltage Electrode (not grounded)

nSDBD ICCD imaging: 2+ system of N2

No diaphragm With diaphragm

0.5 ns gate, (7x7) mm per pixel

43

Page 44: Kinetics of nanosecond discharges at high specific energy ...mipse.umich.edu/files/Starikovskaia_presentation.pdfCapillary nanosecond discharge Low voltage Electrode (not grounded)

nSDBD development: 1 atm air, |U|=24 kV

-

44

+

Page 45: Kinetics of nanosecond discharges at high specific energy ...mipse.umich.edu/files/Starikovskaia_presentation.pdfCapillary nanosecond discharge Low voltage Electrode (not grounded)

nSDBD development: 1 atm air, |U|=24 kV

-

45

+

Page 46: Kinetics of nanosecond discharges at high specific energy ...mipse.umich.edu/files/Starikovskaia_presentation.pdfCapillary nanosecond discharge Low voltage Electrode (not grounded)

nSDBD development: 1 atm air, |U|=24 kV

-

46

+

Page 47: Kinetics of nanosecond discharges at high specific energy ...mipse.umich.edu/files/Starikovskaia_presentation.pdfCapillary nanosecond discharge Low voltage Electrode (not grounded)

nSDBD development: 1 atm air, |U|=24 kV

-

47

+

Page 48: Kinetics of nanosecond discharges at high specific energy ...mipse.umich.edu/files/Starikovskaia_presentation.pdfCapillary nanosecond discharge Low voltage Electrode (not grounded)

nSDBD development: 1 atm air, |U|=24 kV

-

48

+

Page 49: Kinetics of nanosecond discharges at high specific energy ...mipse.umich.edu/files/Starikovskaia_presentation.pdfCapillary nanosecond discharge Low voltage Electrode (not grounded)

nSDBD development: 1 atm air, |U|=24 kV

-

49

+

Page 50: Kinetics of nanosecond discharges at high specific energy ...mipse.umich.edu/files/Starikovskaia_presentation.pdfCapillary nanosecond discharge Low voltage Electrode (not grounded)

nSDBD development: 1 atm air, |U|=24 kV

-

50

+

100 µµµµm thickness

Page 51: Kinetics of nanosecond discharges at high specific energy ...mipse.umich.edu/files/Starikovskaia_presentation.pdfCapillary nanosecond discharge Low voltage Electrode (not grounded)

x-t diagram: streamer head vs time

25

30

35 HV pulse shape calculations, + 24 kV calculations, -24 kV

Dis

tanc

e fr

om H

V e

lect

rode

, mm

+U, 25 mm span -U, 25 mm span

51

0 5 10 15 20 25 30 35 400

5

10

15

20

Dis

tanc

e fr

om H

V e

lect

rode

, mm

Time, ns

-U, 25 mm span +U, 50 mm span -U, 50 mm span -U, cylindrical, 63 mm

perimeter of the electrode -U, 80 mm span

A B

Page 52: Kinetics of nanosecond discharges at high specific energy ...mipse.umich.edu/files/Starikovskaia_presentation.pdfCapillary nanosecond discharge Low voltage Electrode (not grounded)

N2(C3Πu) emission 3 mm away from

HV electrode and current in the streamer

100

Inte

nsity

of N

2(C

) em

issi

on, a

.u.

Positive Negative

0.8

1.0

1.2

1.4

Cur

rent

, A/c

hann

el

U<0

HV

A B A B

52

0 5 10 15 20 25 30 35

1

10

Inte

nsity

of N

2(C

) em

issi

on, a

.u.

Distance, mm

Noise level

0 5 10 15 20 25 30 35-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

Cur

rent

, A/c

hann

el

Time, nsSegment |AB|

Streamer (U<0) stops after ≈10 ns. Emission intensity and electrical current on |AB| are ≈const

Page 53: Kinetics of nanosecond discharges at high specific energy ...mipse.umich.edu/files/Starikovskaia_presentation.pdfCapillary nanosecond discharge Low voltage Electrode (not grounded)

What we can estimate from the experimental data

) = 0

Ech = 2U/Lmax

0 5 10 15 20 25

0

5

10

15

20

25

30

35

Dis

tanc

e fr

om H

V e

lect

rode

, mm

Time, ns

Positive Negative

53

) = 0

0 10 20 30 40-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Cur

rent

, A/c

hann

el

Time, ns

0 5 10 15 20 25 30 35

1

10

100

Inte

nsity

of e

mis

sion

, a.u

.Distance, mm

Positive Negative

Noise level

Page 54: Kinetics of nanosecond discharges at high specific energy ...mipse.umich.edu/files/Starikovskaia_presentation.pdfCapillary nanosecond discharge Low voltage Electrode (not grounded)

Logics of data treatment

Electron density ne on the segment |AB|

Absolute value of N2(C) on the segment |AB|

Current and radius measurements I(t), r

E/N on the segment |AB|, E=U/Lmax

Emission intensity measurements

54

Temporal profile of N2(C) concentration

f(E/N)=Eµ/kexc=j(t)/kexcne

Temporal profile of E/NElectron density ne(t)

0 5 10 15 20 25 30 35

1

10

100

Inte

nsity

of e

mis

sion

, a.u

.

Distance, mm

Positive Negative

Noise level

Page 55: Kinetics of nanosecond discharges at high specific energy ...mipse.umich.edu/files/Starikovskaia_presentation.pdfCapillary nanosecond discharge Low voltage Electrode (not grounded)

Comparison with results of numerical calculations

150

200

250

300 Calculations Experiment

E/N

, Td

E/N

|AB|

Electric field Electron density

[2]

55

0 5 10 15 20 25 30

0

50

100

150

Time, ns

E/N

, Td

|AB| [2]

[1][1] Results of Babaeva et al.[2] Results of Soloviev et al.

|AB|

Lines: 1D kinetic modeling, N.A.Popov (MSU)

Page 56: Kinetics of nanosecond discharges at high specific energy ...mipse.umich.edu/files/Starikovskaia_presentation.pdfCapillary nanosecond discharge Low voltage Electrode (not grounded)

Streamer discharge (U=+10 kV in the cable, T=30 ns)

nSDBD in air at 1 atm:

I(t): 0.2 A/streamer (600 A/cm2);

56

I(t): 0.2 A/streamer (600 A/cm );

v(t,x): 2-5 mm/ns;

E/N(t,x): 100 Td after the front for U<0,<<100 Td for U>0;

ne(t,x): 1014 cm-3

Page 57: Kinetics of nanosecond discharges at high specific energy ...mipse.umich.edu/files/Starikovskaia_presentation.pdfCapillary nanosecond discharge Low voltage Electrode (not grounded)

Flow control: 2D modeling and experiments

57

Page 58: Kinetics of nanosecond discharges at high specific energy ...mipse.umich.edu/files/Starikovskaia_presentation.pdfCapillary nanosecond discharge Low voltage Electrode (not grounded)

Scale of specific deposited energy

High pressure filamentary SDBD?

58

HV

Page 59: Kinetics of nanosecond discharges at high specific energy ...mipse.umich.edu/files/Starikovskaia_presentation.pdfCapillary nanosecond discharge Low voltage Electrode (not grounded)

High pressure nSDBD: streamer-to-filament transition

Intensity (filament)=50 x Intensity (streamer)

59

-35 kV, 2 bar, air -46 kV, 4 bar, air

Page 60: Kinetics of nanosecond discharges at high specific energy ...mipse.umich.edu/files/Starikovskaia_presentation.pdfCapillary nanosecond discharge Low voltage Electrode (not grounded)

Analysis of intensities (streamer vs filamentary mode)

60

Radial distribution of the frontal discharge emission; P=3 bar, U=-46 kV

Page 61: Kinetics of nanosecond discharges at high specific energy ...mipse.umich.edu/files/Starikovskaia_presentation.pdfCapillary nanosecond discharge Low voltage Electrode (not grounded)

Optical emission in the filaments

ICCD images and radial intensity profiles of single filament: without filter and with (480±5) nm and (340±5) nm narrowband filte rs

0

20000

40000

60000

80000

no filter

N2(C3ΠΠΠΠu)CW spectrum

61

ICCD camera gate is 10 ns-120 -80 -40 0 40 80 120 160

500

1000

1500

2000

2500

500

1000

1500

2000

Distance, x(03BC)m

340 nm filter

Inte

nsity

, a.u

.

480 nm filter

Page 62: Kinetics of nanosecond discharges at high specific energy ...mipse.umich.edu/files/Starikovskaia_presentation.pdfCapillary nanosecond discharge Low voltage Electrode (not grounded)

Filamentation curves for nitrogen,air and N2/CH4 mixtures

38

40

42

44

N2/CH4 (1%)

Vol

tage

, kV

U<0

35

40

45

50

N2/CH4 (6%)

Vol

tage

, kV

U>0

62

2 4 6 8 10 12

28

30

32

34

36

N2/CH4 (1%)

N2

Vol

tage

, kV

Pressure, bar

Air

4 6 8 10 1210

15

20

25

30

35

AirN2

Vol

tage

, kV

Pressure, bar

Page 63: Kinetics of nanosecond discharges at high specific energy ...mipse.umich.edu/files/Starikovskaia_presentation.pdfCapillary nanosecond discharge Low voltage Electrode (not grounded)

Continuous spectra in filamentary discharge

63

Page 64: Kinetics of nanosecond discharges at high specific energy ...mipse.umich.edu/files/Starikovskaia_presentation.pdfCapillary nanosecond discharge Low voltage Electrode (not grounded)

Electron density in the filaments: H-atom emission at 656 nm

1

2

3

4

Hig

h vo

ltage

, a.u

.

20

25

30

35

FW

HM

, nm

1019

64

0 20 40 60

-4

-3

-2

-1

0

1

Hig

h vo

ltage

, a.u

.

Discharge time, ns

0

5

10

15

20

FW

HM

, nm

1017

1018

ne (

cm-3

)

Page 65: Kinetics of nanosecond discharges at high specific energy ...mipse.umich.edu/files/Starikovskaia_presentation.pdfCapillary nanosecond discharge Low voltage Electrode (not grounded)

Group of support: for high electron densities!

ne=5x1018 cm -3

ne=9x1018 cm -3

65

Van der Horst R., Verreycken T, Bruggeman P. et al J. Phys.D. (2012) 345201

Lo A., Cessou A, Lacour C. et al PSST (2017) 045012

ne=5x10 cm

D. Pai, GEC 2016

ne=1.5x1018 cm -3

Page 66: Kinetics of nanosecond discharges at high specific energy ...mipse.umich.edu/files/Starikovskaia_presentation.pdfCapillary nanosecond discharge Low voltage Electrode (not grounded)

Correlation in time: U-pulse, FWHM of O-line, intensity of CW emission, O* –atom density

4

5

6

Hig

h vo

ltage

, a.u

.

8

10

Line

777

nm

Lor

entz

FW

HM

, nm

1000

1500

Are

a lin

e 77

7 nm

by

hand

, a.u

.

80 90 100 110 120 130

Delay, ns

80

100

120

Con

tinuo

us s

pecr

um in

tens

ity a

t 777

nm

, a.u

.

66

0 10 20 30 40 50

0

1

2

3

Hig

h vo

ltage

, a.u

.

Discharge time, ns

0

2

4

6

Line

777

nm

Lor

entz

FW

HM

, nm

0

500

1000

Are

a lin

e 77

7 nm

by

hand

, a.u

.

0

20

40

60

80

Con

tinuo

us s

pecr

um in

tens

ity a

t 777

nm

, a.u

.

Continuous spectrum base level

Page 67: Kinetics of nanosecond discharges at high specific energy ...mipse.umich.edu/files/Starikovskaia_presentation.pdfCapillary nanosecond discharge Low voltage Electrode (not grounded)

Possible reasons of CW spectrum-1

Bremsstrahlung and recombination radiation

eionebr TNNQ ⋅⋅∝

1x10-24

1x10-23

Inte

nsity

of e

mis

sion

, a.u

.

bremsstrahlung recombination

67

e

ionerec

T

NNQ

⋅∝

Intensity of bremsstrahlung and recombination radiation is

a strong function of density of charged species

and weakly depends on the electron temperature

0 10 20 30 40 50

1x10-25Inte

nsity

of e

mis

sion

, a.u

.Mean electron energy, eV

Page 68: Kinetics of nanosecond discharges at high specific energy ...mipse.umich.edu/files/Starikovskaia_presentation.pdfCapillary nanosecond discharge Low voltage Electrode (not grounded)

Possible reasons of CW spectrum-2

SPS (337.1 nm) is a reference radiation

N2(C) = kC(E/N)·ne·N2/ νq

QC = N2(C)·FFK·A00

QC = 3·1022quantum/cm3/s.

68

Electron density from recombination emission:

220 102)( ⋅=

⋅⋅⋅= ω

ωω d

T

nnCQ

e

ioneCW η

At λ = 337 nm and ∆λ = 3 nm, dω = 5·1013 s-1

In the discharge Te~2-3 eV → ne~ 6·1018 cm-3

In the afterglow Te~0.5 eV → ne~ 4·1018 cm-3

quantum/cm3/s

QC(t=0 ns)/QCW(t=5 ns)~(1.5-2)

1

1022

1023

Ne = 4 1018 cm -3

Ne = 6 1018 cm -3

Q, q

uant

um /

cm3 / s

Te, eV

Page 69: Kinetics of nanosecond discharges at high specific energy ...mipse.umich.edu/files/Starikovskaia_presentation.pdfCapillary nanosecond discharge Low voltage Electrode (not grounded)

Continuous spectra in filamentary discharge: Planck emission so gas heating?

+U -U

69

T=7200KTrot=7200K

Page 70: Kinetics of nanosecond discharges at high specific energy ...mipse.umich.edu/files/Starikovskaia_presentation.pdfCapillary nanosecond discharge Low voltage Electrode (not grounded)

The most typical features of the filament

-the electron density is extremely high, 1018-1019 cm-3

at 6 bar, but the decay is slow, tens of ns;

- no molecular emission is observed from thefilament, only cw and atomic lines (no material of

70

filament, only cw and atomic lines (no material ofelectrodes, no energetic ion lines);-- observed cw spectrum is due to recombination andPlanck emission;

- there is strong (kK) and fast (units of ns) gasheating within the filament

Page 71: Kinetics of nanosecond discharges at high specific energy ...mipse.umich.edu/files/Starikovskaia_presentation.pdfCapillary nanosecond discharge Low voltage Electrode (not grounded)

Each feature needs additional analysis: molecular emission

-no molecular emission is observed from thefilament, only cw and atomic lines

No molecules, Quenching by

71

No molecules, 100% dissociation

Quenching by electrons?

ne=1019 cm-3,kq=10-7 cm3/s N2

++e=N+N,

kne2t>[M] during 1 ns

Page 72: Kinetics of nanosecond discharges at high specific energy ...mipse.umich.edu/files/Starikovskaia_presentation.pdfCapillary nanosecond discharge Low voltage Electrode (not grounded)

Each feature needs additional analysis: decay time for electrons

-the electron density is extremely high,1018-1019 cm-3 at 6 bar, and the decay is low, 10s of ns

Recombination decay,

1019 calc, T

e = 1 eV

cacl, Te = 2 eV

72

Thermal ionization?

decay, N++e+e

is too fast(parts of

nanoseconds)20 30 40 50

1017

1018

Ne, c

m-3

Time, ns

Page 73: Kinetics of nanosecond discharges at high specific energy ...mipse.umich.edu/files/Starikovskaia_presentation.pdfCapillary nanosecond discharge Low voltage Electrode (not grounded)

Each feature needs additional analysis: decay time = gas cooling for electrons?

1018

1019

15 ns

25 ns

, cm

-3

73

Thermal ionization?

6 8 10 12 14 161017

N2 : O

2 = 4 : 1

40 ns50 ns

Ne, c

m

Temperature, kKTrot=7200K

Page 74: Kinetics of nanosecond discharges at high specific energy ...mipse.umich.edu/files/Starikovskaia_presentation.pdfCapillary nanosecond discharge Low voltage Electrode (not grounded)

And finally, how this transition starts?

Ionization-heating

instability?

Increase of T by kinetic FGH

Decrease of gas density within a few µm distance

T ⇑

74

1 3p nsτ = −

Decrease of gas density within a few µm distance

N ⇓

Increase of E/N

E

N⇑

Increase of ionization

Page 75: Kinetics of nanosecond discharges at high specific energy ...mipse.umich.edu/files/Starikovskaia_presentation.pdfCapillary nanosecond discharge Low voltage Electrode (not grounded)

Conclusions

Specific deposited energy in nanosecond microplasmas can be ashigh as electronvolts per molecule. At high reduced electric fieldsand moderate gas pressures, “non-diluted chemistry” in thedischarge and early afterglow is important

75

N2(C3Πu) emission in P=1 atm surface streamer discharge,

electrical current and morphology provide important informationabout the plasma parameters

High pressure filamentary nSDBD is characterized by abrupt cwemission and by high electron density. Appearance and physicsof streamer-to-filamentary transition are studied

Page 76: Kinetics of nanosecond discharges at high specific energy ...mipse.umich.edu/files/Starikovskaia_presentation.pdfCapillary nanosecond discharge Low voltage Electrode (not grounded)

Acknowledgments

This work was partially supported by the following

projects and organizations:

–ANR ASPEN

–LIA KaPPA (France-Russia)

–LabEx Plas@Par

76

Page 77: Kinetics of nanosecond discharges at high specific energy ...mipse.umich.edu/files/Starikovskaia_presentation.pdfCapillary nanosecond discharge Low voltage Electrode (not grounded)

Thank you for your attention

77