9
Interdisciplinary Mathematical Sciences Vol. 19 Kernel-based Approximation Methods using MATLAB Gregory Fasshauer Illinois Institute of Technology, USA Michael McCourt University of Colorado Denver, USA ^ World Scientific NEW JERSEY LONDON SINGAPORE BEIJING SHANGHAI HONG KONG TAIPEI CHENNAI

Kernel-based approximation methods using MATLAB€¦ · Kernel-based approximation methods using MATLAB Subject: Singapore [u.a.] , World Scientific, 2016 Keywords: Signatur des Originals

  • Upload
    others

  • View
    30

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Kernel-based approximation methods using MATLAB€¦ · Kernel-based approximation methods using MATLAB Subject: Singapore [u.a.] , World Scientific, 2016 Keywords: Signatur des Originals

Interdisciplinary Mathematical Sciences - Vol. 19

Kernel-based ApproximationMethods using MATLAB

Gregory FasshauerIllinois Institute of Technology, USA

Michael McCourt

University of Colorado Denver, USA

^World Scientific

NEW JERSEY • LONDON • SINGAPORE • BEIJING • SHANGHAI • HONG KONG • TAIPEI • CHENNAI

Page 2: Kernel-based approximation methods using MATLAB€¦ · Kernel-based approximation methods using MATLAB Subject: Singapore [u.a.] , World Scientific, 2016 Keywords: Signatur des Originals

Contents

Preface vii

An Introduction to Kernel-Based Approximation Methods

and Their Stable Computation 1

1. Introduction 3

1.1 Positive Definite Kernels: Where Do They Fit in the Mathematical

Landscape? 3

1.2 A Historical Perspective 5

1.3 The Fundamental Application: Scattered Data Fitting 7

1.3.1 The Haar-Mairhuber-Curtis theorem: Why using kernels

is a "natural" approach 9

1.3.2 Variations of scattered data fitting 11

1.4 Other Applications 12

1.4.1 Statistical data fitting 12

1.4.2 Machine learning 13

1.4.3 Numerical solution of PDEs 13

1.4.4 Computational finance 14

1.5 Topics We Do Not Cover 15

2. Positive Definite Kernels and Reproducing Kernel Hilbert Spaces 17

2.1 Positive Definite Kernels 17

2.2 Hilbert-Schmidt, Mercer and Karhunen-Loeve Series 20

2.2.1 Hilbert-Schmidt operators 20

2.2.2 The Hilbert Schmidt eigenvalue problem 22

2.2.3 Mercers theorem 24

2.2.4 Examples of Hilbert-Schmidt integral eigenvalue problems

and Mercer series 25

2.2.5 Iterated kernels 30

xi

Page 3: Kernel-based approximation methods using MATLAB€¦ · Kernel-based approximation methods using MATLAB Subject: Singapore [u.a.] , World Scientific, 2016 Keywords: Signatur des Originals

