53
APPENDIX: List of ASI Participants Joao Carlos de Castro Abrantes Department Engineering Ceramics and Glasses University of Aveiro P-3800 Aveiro Portugal Klinger M. B. Alves Federal University Espirito Santo Rua Xavier Sigaud 150 DMF-CBPF 22290-Rio de Janeiro-RJ Brasil Miltos Anagnostou NCSR Demokritos 15310 Ag. Paraskevi P. O. Box 60228 Athens Greece Carlo Appino Politecnico di Torino Istituto Elettrotecnico Nazionale Galileo Ferraris Corso Massimo d'Azeglio 42 1-10125 Torino Italy Joaquin Bartolome LC.M.A., C. S. 1. C University of Zaragoza E-50009 Zaragoza Spain Dr. BOder Robert Bosch GmbH Zentralstelle Forschung Werkstoffe Postfach 106050 D-7000 Stuttgart 10 Federal Republic of Germany Joe I. Budnick Department of Physics University of Connecticut Storrs, CT 06268 USA K. H. Jiirgen Buschow Philips Research Laboratories P. O. Box 80000 NL-5600 JA Eindhoven The Netherlands Martin G. Byrne Department of Physics University of Technology Loughborough LE11 3UQ United Kingdom Brian J. Chalmers Department of Electrical Engineering University of Manchester P. O. Box 88 Institute of Science and Technology Manchester, M60 lQD United Kingdom Reinder Coehoorn Philips Research Laboratories P.O. Box 80000 NL-5600 JA Eindhoven The Netherlands Martin I. Cooper Elvyn Richards Hall University of Technology Ashby Road Loughborough LE 11 3UQ United Kingdom Jose Delamare Faculte des Sciences Lab. Microscopie Electronique B.P.118 F-76134 Mont-St-Aignan Cedex France J. J. M. Franse Natuurkundig Laboratorium Universiteit van Amsterdam Valckenierstraat 65 NL-l 0 18 XE Amsterdam The Netherlands 791

K. B.3A978-94-011... · 2017-08-25 · Oscar Moze Istituto ISM del CNR Via E. Fermi 38 1-00044 Frascati Italy Patricia B. Oliete Terraz ICMA, University of Zaragoza Faculdad de Ciencias

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: K. B.3A978-94-011... · 2017-08-25 · Oscar Moze Istituto ISM del CNR Via E. Fermi 38 1-00044 Frascati Italy Patricia B. Oliete Terraz ICMA, University of Zaragoza Faculdad de Ciencias

APPENDIX: List of ASI Participants

Joao Carlos de Castro Abrantes Department Engineering Ceramics and Glasses University of Aveiro P-3800 Aveiro Portugal

Klinger M. B. Alves Federal University Espirito Santo Rua Xavier Sigaud 150 DMF-CBPF 22290-Rio de Janeiro-RJ Brasil

Miltos Anagnostou NCSR Demokritos 15310 Ag. Paraskevi P. O. Box 60228 Athens Greece

Carlo Appino Politecnico di Torino Istituto Elettrotecnico Nazionale Galileo Ferraris Corso Massimo d'Azeglio 42 1-10125 Torino Italy

Joaquin Bartolome LC.M.A., C. S. 1. C University of Zaragoza E-50009 Zaragoza Spain

Dr. BOder Robert Bosch GmbH Zentralstelle Forschung Werkstoffe Postfach 106050 D-7000 Stuttgart 10 Federal Republic of Germany

Joe I. Budnick Department of Physics University of Connecticut Storrs, CT 06268 USA

K. H. Jiirgen Buschow Philips Research Laboratories P. O. Box 80000 NL-5600 JA Eindhoven The Netherlands

Martin G. Byrne Department of Physics University of Technology Loughborough LE11 3UQ United Kingdom

Brian J. Chalmers Department of Electrical Engineering University of Manchester P. O. Box 88 Institute of Science and Technology Manchester, M60 lQD United Kingdom

Reinder Coehoorn Philips Research Laboratories P.O. Box 80000 NL-5600 JA Eindhoven The Netherlands

Martin I. Cooper Elvyn Richards Hall University of Technology Ashby Road Loughborough LE 11 3UQ United Kingdom

Jose Delamare Faculte des Sciences Lab. Microscopie Electronique B.P.118 F-76134 Mont-St-Aignan Cedex France

J. J. M. Franse Natuurkundig Laboratorium Universiteit van Amsterdam Valckenierstraat 65 NL-l 0 18 XE Amsterdam The Netherlands

791

Page 2: K. B.3A978-94-011... · 2017-08-25 · Oscar Moze Istituto ISM del CNR Via E. Fermi 38 1-00044 Frascati Italy Patricia B. Oliete Terraz ICMA, University of Zaragoza Faculdad de Ciencias

792

Kristine Fritz Max-Planck lnstitut fUr Metallforschung lnst. Werkstoffwissenschaft Heisenbergstrasse 5 D-7000 Stuttgart 80 Federal Republic of Gennany

Armand Gabriel Centre de Recherche de Voreppe Pechiney B.P.27 F-38340 Voreppe France

Jose Luis Giordano Comision Nacional Energia Atomica Centro Atomico Bariloche 8400-San Carlos de Bariloche Argentina

Antonio P. