Kalkulus 03-Derivat

Embed Size (px)

Citation preview

  • 8/2/2019 Kalkulus 03-Derivat

    1/86

    0

    limh

    f a h f a

    h

    is called the derivative of at .f a

    We write:

    0limh

    f a h f af x

    h

    The derivative off with respect toxis

    There are many ways to write the derivative of y f x

    3.1 Derivative of a Function

  • 8/2/2019 Kalkulus 03-Derivat

    2/86

    f x f prime x or the derivative of f with respectto x

    y

    y primedy

    dxdee why dee ecks or the derivative of y with

    respect to x

    df

    dx dee eff dee ecks or the derivative of f withrespect to x

    d f xdx dee dee ecks uv eff uv ecks or the derivative

    of f of x( of of )d dx f x

    3.1 Derivative of a Function

  • 8/2/2019 Kalkulus 03-Derivat

    3/86

    dx does not mean dtimesx !

    dy does not mean dtimesy !

    3.1 Derivative of a Function

  • 8/2/2019 Kalkulus 03-Derivat

    4/86

    dy

    dxdoes not mean !dy dx

    (except when it is convenient to think of it as division.)

    df

    dxdoes not mean !df dx

    (except when it is convenient to think of it as division.)

    3.1 Derivative of a Function

  • 8/2/2019 Kalkulus 03-Derivat

    5/86

    (except when it is convenient to treat it that way.)

    d

    f xdx does not mean times !

    d

    dx f x

    3.1 Derivative of a Function

  • 8/2/2019 Kalkulus 03-Derivat

    6/86

    The derivative is

    the slope of theoriginal function.

    The derivative is definedat the end points of afunction on a closedinterval.

    0

    1

    2

    3

    4

    1 2 3 4 5 6 7 8 9

    y f x

    -2

    -1

    0

    1

    2

    3

    1 2 3 4 5 6 7 8 9

    y f x

    3.1 Derivative of a Function

  • 8/2/2019 Kalkulus 03-Derivat

    7/86

    -3

    -2

    -1

    0

    1

    2

    3

    4

    5

    6

    - 3 - 2 - 1 1 2 3x

    2 3y x

    2 2

    0

    3 3limh

    x h xy

    h

    2y x

    -6

    -5-4

    -3

    -2

    -10

    1

    23

    4

    5

    6

    -3 -2 -1 1 2 3x

    0lim2h

    y x h

    3.1 Derivative of a Function

  • 8/2/2019 Kalkulus 03-Derivat

    8/86

    A function is differentiable if it has aderivative everywhere in its domain. Itmust be continuous and smooth.Functions on closed intervals must haveone-sided derivatives defined at the endpoints.

    3.1 Derivative of a Function

  • 8/2/2019 Kalkulus 03-Derivat

    9/86

    To be differentiable, a function must be continuousand smooth.Derivatives will fail to exist at:

    corner

    f x x

    cusp

    2

    3 f x x

    vertical tangent

    3 f x x

    discontinuity

    1, 0

    1, 0

    x f x

    x

    3.2 Differentiability

  • 8/2/2019 Kalkulus 03-Derivat

    10/86

    Most of the functions we study in calculus will be differentiable.

    3.2 Differentiability

  • 8/2/2019 Kalkulus 03-Derivat

    11/86

    There are two theorems on page 110:

    If f has a derivative atx = a, thenf is continuous atx = a.

    Since a function must be continuous to have a derivative,if it has a derivative then it is continuous.

    3.2 Differentiability

  • 8/2/2019 Kalkulus 03-Derivat

    12/86

    1

    2f a

    3f b

    Intermediate Value Theorem for Derivatives

    Between a and b, must take

    on every value between and .

    f1

    23

    If a and b are any two points in an interval on which f isdifferentiable, then takes on every value between

    and .

    f f a

    f b

    3.2 Differentiability

  • 8/2/2019 Kalkulus 03-Derivat

    13/86

    If the derivative of a function is its slope, then for aconstant function, the derivative must be zero.

    0d

    cdx

    example: 3y

    0y

    The derivative of a constant is zero.

    3.3 Rules for Differentiation

  • 8/2/2019 Kalkulus 03-Derivat

    14/86

    We saw that if , .2

    y x 2y x

    This is part of a pattern.

    1n nd

    x nxdx

    examples:

    4 f x x

    34 f x x

    8y x

    78y x

    power rule

    3.3 Rules for Differentiation

  • 8/2/2019 Kalkulus 03-Derivat

    15/86

    1n nd

    x nx

    dx

    3.3 Rules for DifferentiationProof:

    h

    xhx

    xdx

    dnn

    h

    n

    )(

    lim0

    h

    xhhnxxx

    dx

    dnnnn

    h

    n

    ...lim

    1

    0

    h

    hhnxx

    dx

    d nn

    h

    n

    ...lim

    1

    0

    1

    0

    lim

    n

    h

    n nxx

    dx

    d

  • 8/2/2019 Kalkulus 03-Derivat

    16/86

    d du

    cu cdx dx

    examples:

    1n nd cx cnxdx

    constant multiple rule:

    5 4 47 7 5 35d

    x x xdx

    3.3 Rules for Differentiation

  • 8/2/2019 Kalkulus 03-Derivat

    17/86

    (Each term is treated separately)

    d du

    cu cdx dx

    constant multiple rule:

    sum and difference rules:

    d du dv

    u vdx dx dx

    d du dv

    u vdx dx dx

    4 12 y x x

    3

    4 12y x

    4 22 2 y x x

    3

    4 4

    dy

    x xdx

    3.3 Rules for Differentiation

  • 8/2/2019 Kalkulus 03-Derivat

    18/86

    Find the horizontal tangents of:4 22 2 y x x 34 4

    dyx x

    dx

    Horizontal tangents occur when slope = zero.34 4 0x x

    3 0x x

    2 1 0x x 1 1 0 x x x

    0, 1, 1x

    Substituting the x values into theoriginal equation, we get:

    2, 1, 1 y y y (The function is even, so weonly get two horizontaltangents.)

    3.3 Rules for Differentiation

  • 8/2/2019 Kalkulus 03-Derivat

    19/86

    -2

    -1

    0

    1

    2

    3

    4

    -2 -1 1 2

    4 22 2 y x x

    2y

    1y

    3.3 Rules for Differentiation

  • 8/2/2019 Kalkulus 03-Derivat

    20/86

    -2

    -1

    0

    1

    2

    3

    4

    -2 -1 1 2

    4 22 2 y x x

    First derivative(slope) is zero at:

    0, 1, 1x

    34 4

    dyx x

    dx

    3.3 Rules for Differentiation

  • 8/2/2019 Kalkulus 03-Derivat

    21/86

    product rule:

    d dv duuv u vdx dx dx

    Notice that this is not just theproduct of two derivatives.

    This is sometimes memorized as: d uv u dv v du 2 33 2 5

    d x x x

    dx

    5 3 3

    2 5 6 15

    d

    x x x xdx

    5 32 11 15d

    x x xdx

    4 2

    10 33 15x x

    2 3x 26 5x 32 5x x 2x

    4 2 2 4 26 5 18 15 4 10 x x x x x

    4 2

    10 33 15x x

    3.3 Rules for Differentiation

  • 8/2/2019 Kalkulus 03-Derivat

    22/86

    product rule:

    d dv duuv u vdx dx dx

    3.3 Rules for Differentiation

    Proof

    h

    xvxuhxvhxuuv

    dx

    d

    h

    )()()()(lim)(

    0

    add and subtract u(x+h)v(x)in the denominator

    h

    xvhxuxvhxuxvxuhxvhxuuv

    dx

    d

    h

    )()()()()()()()(lim)(

    0

    h

    xuhxuxvxvhxvhxuuv

    dx

    d

    h

    )()()()()()(lim)(

    0

    dx

    duv

    dx

    dvuuv

    dx

    d)(

  • 8/2/2019 Kalkulus 03-Derivat

    23/86

    quotient rule:

    2

    du dvv u

    d u dx dx

    dx v v

    or 2u v du u dv

    dv v

    3

    2

    2 5

    3

    d x x

    dx x

    2 2 3

    22

    3 6 5 2 5 2

    3

    x x x x x

    x

    3.3 Rules for Differentiation

  • 8/2/2019 Kalkulus 03-Derivat

    24/86

    Higher Order Derivatives:dy

    y

    dx

    is the first derivative of y with respect to x.

    2

    2

    dy d dy d yy

    dx dx dx dx

    is the second derivative.

    (y double prime)

    dy

    y dx

    is the third derivative.

    4 dy ydx

    is the fourth derivative.

    We will learnlater what thesehigher orderderivatives are

    used for.

    3.3 Rules for Differentiation

  • 8/2/2019 Kalkulus 03-Derivat

    25/86

    3.3 Rules for DifferentiationSuppose u and v are functions that are differentiable at

    x = 3, and that u(3) = 5, u(3) = -7, v(3) = 1, and v(3)= 4.

    Find the following atx = 3 :

    )(.1 uvdx

    d'')( vuuvuv

    dx

    d 8)7)(1()3(5

    vu

    dxd.2

    2''

    vuvvu

    vu

    dxd

    21

    )4)(5()7)(1( 27

    u

    v

    dx

    d.3

    2

    ''

    u

    vuuv

    u

    v

    dx

    d

    2

    5

    )7)(1()4)(5(

    25

    27

  • 8/2/2019 Kalkulus 03-Derivat

    26/86

    3.3 Rules for Differentiation

    hi

    ho

    dx

    d

    ))((

    )()()()(

    hoho

    hidhohodhi

  • 8/2/2019 Kalkulus 03-Derivat

    27/86

    3.3 Rules for Differentiation

  • 8/2/2019 Kalkulus 03-Derivat

    28/86

    Consider a graph of displacement (distance traveled) vs. time.

    time (hours)

    distance(miles)

    Average velocity can be found bytaking:

    change in positionchange in time

    s

    t

    t

    sA

    B

    ave

    f t t f t sV

    t t

    The speedometer in your car does not measure averagevelocity, but instantaneous velocity.

    0

    limt

    f t t f t dsV t

    dt t

    (The velocity at one

    moment in time.)

    3.4 Velocity and other Rates

    of Change

  • 8/2/2019 Kalkulus 03-Derivat

    29/86

    3.4 Velocity and other Rates

    of Change

    Velocity is the first derivative of position.

    Acceleration is the second derivative

    of position.

  • 8/2/2019 Kalkulus 03-Derivat

    30/86

    Example: Free Fall Equation

    21 2

    s g t

    GravitationalConstants:

    2ft32

    secg

    2

    m9.8

    sec

    g

    2

    cm980

    secg

    21 322

    s t

    216s t 32ds

    V tdt

    Speed is the absolute value of velocity.

    3.4 Velocity and other Rates

    of Change

  • 8/2/2019 Kalkulus 03-Derivat

    31/86

    Acceleration is the derivative of velocity.

    dv

    a dt

    2

    2

    d s

    dt example:32v t

    32a If distance is in: feet

    Velocity would be in: feetsec

    Acceleration would be in:

    ft

    sec

    sec

    2

    ft

    sec

    3.4 Velocity and other Rates

    of Change

  • 8/2/2019 Kalkulus 03-Derivat

    32/86

    time

    distance

    acc posvel pos &increasing

    acc zerovel pos &constant

    acc negvel pos &decreasing

    velocityzero

    acc negvel neg &decreasing acc zero

    vel neg &constant

    acc posvel neg &increasing

    acc zero,velocity zero

    3.4 Velocity and other Rates

    of Change

  • 8/2/2019 Kalkulus 03-Derivat

    33/86

    Rates of Change:

    Average rate of change = f x h f xh

    Instantaneous rate of change =

    0limh

    f x h f xf x

    h

    These definitions are true for any function.

    ( x does not have to represent time. )

    3.4 Velocity and other Rates

    of Change

  • 8/2/2019 Kalkulus 03-Derivat

    34/86

    For a circle: 2A r

    2dA d rdr dr

    2dA

    rdr

    Instantaneous rate of change of the area withrespect to the radius.

    For tree ring growth, if the change in area is constant then dr

    must get smaller asr

    gets larger.

    2dA r dr

    3.4 Velocity and other Rates

    of Change

  • 8/2/2019 Kalkulus 03-Derivat

    35/86

    from Economics:

    Marginal cost is the first derivative of the cost function, andrepresents an approximation of the cost of producing onemore unit.

    3.4 Velocity and other Rates

    of Change

  • 8/2/2019 Kalkulus 03-Derivat

    36/86

    Example 13:Suppose it costs: 3 26 15c x x x x to producex stoves. 23 12 15c x x x If you are currently producing 10 stoves,the 11th stove will cost approximately:

    210 3 10 12 10 15c 300 120 15

    $195

    marginal cost

    The actual cost is: 11 10C C

    3 2 3 211 6 11 15 11 10 6 10 15 10

    770 550 $220 actual cost

    3.4 Velocity and other Rates

    of Change

  • 8/2/2019 Kalkulus 03-Derivat

    37/86

    Note that this is not agreat approximationDont let that bother you.

    Marginal cost is a linear approximation of a curvedfunction. For large values it gives a good approximationof the cost of producing the next item.

    3.4 Velocity and other Rates

    of Change

  • 8/2/2019 Kalkulus 03-Derivat

    38/86

    3.4 Velocity and other Rates

    of Change

  • 8/2/2019 Kalkulus 03-Derivat

    39/86

    2

    0

    2

    Consider the function siny We could make a graph of the slope:

    slope

    1

    0

    1

    0

    1

    Now we connect the dots!The resulting curve is a cosine curve.

    sin cosd

    x x

    dx

    3.5 Derivatives of

    Trigonometric Functions

  • 8/2/2019 Kalkulus 03-Derivat

    40/86

    3.5 Derivatives of

    Trigonometric Functions

    hxhxx

    dxd

    hsin)sin(limsin

    0

    h

    xxhhxx

    dx

    d

    h

    sincossincossinlimsin

    0

    h

    xh

    h

    hx

    xdx

    d

    hh

    cossin

    lim

    )1(cossin

    limsin 00

    h

    xhhxx

    dx

    d

    h

    cossin)1(cossinlimsin

    0

    Proof

  • 8/2/2019 Kalkulus 03-Derivat

    41/86

    3.5 Derivatives of

    Trigonometric Functions

    h

    xh

    h

    hxx

    dx

    d

    hh

    cossinlim

    )1(cossinlimsin

    00

    = 0 = 1

    sin cosd

    x xdx

  • 8/2/2019 Kalkulus 03-Derivat

    42/86

    3.5 Derivatives of

    Trigonometric Functions

    hxhxx

    dxd

    hcos)cos(limcos

    0

    h

    xxhhxx

    dx

    d

    h

    cossinsincoscoslimcos

    0

    h

    xh

    h

    hx

    xdx

    d

    hh

    sinsin

    lim

    )1(coscos

    limcos 00

    h

    xhhxx

    dx

    d

    h

    sinsin)1(coscoslimcos

    0

    Find the derivative of cos x

  • 8/2/2019 Kalkulus 03-Derivat

    43/86

    3.5 Derivatives of

    Trigonometric Functions= 0 = 1

    h

    xh

    h

    hxx

    dx

    d

    hh

    sinsinlim

    )1(coscoslimcos

    00

    cos sin

    d

    x xdx

  • 8/2/2019 Kalkulus 03-Derivat

    44/86

    We can find the derivative of tangentx by using thequotient rule.

    tand xdx

    sin

    cos

    d x

    dx x

    2

    cos cos sin sin

    cos

    x x x x

    x

    2 2

    2cos sin

    cosx x

    x

    2

    1

    cos

    x2

    sec x

    2tan secd x xdx

    3.5 Derivatives of

    Trigonometric Functions

  • 8/2/2019 Kalkulus 03-Derivat

    45/86

    Derivatives of the remaining trig functionscan be determined the same way.

    sin cosd x xdx

    cos sind

    x xdx

    2tan sec

    dx x

    dx

    2cot cscd x x

    dx

    sec sec tand

    x x xdx

    csc csc cotd

    x x xdx

    3.5 Derivatives of

    Trigonometric Functions

  • 8/2/2019 Kalkulus 03-Derivat

    46/86

    3.5 Derivatives of

    Trigonometric Functions

    Jerk A sudden change in acceleration

    Definition JerkJerk is the derivative of acceleration. If a bodys positionat time tis s(t), the bodys jerk at time t is

    3

    3

    2

    2

    )(dt

    sd

    dt

    vd

    dt

    datj

  • 8/2/2019 Kalkulus 03-Derivat

    47/86

    3.5 Derivatives of

    Trigonometric Functions

  • 8/2/2019 Kalkulus 03-Derivat

    48/86

    Consider a simple composite function:6 10y x

    2 3 5y x If 3 5u x

    then 2y u

    6 10y x 2y u 3 5u x

    6dy

    dx 2

    dy

    du 3

    du

    dx

    dy dy du

    dx du dx

    6 2 3

    3.6 Chain Rule

  • 8/2/2019 Kalkulus 03-Derivat

    49/86

    dy dy du

    dx du dx Chain Rule:

    example: sin f x x 2 4g x x Find: at 2 f g x

    cos f x x 2g x x 2 4 4 0g

    0 2f g cos 0 2 2 1 4 4

    3.6 Chain Rule

    If is the composite of and ,then:

    f g y f u u g x

    atat xu g x f g f g )('))((' xgxgf

  • 8/2/2019 Kalkulus 03-Derivat

    50/86

    2sin 4 f g x x

    2sin 4y x siny u 2 4u x

    cosdy

    udu

    2du

    xdx

    dy dy du

    dx du dx

    cos 2

    dy

    u xdx

    2cos 4 2dy

    x xdx

    2cos 2 4 2 2dy

    dx

    cos 0 4dydx

    4dy

    dx

    3.6 Chain Rule

  • 8/2/2019 Kalkulus 03-Derivat

    51/86

    Here is a faster way to find the derivative:

    2sin 4y x

    2 2cos 4 4d

    y x xdx

    2cos 4 2 y x x

    Differentiate the outside function...

    then the inside function

    At 2, 4x y

    3.6 Chain Rule

  • 8/2/2019 Kalkulus 03-Derivat

    52/86

    2cos 3d

    xdx

    2

    cos 3d

    xdx

    2 cos 3 cos 3dx xdx

    2cos 3 sin 3 3d

    x x x

    dx

    2cos 3 sin 3 3x x

    6cos 3 sin 3x x

    The chain rule can be usedmore than once.

    (Thats what makes the

    chain in the chain rule!)

    3.6 Chain Rule

  • 8/2/2019 Kalkulus 03-Derivat

    53/86

    Derivative formulas include the chain rule!

    1n n

    d duu nu

    dx dx sin cos

    d duu u

    dx dx

    cos sind du

    u udx dx

    2tan secd du

    u udx dx

    etcetera

    3.6 Chain Rule

  • 8/2/2019 Kalkulus 03-Derivat

    54/86

    3.6 Chain RuleFind

    )3cos( 2 xxy )16)(3sin( 2 xxxdx

    dy

    ))sin(cos(xy

    )24(cos 33 xxy

    )sin)(cos(cos xx

    dx

    dy

    )212))(24sin()(24(cos3 2332 xxxxxdx

    dy

    ))24sin()(24(cos)636(3322

    xxxxxdx

    dy

    dx

    dy

  • 8/2/2019 Kalkulus 03-Derivat

    55/86

    The chain rule enables us to find the slope ofparametrically defined curves:

    dy dy dx

    dt dx dt

    dydydt

    dx dx

    dt

    The slope of a parametrizedcurve is given by:

    dy

    dy dtdxdx

    dt

    3.6 Chain Rule

  • 8/2/2019 Kalkulus 03-Derivat

    56/86

    These are the equations for

    an ellipse.

    Example:

    3cosx t 2siny t

    3sindx

    tdt

    2cosdy

    tdt

    2cos

    3sin

    dy t

    dx t

    2

    cot3

    t

    3.6 Chain Rule

  • 8/2/2019 Kalkulus 03-Derivat

    57/86

    2 2 1x y This is not a function,but it would still benice to be able to find

    the slope.2 2 1d d d

    x ydx dx dx

    Do the same thing to both sides.

    2 2 0

    dy

    x y dx

    Note use of chain rule.

    2 2dy

    y xdx

    22

    dy xdx y

    dy xdx y

    3.7 Implicit Differentiation

  • 8/2/2019 Kalkulus 03-Derivat

    58/86

    22 sin y x y

    22 sind d d

    y x ydx dx dx

    This cant be solved fory.

    2 2 cosdy dy

    x ydx dx

    2 cos 2dy dyy xdx dx

    22 cosdy

    xy

    dx

    2

    2 cos

    dy x

    dx y

    This technique is calledimplicit differentiation.

    1 Differentiate both sides w.r.t.x.

    2 Solve for .dy

    dx

    3.7 Implicit Differentiation

  • 8/2/2019 Kalkulus 03-Derivat

    59/86

    3.7 Implicit Differentiation

    Implicit Differentiation Process

    1. Differentiate both sides of the equation with respect tox.2. Collect the terms with dy/dx on one side of the equation.3. Factor out dy/dx .4. Solve for dy/dx .

  • 8/2/2019 Kalkulus 03-Derivat

    60/86

    Find the equations of the lines tangent and normal to the

    curve at .2 2 7 x xy y ( 1,2)

    2 2 7 x xy y

    2 2 0

    dydy

    x yx y dxdx

    Note product rule.

    2 2 0dy dy

    x x y ydx dx

    22dy

    y xy x dx

    2

    2

    dy y x

    dx y x

    2 2 1

    2 2 1m

    2 2

    4 1

    4

    5

    3.7 Implicit Differentiation

  • 8/2/2019 Kalkulus 03-Derivat

    61/86

    Find the equations of the lines tangent and normal to the

    curve at .2 2 7 x xy y ( 1,2)

    4

    5m

    tangent:

    4

    2 15

    y x

    4 42 5 5y x

    4 14

    5 5

    y x

    normal:

    5

    2 14

    y x

    5 52 4 4y x

    5 3

    4 4y x

    3.7 Implicit Differentiation

  • 8/2/2019 Kalkulus 03-Derivat

    62/86

    3.7 Implicit Differentiation

  • 8/2/2019 Kalkulus 03-Derivat

    63/86

    Find if .

    2

    2

    d y

    dx3 22 3 7x y

    3 2

    2 3 7x y 26 6 0 x y y

    26 6 y y x

    26

    6

    xy

    y

    2xy

    y

    2

    2

    2y x x yy

    y

    2

    2

    2x xy y

    y y

    2 2

    2

    2x xyy

    x

    yy

    4

    3

    2x xy

    y y

    Substituteback into theequation.

    y

    3.7 Implicit Differentiation

  • 8/2/2019 Kalkulus 03-Derivat

    64/86

    3.7 Implicit Differentiation

    Rational Powers of Differentiable Functions

    Power Rule for Rational Powers ofx

    If n is any rational number, then

    1 nn nxxdxd

  • 8/2/2019 Kalkulus 03-Derivat

    65/86

    3.7 Implicit Differentiation

    Proof: Letp and q be integers with q > 0.

    q

    p

    xy pq

    xy

    Raise both sides to the q power

    Differentiate with respect tox

    11 pq pxdx

    dyqy Solve for dy/dx

  • 8/2/2019 Kalkulus 03-Derivat

    66/86

    3.7 Implicit Differentiation

    1

    1

    q

    p

    qy

    px

    dx

    dy Substitute for y

    1/

    1

    )(

    qqp

    p

    xq

    px

    dx

    dyRemove parenthesis

    qpp

    p

    qx

    px

    dx

    dy/

    1

    Subtract exponents

    q

    px

    dx

    dyqppp )/(1

    1)/( qpx

    q

    p

    dx

    dy

    3 8 D i ti f I

  • 8/2/2019 Kalkulus 03-Derivat

    67/86

    Becausex andy are

    reversed to find the

    reciprocal function, the

    following pattern always

    holds:86420

    8

    6

    4

    2

    0

    x

    y

    x

    y

    2y x

    y x

    4m 2,4

    4,21

    4m

    Slopes are

    reciprocals.

    Derivative Formula for Inverses:

    df

    dx df

    dx x f a

    x a

    1 1

    ( )

    evaluated at ( )f a

    is equal to the reciprocal of

    the derivative of ( )f x

    evaluated at .a

    The derivative of 1( )f x

    3.8 Derivatives of InverseTrigonometric Functions

    3 8 D i ti f I

  • 8/2/2019 Kalkulus 03-Derivat

    68/86

    -1.5

    -1

    -0.5

    0

    0.5

    1

    1.5

    -1.5 -1 -0.5 0.5 1 1.5

    siny x

    1siny xWe can use implicit

    differentiation to find:1sin

    dx

    dx

    1siny x

    siny x

    sind d

    y xdx dx

    cos 1dy

    ydx

    1

    cos

    dy

    dx y

    3.8 Derivatives of InverseTrigonometric Functions

    3 8 D i ti f I

  • 8/2/2019 Kalkulus 03-Derivat

    69/86

    We can use implicitdifferentiation to find:

    1sind

    xdx

    1siny x

    sin y x sind dy xdx dx

    cos 1dy

    y

    dx

    1

    cos

    dy

    dx y

    2 2sin cos 1y y

    2 2

    cos 1 siny y 2cos 1 siny y

    But

    2 2

    y

    so is positive.cos y

    2cos 1 siny y

    2

    1

    1 sin

    dy

    dx y

    2

    1

    1

    dy

    dx x

    3.8 Derivatives of InverseTrigonometric Functions

    3 8 D i ti f I

  • 8/2/2019 Kalkulus 03-Derivat

    70/86

    1siny x

    1

    cos

    dy

    dx y

    3.8 Derivatives of InverseTrigonometric Functions

    )cos(sin

    11xdx

    dy

    x

    1

    sin

    x

    1

    21 x21

    1

    xdx

    dy

    xy sin

    1cos dxdyy

    3 8 D i ti f I

  • 8/2/2019 Kalkulus 03-Derivat

    71/86

    3.8 Derivatives of InverseTrigonometric Functions

    )(tansec

    112xdx

    dy

    x

    1

    tan

    x

    1

    21 x

    211xdx

    dy

    xy tan

    1sec2 dxdyy

    Find xdx

    d 1tan

    xy 1tan

    ydx

    dy2

    sec

    1

    3 8 D i ti f I

  • 8/2/2019 Kalkulus 03-Derivat

    72/86

    3.8 Derivatives of InverseTrigonometric Functions

    )tan(sec)sec(sec1

    11xxdx

    dy

    x1sec

    x

    1

    12 x

    1||

    1

    2

    xxdx

    dyxy sec

    1tansec dxdyyy

    Find xdx

    d 1sec

    xy 1sec

    yydx

    dy

    tansec

    1

    3 8 D i ti f I

  • 8/2/2019 Kalkulus 03-Derivat

    73/86

    1

    2

    1sin

    1

    d duu

    dx dxu

    121tan 1

    d duudx u dx

    1

    2

    1sec

    1

    d duu

    dx dxu u

    1

    2

    1cos

    1

    d duu

    dx dxu

    1

    21cot

    1d duu

    dx u dx

    1

    2

    1csc

    1

    d duu

    dx dxu u

    1 1cos sin2

    x x 1 1cot tan

    2x x

    1 1csc sec2

    x x

    3.8 Derivatives of InverseTrigonometric Functions

    3 8 De i ti e of In e e

  • 8/2/2019 Kalkulus 03-Derivat

    74/86

    Your calculator contains allsix inverse trig functions.However it is occasionally

    still useful to know thefollowing:

    1 1 1sec cosxx

    1 1cot tan2

    x x

    1 1 1csc sinxx

    3.8 Derivatives of InverseTrigonometric Functions

    3 8 Derivatives of Inverse

  • 8/2/2019 Kalkulus 03-Derivat

    75/86

    3.8 Derivatives of InverseTrigonometric Functions

    Find

    )3(cos 21 xy

    422 916)6(

    )3(1(1

    xxx

    xdxdy

    x

    y1

    cot1

    xxy 1sec

    1

    11

    11

    122

    2

    xx

    xdx

    dy

    )1)((sec1||

    1 12

    xxx

    xdx

    dy

    dx

    dy

    3 9 D i ti f E ti l d

  • 8/2/2019 Kalkulus 03-Derivat

    76/86

    -1

    0

    1

    2

    3

    -3 -2 -1 1 2 3x

    Look at the graph ofx

    y e

    The slope atx = 0appears to be 1.

    If we assume this to betrue, then:

    0 0

    0lim 1

    h

    h

    e e

    h

    definition of derivative

    3.9 Derivatives of Exponential and

    Logarithmic Functions

    3 9 D i ti f E ti l

  • 8/2/2019 Kalkulus 03-Derivat

    77/86

    Now we attempt to find a general formula for the

    derivative of using the definition.xy e

    0

    lim x h x

    x

    h

    d e ee

    dx h

    0lim

    x h x

    h

    e e e

    h

    0

    1lim

    hx

    h

    ee

    h

    0

    1lim

    hx

    h

    ee

    h

    1x

    e

    xe

    This is the slope atx = 0, which

    we have assumed to be 1.

    3.9 Derivatives of Exponential

    and Logarithmic Functions

  • 8/2/2019 Kalkulus 03-Derivat

    78/86

    x xd

    e edx

    3 9 Derivatives of Exponential

  • 8/2/2019 Kalkulus 03-Derivat

    79/86

    xe is its own derivative!

    If we incorporate the chain rule: u ud due e

    dx dx

    We can now use this formula to find the derivative ofxa

    3.9 Derivatives of Exponentialand Logarithmic Functions

    3 9 Derivatives of Exponential

  • 8/2/2019 Kalkulus 03-Derivat

    80/86

    xd

    adx

    lnx

    ad edx

    lnx ad edx

    ln lnx ad

    e x adx

    Incorporating the chain rule:

    lnu ud du

    a a adx dx

    3.9 Derivatives of Exponentialand Logarithmic Functions

    aaa

    dx

    d xx ln

    3 9 Derivatives of Exponential

  • 8/2/2019 Kalkulus 03-Derivat

    81/86

    So far today we have:

    u ud due e

    dx dx lnu u

    d dua a a

    dx dx

    Now it is relatively easy to find the derivative of .ln x

    3.9 Derivatives of Exponentialand Logarithmic Functions

    3 9 Derivatives of Exponential

  • 8/2/2019 Kalkulus 03-Derivat

    82/86

    lny xye x

    yd d

    e x

    dx dx

    1ydy

    e

    dx

    1y

    dy

    dx e

    1ln

    dx

    dx x

    1ln

    d duu

    dx u dx

    3.9 Derivatives of Exponentialand Logarithmic Functions

    3 9 Derivatives of Exponential

  • 8/2/2019 Kalkulus 03-Derivat

    83/86

    To find the derivative of a common log function, youcould just use the change of base rule for logs:

    logd xdx

    lnln10

    d xdx

    1 lnln10

    d xdx

    1 1ln10 x

    The formula for the derivative of a log of any base

    other than e is:

    1log

    ln

    a

    d duu

    dx u a dx

    3.9 Derivatives of Exponentialand Logarithmic Functions

    3 9 Derivatives of Exponential

  • 8/2/2019 Kalkulus 03-Derivat

    84/86

    u ud due e

    dx dx

    lnu ud du

    a a adx dx

    1logln

    ad duudx u a dx

    1lnd duudx u dx

    3.9 Derivatives of Exponentialand Logarithmic Functions

    3 9 Derivatives of Exponential

  • 8/2/2019 Kalkulus 03-Derivat

    85/86

    3.9 Derivatives of Exponential

    and Logarithmic Functions

    x

    ey

    2

    2

    3xy

    3

    ln xy

    )(sin 41 xey

    Findy

    x

    ey

    2

    2')2)(3ln(3'

    2

    xy x

    xxxy3

    )3(1

    '2

    3

    )4)((

    )(1

    1' 4

    24

    x

    xe

    e

    y

    3 9 Derivatives of Exponential

  • 8/2/2019 Kalkulus 03-Derivat

    86/86

    3.9 Derivatives of Exponential

    and Logarithmic Functions

    Logarithmic differentiation

    Used when the variable is in the base and the exponent

    y = xx

    ln y = ln xx

    ln y = x ln x

    xxd

    dyln

    11

    xydx

    dyln1

    xxdxdy x ln1