xiiContents

2.2.6 Fourier and Karhunen-Loeve expansions 31

2.3 Reproducing Kernel Hilbert Spaces 32

2.4 Feature Maps36

3. Examples of Kernels 41

3.1 Radial Kernels 41

3.1.1 Isotropic radial kernels 41

3.1.2 Anisotropic radial kernels 44

3.2 Translation Invariant Kernels 45

3.3 Series Kernels 46

3.3.1 Power series and Taylor series kernels 47

3.3.2 Other series kernels 48

3.4 General Anisotropic Kernels 49

3.4.1 Dot product kernels 49

3.4.2 Zonal kernels 50

3.4.3 Tensor product kernels 52

3.5 Compactly Supported Radial Kernels 53

3.6 Multiscale Kernels 54

3.7 Space-Time Kernels 55

3.8 Learned Kernels 56

3.9 Designer Kernels 56

3.9.1 Periodic, kernels 57

3.9.2 Chebyshev kernels 58

4. Kernels in Matlab 61

4.1 Radial Kernels in MATLAB 62

4.1.1 Symmetric distance matrices in Matlab 63

4.1.2 General distance matrices in Matlab 64

4.1.3 Anisotropic distance matrices in Matlab 66

4.1.4 Evaluating radial kernels and interpolants in Matlab . . .68

4.2 Compactly Supported Kernels in Matlab 72

4.3 Zonal Kernels in Matlab 76

4.4 Tensor Product Kernels in Matlab 77

4.5 Series Kernels in Matlab 79

5. The Connection to Kriging 89

5.1 Random Fields and Random Variables 90

5.2 Duality of Spaces 94

5.3 Modeling and Prediction via Kriging 96

5.3.1 Kriging as best linear unbiased predictor 96

5.3.2 Bayesian framework 99

5.3.3 Confidence intervals 101

Page 4: Kernel-based approximation methods using MATLAB€¦ · Kernel-based approximation methods using MATLAB Subject: Singapore [u.a.] , World Scientific, 2016 Keywords: Signatur des Originals

Contentsxiii

5.3.4 Semi-variograms 105

5.4 Karhunen-Loeve Expansions and Polynomial Chaos 106

5.5 Generalized Polynomial Chaos 107

6. The Connection to Green's Kernels 111

6.1 Introduction Ill

6.2 Green's Kernels Defined 112

6.3 Differential Eigenvalue Problems 114

6.4 Computing Green's Kernels 115

6.4.1 An example: Computing the Brownian bridge kernel as

Green's kernel 115

6.4.2 Generalizations of the Brownian bridge kernel 117

6.5 Classical Examples of Green's Kernels 118

6.6 Sturm-Liouville Theory 120

6.7 Eigenfunction Expansions 121

6.8 The Connection Between Hilbert-Schmidt and Sturm-Liouville

Eigenvalue Problems 123

6.9 Limitations 124

6.10 Summary125

7. Iterated Brownian Bridge Kernels: A Green's Kernel Example 127

7.1 Derivation of Piecewise Polynomial Spline Kernels 127

7.1.1 Recall some special Green's kernels 127

7.1.2 A family of piecewise polynomial splines of arbitrary odd

degree 129

7.1.3 Benefits of using a kernel representation for piecewise

polynomial splines 131

7.2 Derivation of General Iterated Brownian Bridge Kernels 132

7.3 Properties of Iterated Brownian Bridge Kernels 134

7.3.1 Truncation of the Mercer series 134

7.3.2 Effects of the boundary conditions 136

7.3.3 Convergence orders 139

7.3.4 Iterated Brownian bridge kernels on bounded domains . .139

7.3.5 "Flat" limits 143

7.3.6 Summary for functions satisfying homogeneous boundary-

conditions 146

8. Generalized Sobolev Spaces 147

8.1 How Native Spaces Were Viewed Until Recently 147

8.2 Generalized Sobolev Spaces on the Full Space Rd 152

8.2.1 Two different kernels for H2(E) 155

8.2.2 Higher-dimensional examples 156

Page 5: Kernel-based approximation methods using MATLAB€¦ · Kernel-based approximation methods using MATLAB Subject: Singapore [u.a.] , World Scientific, 2016 Keywords: Signatur des Originals

xiv Contents

8.2.3 Summary for full-space generalized Sobolev spaces 158

8.3 Generalized Sobolev Spaces on Bounded Domains 158

8.3.1 Modifications of the Brownian bridge kernel: A detailed

investigation 160

8.3.2 Summary for generalized Sobolev spaces on bounded

domains 167

8.3.3 An alternative framework for boundary value problems on

[a,b] 167

8.4 Conclusions 168

9. Accuracy and Optimality of Reproducing Kernel Hilbert

Space Methods 171

9.1 Optimality 171

9.2 Different Types of Error 172

9.3 The "Standard" Error Bound 172

9.4 Error Bounds via Sampling Inequalities 175

9.4.1 How sampling inequalities lead to error bounds 175

9.4.2 Univariate sampling inequalities and error bounds 176

9.4.3 Application to iterated Brownian bridge kernels 181

9.4.4 Sampling inequalities in higher dimensions 183

9.5 Dimension-independent error bounds 184

9.5.1 Traditional dimension-dependent error bounds 185

9.5.2 Worst-case weighted L2 error bounds 185

10. "Flat" Limits 189

10.1 Introduction 189

10.2 Kernels with Infinite Smoothness 191

10.3 Kernels with Finite Smoothness 193

10.4 Summary and Outlook 197

11. The Uncertainty Principle - An Unfortunate Misconception 199

11.1 Accuracy vs. Stability 199

11.2 Accuracy and Stability 201

12. Alternate Bases 203

12.1 Data-dependent Basis Functions 204

12.1.1 Standard basis functions 204

12.1.2 Cardinal basis functions 206

12.1.3 Alternate bases via matrix factorization 208

12.1.4 Newton-type basis functions 210

12.1.5 SVD and weighted SVD bases 215

12.2 Analytical and Numerical Eigenfunctions 217

Page 6: Kernel-based approximation methods using MATLAB€¦ · Kernel-based approximation methods using MATLAB Subject: Singapore [u.a.] , World Scientific, 2016 Keywords: Signatur des Originals

Contents xv

12.2.1 Eigenfunctions given analytically 218

12.2.2 Eigenfunctions obtained computationally 221

12.3 Approximation Using Eigenfunctions 226

12.4 Other Recent Preconditioning and Alternate Basis Techniques . .230

13. Stable Computation via the Hilbert-Schmidt SVD 231

13.1 A Formal Matrix Decomposition of K 232

13.2 Obtaining a Stable Alternate Basis via the Hilbert Schmidt SVD.235

13.2.1 Summary: How to use the Hilbert-Schmidt SVD 241

13.3 Iterated Brownian Bridge Kernels via the Hilbert-Schmidt SVD .243

13.4 Issues with the Hilbert-Schmidt SVD 248

13.4.1 Truncation of the Hilbert-Schmidt series 248

13.4.2 Invertibility of 4>i 250

13.5 Comparison of Alternate Bases for Gaussian Kernels 252

14. Parameter Optimization 255

14.1 Modified Golomb-Weinberger Bound and Kriging Variance ....256

14.1.1 How to avoid cancelation while computing the power

function (kriging variance) 257

14.1.2 How to stably compute the native space norm of the

interpolant (Mahalanobis distance) 258

14.2 Cross-Validation 260

14.3 Maximum Likelihood Estimation 263

14.3.1 MLE independent of process variance 264

14.3.2 MLE with process variance 265

14.3.3 A deterministic derivation of MLE 266

14.4 Other Approaches to the Selection of Good Kernel Parameters . .267

14.5 Goals for a Parametrization Judgment Tool 269

Advanced Examples 273

15. Scattered Data Fitting 275

15.1 Approximation Using Smoothing Splines 276

15.2 Low-rank Approximate Interpolation 280

15.3 Interpolation on the Unit Sphere 286

15.4 Computational Considerations for Scattered Data Fitting 290

15.4.1 The cost of computing/implementing an alternate basis . .291

15.4.2 Exploiting structure in kernel computations 292

16. Computer Experiments and Surrogate Modeling 295

16.1 Surrogate Modeling 295

Page 7: Kernel-based approximation methods using MATLAB€¦ · Kernel-based approximation methods using MATLAB Subject: Singapore [u.a.] , World Scientific, 2016 Keywords: Signatur des Originals

xvi Contents

16.2 Experimental Design 297

16.3 Surrogate Models for Standard Test Functions 298

16.3.1 Piston simulation function 298

16.3.2 Borehole function 304

16.4 Modeling From Data 306

16.5 Fitting Empirical Distribution Functions 307

17. Statistical Data Fitting via Gaussian Processes 315

17.1 Geostatistics 315

17.2 Anisotropic Data Fitting 324

17.3 Data Fitting Using Universal Kriging and Maximum Likelihood

Estimation 327

18. Machine Learning 335

18.1 Regularization Networks 336

18.2 Radial Basis Function Networks 337

18.2.1 Numerical experiments for regression with RBF networks.339

18.3 Support Vector Machines 343

18.3.1 Linear classification 344

18.3.2 Kernel classification 346

18.3.3 Numerical experiments for classification with kernel SVMs 350

18.3.4 Computational consideration for classification with kernel

SVMs 354

18.3.5 Linear support vector regression 358

18.3.6 Nonlinear support vector regression 359

19. Derivatives of Interpolants and Hermite Interpolation 361

19.1 Differentiating Interpolants 362

19.1.1 Cardinal function representation of derivatives 362

19.1.2 Error bounds for simultaneous approximation 363

19.1.3 Global differentiation matrices 364

19.1.4 Local differentiation matrices 369

19.2 Hermite Interpolation377

19.2.1 Nonsymmetric kernel-based Hermite interpolation 378

19.2.2 Symmetric kernel-based Hermite interpolation 381

19.2.3 Generalized Hermite interpolation via the Hilbert -Schmidt

SVD 383

19.2.4 An example: Gradient interpolation 384

19.2.5 Kriging interpretation 386

19.3 Doing Hermite Interpolation via Derivatives of Eigenfunctions . . .387

19.3.1 Differentiation of a low-rank eigenfunction approximate

interpolant 388

Page 8: Kernel-based approximation methods using MATLAB€¦ · Kernel-based approximation methods using MATLAB Subject: Singapore [u.a.] , World Scientific, 2016 Keywords: Signatur des Originals

Contents xvii

19.3.2 An example: Derivatives of Gaussians eigenfunctions . . .389

19.4 Multiphysics Coupling 392

19.4.1 Meshfree coupling 395

19.4.2 An example: coupled 2D heat equation 396

19.4.3 Computational considerations 401

20. Kernel-Based Methods for PDEs 403

20.1 Collocation for Linear Elliptic PDEs 403

20.1.1 Nonsyinmetric collocation in the standard basis 404

20.1.2 Nonsymmetric collocation using the Hilbert-Schmidt SVD 407

20.2 Method of Lines 411

20.3 Method of Fundamental Solutions 416

20.4 Method of Particular Solutions 420

20.5 Kernel-based Finite Differences 423

20.6 Space-Time Collocation 425

21. Finance 431

21.1 Brownian motion 431

21.1.1 Brownian motion and the Brownian motion kernel 432

21.1.2 Geometric Brownian motion 433

21.1.3 Pricing options and high-dimensional integration 434

21.1.4 A generic error formula for quasi-Monte Carlo integration

via reproducing kernels 436

21.1.5 Example of asset pricing through quasi-Monte Carlo....

437

21.2 Black-Scholes PDEs 440

21.2.1 Single-asset European option through Black-Scholes PDEs 441

21.2.2 Pricing American options 445

Appendix A Collection of Positive Definite Kernels and Their

Known Mercer Series 447

A.l Piecewise Linear Kernels 447

A.1.1 Brownian bridge kernel 447

A.1.2 Brownian motion kernel 448

A. 1.3 Another piecewise linear kernel 448

A.2 Exponential Kernel 448

A.2.1 Domain: [0,1] 449

A.2.2 Domain: [—L, L] 449

A.2.3 Domain: [0, oo) 449

A.3 Other Continuous Kernels 450

A.3.1 Tension spline kernel 450

A.3.2 Relaxation spline kernel 451

A.3.3 Legendre kernel 451

Page 9: Kernel-based approximation methods using MATLAB€¦ · Kernel-based approximation methods using MATLAB Subject: Singapore [u.a.] , World Scientific, 2016 Keywords: Signatur des Originals

xviii Contents

A.4 Modified Exponential Kernel 451

A.5 Families of Iterated Kernels 452

A.5.1 Iterated Brownian bridge kernels 452

A.5.2 Periodic spline kernels 452

A.5.3 Periodic kernels 453

A.5.4 Chebyshev kernels 453

A.6 Kernel for the First Weighted Sobolev Space 454

A.7 Gaussian Kernel 455

A.8 Sine Kernel 455

A.9 Zonal Kernels 456

A.9.1 Spherical inverse multiquadric 456

A.9.2 Abel-Poisson kernel 456

Appendix B How To Choose the Data Sites 457

B.l Low Discrepancy Designs 458

B.2 Optimal Designs in Statistics 460

B.3 Optimal Points in Approximation Theory 461

Appendix C A Few Facts from Analysis and Probability 463

Appendix D The GaussQR Repository in Matlab 467

D.l Accessing GaussQR 467

D.2 Common functions in GaussQR 468

D.3 Full Hilbert-Schmidt SVD sample solver 469

Bibliography 473

Index 505