47
An Implicit Gradient Reproducing Kernel Particle Method: Theory and Applications J. S. Chen, T. H. Huang Department of Structural Engineering Center for Extreme Events Research University of California, San Diego, USA M. Hillman, G. Zhou Department of Civil and Environmental Engineering The Pennsylvania State University, Pennsylvania, USA

An Implicit Gradient Reproducing Kernel Particle Method ... · w: Moving Least-Squares / Reproducing Kernel Approximation Let be a bounded domain and S = { , . . 1. , } be a set of

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: An Implicit Gradient Reproducing Kernel Particle Method ... · w: Moving Least-Squares / Reproducing Kernel Approximation Let be a bounded domain and S = { , . . 1. , } be a set of

An Implicit Gradient Reproducing Kernel Particle Method: Theory and Applications

J. S. Chen, T. H. Huang

Department of Structural Engineering

Center for Extreme Events Research

University of California, San Diego, USA

M. Hillman, G. Zhou

Department of Civil and Environmental Engineering

The Pennsylvania State University, Pennsylvania, USA

Page 2: An Implicit Gradient Reproducing Kernel Particle Method ... · w: Moving Least-Squares / Reproducing Kernel Approximation Let be a bounded domain and S = { , . . 1. , } be a set of

Motivation

2

UCSD Blast Simulator

Continuum Fragmented Solids (Particle like)

Meshfree Methods with Nodal Integration

Approximation, Discretization?

Page 3: An Implicit Gradient Reproducing Kernel Particle Method ... · w: Moving Least-Squares / Reproducing Kernel Approximation Let be a bounded domain and S = { , . . 1. , } be a set of

Numerical Challenges

3

Oscillatory Solution, Smeared Shearband

Rank Instability: Rank Deficiency Kernel Instability: Insufficient Neighbors

Numerical Fracture, Solution Divergence

Gibbs Instability: Shock Front Discontinuities

Oscillatory Solution, Incorrect Damage

Discretization Instability: Mesh Dependency

Non-convergent in Refinement, Incorrect Softening

Page 4: An Implicit Gradient Reproducing Kernel Particle Method ... · w: Moving Least-Squares / Reproducing Kernel Approximation Let be a bounded domain and S = { , . . 1. , } be a set of

4

How to achieve stability, accuracy, and efficiency under the same

framework for Meshfree modeling of extreme events?

Page 5: An Implicit Gradient Reproducing Kernel Particle Method ... · w: Moving Least-Squares / Reproducing Kernel Approximation Let be a bounded domain and S = { , . . 1. , } be a set of

5

1. Kernel Instability

Numerical Fracture, Solution Divergence

Page 6: An Implicit Gradient Reproducing Kernel Particle Method ... · w: Moving Least-Squares / Reproducing Kernel Approximation Let be a bounded domain and S = { , . . 1. , } be a set of

I

Moving Least-Squares / Reproducing Kernel Approximation

1Let be a bounded domain and S = { , . . . , } be a set of scattered points.

Let function ( ) be approximated by

N N

u

x x

x

1

NK

I I

I

u u

x x

I a I

n

I ( )) (( b ( ))

xx x xxx

The coefficients ( ) are determined from the following reproducingconditions :b x

I I

I

( ) x x x n I I ,0I

( )( ) x x xor

TI I a

1I M xx H 0 H x x x x

• For M to be nonsingular, sufficient neighbors under the kernel support is needed:

higher order of completeness “n” requires larger kernel support size

TI I a I

I

nTI 1 1I 2 2I 3 3I 3 3I1,x x ,x x ,x x , , x x

M x H x x H x x x x ,

H x x

P. Lancaster, K. Salkauskas, 1981; B. Nayroles, G. Touzot, and P. Villon, 1992; T. Belytschko, Y. Y. Lu and L. Gu, 1995; O˜nate, E.,

Idelsohn, S. R., Zienkiewicz, O. C., and Taylor, R. L., 1996; W. K. Liu, S. Jun, Y. F. Zhang, 1995; J. S. Chen, C. Pan, C. T. Wu, and W. K.

Liu, 1996, A. Duarte & J. T. Oden, 1996; J. M. Melenk & I. Babuaka, 1996; S. N. Atluri and T. Zhu, 1998; S. De and K. J. Bathe, 2000.

6

Page 7: An Implicit Gradient Reproducing Kernel Particle Method ... · w: Moving Least-Squares / Reproducing Kernel Approximation Let be a bounded domain and S = { , . . 1. , } be a set of

Quasi-Linear Reproduction Kernel Approximation

Consider the following weighted least-squares residual:

2 2

1 11

( )( ) , 0

kP P IN N

h k

I I a I

N

I a I

I I k

h

I ur u u u

xxxx x xx xx

𝐱𝐼

𝐱𝐼𝑘

1

1( )

( ) ( ) ( ) ( , ) ( )PN

h T

I a I I

I

I

u u

x

x H 0 M x H x x x x

1

( , ) ( ( ))SN

k

I

k

I I

H x x H x Hx x x

*(( ) ( )) M x M x M x

*

1 1

( ) ( ) ( ) ( )SP NN

k T k

I I a I

I k

M x H x x H x x x x

,min r x

x

x x

is non-singular if form a non-zero volume 1

kIN

k

I kx( )M x

Yreux, E. and Chen, J. S., “A Quasi-Linear Reproducing Kernel Particle Method,” International Journal for

Numerical Methods in Engineering, Vol. 109. pp. 1045–1064, 2017.

Page 8: An Implicit Gradient Reproducing Kernel Particle Method ... · w: Moving Least-Squares / Reproducing Kernel Approximation Let be a bounded domain and S = { , . . 1. , } be a set of

Wave Propagation

-0.00015

-0.0001

-5e-05

0

5e-05

0.0001

0.00015

0 5e-05 0.0001 0.00015 0.0002 0.00025 0.0003

AnalyticalConstant Basis

Quasi-LinearAutomatic Basis

8

Page 9: An Implicit Gradient Reproducing Kernel Particle Method ... · w: Moving Least-Squares / Reproducing Kernel Approximation Let be a bounded domain and S = { , . . 1. , } be a set of

Taylor Bar Impact

9

Page 10: An Implicit Gradient Reproducing Kernel Particle Method ... · w: Moving Least-Squares / Reproducing Kernel Approximation Let be a bounded domain and S = { , . . 1. , } be a set of

10

Oscillatory Solution, Smeared Shearband

2. Rank Instability

Page 11: An Implicit Gradient Reproducing Kernel Particle Method ... · w: Moving Least-Squares / Reproducing Kernel Approximation Let be a bounded domain and S = { , . . 1. , } be a set of

11

Chen, J. S., Hillman, M., Rüter, M., “International Journal for Numerical Methods in Engineering, Vol. 95, pp.

387–418, 2013.

J. S. Chen, C. T. Wu, S. Yoon, and Y. You 2001; I. Babuška, U. Banerjee, J. E. Osborn, Q. Li 2008; Q. Duan, X.

Li, H. Zhang, T. Belytschko, 2012; J. S. Chen, M. Hillman, M. Rüter, 2013

2 sin( )sin( )

0

u x y in

u on

( 1,1) ( 1,1)

Quadrature

Page 12: An Implicit Gradient Reproducing Kernel Particle Method ... · w: Moving Least-Squares / Reproducing Kernel Approximation Let be a bounded domain and S = { , . . 1. , } be a set of

Nodal Integration in Galerkin Approximation

Integration Constraints

( ) ( )^ ^

I Iˆ ˆd d

x x n

(1st order Galerkin Exactness)

31 2

1 2 3 1 2 3ˆ ˆ ˆ, , , , , , 0,1, ,I I Ia L B x x x n

x x x x (higher order G. E.)

First Order Correction: Stabilized Cooforming Nonal Integration (SCNI)

( ) ( ) ( )

L L

^ ^

I L I I

L L

1 1ˆ ˆ ˆd dV V

x x x n

( ) ( )^ ^

I Iˆ ˆd d

x x n

ˆ, ˆ,h h

I I I I

I I

I I I I

n

u u v v

Higher Order Correction: Variationally Consistent Integration (VCI)

ˆ ˆ ˆ, , , , 0,1, ,I I Ia L B n

x x x

1

, , , , , ,n

I I I I I I Ia L B B L a

x x x x x x

Violation of integration constraint

Chen, J. S., Wu, C. T., Yoon, S., and You, Y., International Journal for Numerical Methods in Engineering, Vol. 50, pp.

435-466, 2001; Chen, J. S., Hillman, M., Rüter, M., International Journal for Numerical Methods in Engineering, Vol.

95, pp. 387–418, 2013.

Lu + s = 0 inW

u = g on ¶Wg

Bu = h on ¶Wh

0, ,h h h h ha u v F v v V

Page 13: An Implicit Gradient Reproducing Kernel Particle Method ... · w: Moving Least-Squares / Reproducing Kernel Approximation Let be a bounded domain and S = { , . . 1. , } be a set of

-4

-3.5

-3

-2.5

-2

-1.5

-1.4 -1.2 -1 -0.8 -0.6 -0.4 -0.2

log(

||u

-uh||

0)

log(h)

SCNI: 1.90SNNI: 0.24VC-SNNI: 2.03DNI: 0.28VC-DNI: 1.77

Galerkin Meshfree with Nodal Integration

Page 14: An Implicit Gradient Reproducing Kernel Particle Method ... · w: Moving Least-Squares / Reproducing Kernel Approximation Let be a bounded domain and S = { , . . 1. , } be a set of

Naturally stabilized nodal integration (NSNI) First order implicit gradient expansion of strain energy

1 1 2 2 3 3

0

( ; ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )n

i j k T

a ijk a a

i j k

w x s x s x s b w w

x x s x x s H x s b x x s

Strain approximation

Implicit gradient

Gradient reproducing conditions (S. Li, W. K. Liu, 1999, Chen, J. S., Zhang, X., Belytschko, T., 2004)

( ( ))( ) ( ; ) , 0 , 1, 2,3a

i

mm P

w d m ix

P n

x

s x x s s

1

: : d : : : :i i

NP 3i

L L L L L L

L i 1SCNI , VC SNNI

NSNI

V M

C x C x x C x

14

Ti

i

1

I I a I x M x H -H x x x x

1

2

3

[ 0 1 0 0 ]

[ 0 0 1 0 ]

[ 0 0 0 1 ]

, , ,

, , ,

, , ,

H

H

H

Hillman, M., Chen, J. S., International Journal for Numerical Methods in Engineering, Vol. 107, pp. 603–

630, 2016.

Page 15: An Implicit Gradient Reproducing Kernel Particle Method ... · w: Moving Least-Squares / Reproducing Kernel Approximation Let be a bounded domain and S = { , . . 1. , } be a set of

Comparison of RK Approximation and Implicit Gradient RK Approximation

15

RK Approximation

I I

I

u x x d

Implicit Gradient RK Approximation

i i

I I

I

x x

Ti

i

1

I I a I x M x H -H x x x x

1

0I I a I

T x M x H x x xH - x

1

2

3

]

[ 0 1 0 0 ]

[ 0 0 1 0 ]

[ 0 0 0 1 ]

T

0

T

T

T

0, 0, 0

, , ,

, , ,

, , ,

H

H

H

H

-4.0

-3.5

-3.0

-2.5

-2.0

-1.5

-1.5 -1.0 -0.5

log(

L2 e

rro

r)

log(h)

DNI: 0.47SNNI: 0.21NSNI: 1.81VC-NSNI: 2.05

sin( )sin( ) in

0 on

2u x y

u

Eigenmodes and Eigenvalues for first non-zero eigenvalue

VC-NSNI :

1.325

Fully integrated FEM: 1.30

SNNI: 0.77

Page 16: An Implicit Gradient Reproducing Kernel Particle Method ... · w: Moving Least-Squares / Reproducing Kernel Approximation Let be a bounded domain and S = { , . . 1. , } be a set of

Tension test

DNI SNNI VC-NSNI (present)

16

Page 17: An Implicit Gradient Reproducing Kernel Particle Method ... · w: Moving Least-Squares / Reproducing Kernel Approximation Let be a bounded domain and S = { , . . 1. , } be a set of

Taylor bar impact

Method Final radius (cm) Final height (cm)

SNNI 0.839 1.649

DNI 0.838 1.660

VC-NSNI 0.760 1.654

Experimental - 1.651

DNI SNNI VC-NSNI (present)

17

Page 18: An Implicit Gradient Reproducing Kernel Particle Method ... · w: Moving Least-Squares / Reproducing Kernel Approximation Let be a bounded domain and S = { , . . 1. , } be a set of

18

3. Discretization Instability

Non-convergent in Refinement, Incorrect Softening

Page 19: An Implicit Gradient Reproducing Kernel Particle Method ... · w: Moving Least-Squares / Reproducing Kernel Approximation Let be a bounded domain and S = { , . . 1. , } be a set of

Implicit Gradient as a Nonlocal Regularization Nonlocal Strain: Construct ( ; ), such thataw x x s

1 1 2 3

( ) ( ; ) ( ) ( ) ( ),i j kn

a ijk ijk ijk i j ki j k

w d D Dx x x

x x x s s s x x

Gradient Reproducing Conditions:

0

( ) ( ; ) ( ) ( ( )), 0n

m m m

a ijk ijk

i j k

p w d p D p m n

s x x s s x x

Chen, J. S., Zhang, X., Belytschko, T., Computer Methods in Applied Mechanics and Engineering, Vol. 193, pp. 2827-2844, 2004.

1 1 2 2 3 3

0

1

1

(

( ; ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( )) ( ) ( ) ( )

( ) ( ) ( )

ni j k T

a ijk a a

i j

T

I a I I

n

ijk ijk

i j k

w

D R gradient reproductio

w x s x s x w

n

s b w

x x s x x s H x s b x x s

gx M x H x x x

x

x x

x

Tg

Order of basis

functions n

T 1 T( ) ( ) ( ) ( ) ( )bw d

x g M x H x s s x s s

Implicit gradient model

[1] 1 ( ) ( ) x x

[1, 0, 2c] 2 2( ) ( ) ( )c x x x

[1, 0, 2 1c , 0, 24 2c ] 4 2 4

1 2( ) ( ) ( ) ( )c c x x x x

1( ) ( ) ( ) ( )( ) a I I

T

I w x M x H x x x xg x

Page 20: An Implicit Gradient Reproducing Kernel Particle Method ... · w: Moving Least-Squares / Reproducing Kernel Approximation Let be a bounded domain and S = { , . . 1. , } be a set of

Elastic Damage Tensile Model

FEM

RKSR

Page 21: An Implicit Gradient Reproducing Kernel Particle Method ... · w: Moving Least-Squares / Reproducing Kernel Approximation Let be a bounded domain and S = { , . . 1. , } be a set of

Elastic Damage Tensile Model

Page 22: An Implicit Gradient Reproducing Kernel Particle Method ... · w: Moving Least-Squares / Reproducing Kernel Approximation Let be a bounded domain and S = { , . . 1. , } be a set of

Stabilization of Advection-Diffusion Equation

22

1. Brooks and Hughes. Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the

incompressible Navier-Stokes equations. Comput. Method. Appl. M. 1982.

2. Hughes et al. A new finite element formulation for computational fluid dynamics: VIII. The Galerkin/least-squares method for advective-diffusive

equations. Comput. Method. Appl. M. 1989.

3. Franca et al. Stabilized finite element methods: I. Application to the advective-diffusive model. Comput. Method. Appl. M. 1992.

*

=

=

=

adv

Subgrid scale methods

Galerkin/Least-squares

Streamline upwind/Petrov-Galerkin

Stabilized Petrov-Galerkin method: 1

0[H ], find [H ] such thath h

gw u

1

1

,

.

NPh

I I

I

NPh

I I I

I

u u

w c

x x

x x x

( ) ( ) ( )h h h h hw ,u B w ,u L w

2

adv diff

u u s

u k u

a

Strong form of PDE:

Page 23: An Implicit Gradient Reproducing Kernel Particle Method ... · w: Moving Least-Squares / Reproducing Kernel Approximation Let be a bounded domain and S = { , . . 1. , } be a set of

23

Brooks and Hughes. Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible

Navier-Stokes equations. Comput. Method. Appl. M. 1982.

Hughes et al. A new finite element formulation for computational fluid dynamics: VIII. The Galerkin/least-squares method for advective-diffusive

equations. Comput. Method. Appl. M. 1989.

Franca et al. Stabilized finite element methods: I. Application to the advective-diffusive model. Comput. Method. Appl. M. 1992.

Stabilized Petrov-Galerkin method:

1

1

,

.

NPh

I I

I

NPh

I I I

I

u u

w c

x x

x x x

( ) ( ) ( )h h h h hw ,u B w ,u L w

0

1[ ], find [H ] such tH hath h

gw u

Subgrid scale methods, α=3

Galerkin/Least-squares, α=3

Streamline upwind/Petrov-Galerkin, α=2

*

=

=

=

adv

2

adv diff

u u s

u k u

a

Strong form of PDE:

Stabilization of Advection-Diffusion Equation

Page 24: An Implicit Gradient Reproducing Kernel Particle Method ... · w: Moving Least-Squares / Reproducing Kernel Approximation Let be a bounded domain and S = { , . . 1. , } be a set of

1

,NP

h

I I

I

w w

x x T

I I a I x H x x b x x x

Test function construction:

24

1 n

I I I Ix x y y z z H x x

Implicit Gradient RKPM (IG-RKPM)

Gradient reproducing conditions for :

,I I

I

n x x xx : multi-index

h h hww w

T

I I a I

I

M x H x x H x x x x

T 1

I I a I x M xH H x x x x

1 2 31, , , , , , , 0,... , 0a a a K K K

1 2 31, , , ,0, ... , 0a a a

1 2 31, , , , , , ,0, ... , 0a a a K K K

T H

Subgrid scale methods

Galerkin/Least-squares

Streamline upwind/Petrov-Galerkin

T 1

I I a I x M x H x x x0 xH

Virtually no extra cost!

Chen JS, Zhang X, Belytschko T. An implicit gradient model by a reproducing kernel strain regularization in strain localization

problems. Comput. Methods Appl. Mech. Eng., 2004.

Hillman M, Chen JS. Nodally integrated implicit gradient reproducing kernel particle method for convection dominate problems.

Comput. Methods Appl. Mech. Eng., 2016.

Page 25: An Implicit Gradient Reproducing Kernel Particle Method ... · w: Moving Least-Squares / Reproducing Kernel Approximation Let be a bounded domain and S = { , . . 1. , } be a set of

25

SU/PG vs IG-RKPM

0 in [0 10]

(0) 0 (10) 1

,x ,xxau ku ,

u , u

Strong advection:

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

0 1 2 3 4 5 6 7 8 9 10

x

Exact

RKPM

SU/PG RKPM

IG-RKPM

Hillman M, Chen JS. Nodally integrated implicit gradient reproducing kernel particle method

for convection dominate problems. Comput. Methods Appl. Mech. Eng., 2016.

Page 26: An Implicit Gradient Reproducing Kernel Particle Method ... · w: Moving Least-Squares / Reproducing Kernel Approximation Let be a bounded domain and S = { , . . 1. , } be a set of

RKPM

RKPM with artificial diffusion IG-RKPM

Strong advection with a boundary layer

Hillman M, Chen JS. Nodally integrated implicit gradient reproducing kernel particle method for convection dominate

problems. Comput. Methods Appl. Mech. Eng., 2016.

Page 27: An Implicit Gradient Reproducing Kernel Particle Method ... · w: Moving Least-Squares / Reproducing Kernel Approximation Let be a bounded domain and S = { , . . 1. , } be a set of

RKPM IG-RKPM

After a full rotation:

Rotating cone problem

flow direction

A A x

y

u 0

u 0

A A

uCosine hill

k 0

u 0

u 0

Hillman M, Chen JS. Nodally integrated implicit gradient reproducing kernel particle method for convection dominate

problems. Comput. Methods Appl. Mech. Eng., 2016.

Page 28: An Implicit Gradient Reproducing Kernel Particle Method ... · w: Moving Least-Squares / Reproducing Kernel Approximation Let be a bounded domain and S = { , . . 1. , } be a set of

28

4. Gibbs Instability: Shock Front Discontinuities

Oscillatory Solution, Incorrect Damage

Page 29: An Implicit Gradient Reproducing Kernel Particle Method ... · w: Moving Least-Squares / Reproducing Kernel Approximation Let be a bounded domain and S = { , . . 1. , } be a set of

SCNI Based Smoothed Flux Divergence

Conservation equation

Galerkin equation

, , , 0h h h

tw ,t u t u t d

x x F x

, , , 0tu t u t x F x

1 1 1

, , ,

I I

h h h h k

I k k

kI I I

t u t d u t d u t lV V V

F F x F x n F x n

Smoothed Nodal Integration

, 0h h h

I I t I

h

II

I

w t u t w t t V F

, , : Flux conservedh k h k

k ku t u t

F x n F x n

Riemann solution at each xk according to characteristic speeds

,

,

i

i

F u t

u t

x

x | 0

,| 0

n

nk

h

IRP h n tk h

I t

uu u t

u

xshock speed

Riemann solutionRPu

1

,RPh k

I k k

kI

t u t lV

F F x n

J. S. Chen, C. T. Wu, S. Yoon, and Y. You, 2001

Roth, M. J., Chen, J. S., Slawson, T. R., Danielson, K. D., Computational

Mechanics, Vol. 57, pp. 773–792, 2016.

Page 30: An Implicit Gradient Reproducing Kernel Particle Method ... · w: Moving Least-Squares / Reproducing Kernel Approximation Let be a bounded domain and S = { , . . 1. , } be a set of

Treatment of Shocks in Nonlinear Solids

Divergence operation for volumetric stress

,

1

I

v

I i I ij j

I

S dV

dnV

I

j

v

ijI

I

1

dnPV

I

iI

I

1

I

IX *X JX

n

I

0

,, , , , , , , , ,

, , , , 0

hi

h

d v v

i i i j ij i ij j i ij j

i i i i

S

w t u t d w t t d w t t d w t t n d

w t h t d w t b t d

X

X

X X X X X X X X

X X X X

Variational equation

Roth, M. J., Chen, J. S., Danielson, K. D., Slawson, T. R., International Journal for Numerical Methods in

Engineering, Vol. 108, pp. 1525–1549, 2016.

Page 31: An Implicit Gradient Reproducing Kernel Particle Method ... · w: Moving Least-Squares / Reproducing Kernel Approximation Let be a bounded domain and S = { , . . 1. , } be a set of

Rankine-Hugoniot Solution

Cell interface pressure

]][[]][[ 0 uUP S

]][[]])[[(sgn uAuCU Bs

)()}()sgn({)( ***0*

IIIBII uuuuAuuCPP

I

IX *X JX

n

I

Rankine-Hugoniot jump equations

Consistency condition at interface

* 0 * * *( ) { sgn( ) ( )}( )J J B J J JP P C u u A u u u u

x̂IX

II uP ,

JJ uP ,

*X JX

pressure interface basedHugoniot * PSCNI integration cell

velocityinterface basedHugoniot * u

*1

I

I i i

I

S P n dV

propertiesshock material &

cityshock velo

AC

U

b

s

Roth, M. J., Chen, J. S., Danielson, K. D., Slawson, T. R., International Journal for Numerical Methods in

Engineering, Vol. 108, pp. 1525–1549, 2016.

Page 32: An Implicit Gradient Reproducing Kernel Particle Method ... · w: Moving Least-Squares / Reproducing Kernel Approximation Let be a bounded domain and S = { , . . 1. , } be a set of

Extended Riemann-SNNI

, ,

xx x

h hx x

dev

i i i j ij

vol

i

i i

j i

i i

jw u d w d

w h d w b

d

d

w

,

* *

1 1

,

1

x x

I vol

i I j ij

NP NP NPIJ IJ vol IJ IJ vol IJ

j ij j ij i I

vol

i j i

J

J J J

jw d F d

P

, ,

, ,1

( ) ( ) ( ) ( )  

x

IJ

j J I j I J j

NP

J L L I L L LI JL

JI

j

j j

d

V

x x x x

Riemann-SNNI

J

IJ

I

I J

IJ

A

IJIJ

IJ n

Iv

Jv

Inv

Jnv

The local Riemann problem of nodal pair I-J

Conservation of linear momentum and energy

,

1( ) ( ) ( )d

LL I jI

L

jn

V x x x

,

1 1

1, 0NP NP

J J j

J J

Riemann-SCNI

,

0

, , ,

, , , , ,

, , , , 0

,

h

h

v v

i i

d

i i

j j i ij j

i j ij

i i i i

w t u t d w t t d

w t h t d w

w t t d w t

t t

n

d

t

b

d

X

X

X

X X X X

X X

X X

X

X

X

Riemann-SNNI

L

LL

Page 33: An Implicit Gradient Reproducing Kernel Particle Method ... · w: Moving Least-Squares / Reproducing Kernel Approximation Let be a bounded domain and S = { , . . 1. , } be a set of

1D Elastoplastic Wave Propagation

Material Model: J2 perfect plasticity

Impact vel, 273 m/s

RKPM without shock algorithm RKPM with shock algorithm,

Riemann-SNNI

Oscillatory Smooth

Page 34: An Implicit Gradient Reproducing Kernel Particle Method ... · w: Moving Least-Squares / Reproducing Kernel Approximation Let be a bounded domain and S = { , . . 1. , } be a set of

Noh's 2D Implosion Problem

Lagrangian Riemann-SNNI

Density distribution

Pressure distribution

Initial node distribution

Initial condition:

1. All particles move toward the center with a

unit velocity.

2. Initial pressure is zero.

3. Initial density is one.

Page 35: An Implicit Gradient Reproducing Kernel Particle Method ... · w: Moving Least-Squares / Reproducing Kernel Approximation Let be a bounded domain and S = { , . . 1. , } be a set of

2D Sedov Blast Problem

Density distribution Pressure contour

High energy

release at the

center

Air

Page 36: An Implicit Gradient Reproducing Kernel Particle Method ... · w: Moving Least-Squares / Reproducing Kernel Approximation Let be a bounded domain and S = { , . . 1. , } be a set of

Two-dimensional Plate Impact with Rarefaction Waves

Experimental peak pressure: 8 Gpa

RKPM without shock algorithm RKPM with shock algorithm,

Extended Riemann-SNNI

1000 m/s

Marsh, S. A., LASL Shock Hugoniot Data,

University of California Press, Berkley, 1980

Page 37: An Implicit Gradient Reproducing Kernel Particle Method ... · w: Moving Least-Squares / Reproducing Kernel Approximation Let be a bounded domain and S = { , . . 1. , } be a set of

Micro-crack informed Damage Model

0 0(1 ) (1 )d d

dY Y

Tension-compression

Decoupled Damage (M. Ortiz)

Fully Tensorial Damage

Model

Ren, X., Chen, J. S., Li, J., Slawson, T. R., Roth, M. J., International Journal of Solids and Structures, Vol. 48, 1560–1571, 2011.

Page 38: An Implicit Gradient Reproducing Kernel Particle Method ... · w: Moving Least-Squares / Reproducing Kernel Approximation Let be a bounded domain and S = { , . . 1. , } be a set of

Rebar Pullout

38

Page 39: An Implicit Gradient Reproducing Kernel Particle Method ... · w: Moving Least-Squares / Reproducing Kernel Approximation Let be a bounded domain and S = { , . . 1. , } be a set of

Meshfree RKPM Modeling Shear cone formation

SNNI

(unstable) NSNI

SNNI (unstable) NSNI

near center cross section: dense cones and cracks

Center cross section: a few cones and cracks

Page 40: An Implicit Gradient Reproducing Kernel Particle Method ... · w: Moving Least-Squares / Reproducing Kernel Approximation Let be a bounded domain and S = { , . . 1. , } be a set of

Fragmentation, radial and circumferential cracking

23

D. Cargile, Army Engineer Research And Development Center, 1999.

Experimental

Page 41: An Implicit Gradient Reproducing Kernel Particle Method ... · w: Moving Least-Squares / Reproducing Kernel Approximation Let be a bounded domain and S = { , . . 1. , } be a set of

RKPM Modeling of Debris cloud shape in thick target

Page 42: An Implicit Gradient Reproducing Kernel Particle Method ... · w: Moving Least-Squares / Reproducing Kernel Approximation Let be a bounded domain and S = { , . . 1. , } be a set of

Explosive Welding Modeling

Parent (base) tube

Flyer tube

Explosive

α

2D configuration Capsule used in Mars Sample Return Mission

Grignon, F., Benson, D., Vecchio, K.S. and Meyers, M.A., "Explosive

welding of aluminum to aluminum: analysis, computations and

experiments," International Journal of Impact Engineering, vol. 30, no.

10, pp. 1333-1351, 2004.

Page 43: An Implicit Gradient Reproducing Kernel Particle Method ... · w: Moving Least-Squares / Reproducing Kernel Approximation Let be a bounded domain and S = { , . . 1. , } be a set of

Simulation of Explosive Welding

Page 44: An Implicit Gradient Reproducing Kernel Particle Method ... · w: Moving Least-Squares / Reproducing Kernel Approximation Let be a bounded domain and S = { , . . 1. , } be a set of

Simulation of RC column subjected to blast loads

Time:

0.08

msec

Time:

0.16

msec

Shock wave propagation in RC column

Reflected tensile wave

Spalling

Tension damage distribution

Explosive test

(K.C. Wu et al. Journal of impact Engineering. 2011)

Numerical result obtained by using RKPM

Page 45: An Implicit Gradient Reproducing Kernel Particle Method ... · w: Moving Least-Squares / Reproducing Kernel Approximation Let be a bounded domain and S = { , . . 1. , } be a set of

RKPM Modelling of Levee Failure

H. Mori, Univ. of Cambridge, 2008;

S. Bandara, K. Soga, Computers & Geotechnics, 2015;

Page 46: An Implicit Gradient Reproducing Kernel Particle Method ... · w: Moving Least-Squares / Reproducing Kernel Approximation Let be a bounded domain and S = { , . . 1. , } be a set of

Summary and Conclusion

Stabilities in modeling of extreme loading problems based on nodal integration are addressed:

– Kernel stability: Quasi-linear RK approximation

– Rank stability: Naturally stabilized nodal integration

– Shock physics and Gibbs stability: Riemann SCNI and SNNI

– Discretization instability: Implicit gradient or scaling law

Accuracy enhancement and stability in nodal integration are achieved under the Variational Consistency framework.

Page 47: An Implicit Gradient Reproducing Kernel Particle Method ... · w: Moving Least-Squares / Reproducing Kernel Approximation Let be a bounded domain and S = { , . . 1. , } be a set of

USACM Thematic Conference

Meshfree and Particle Methods: Applications and Theory

September 17-19, 2018, Santa Fe or Albuquerque NM, USA

Sandia National Laboratories

http://www.usacm.org/conferences.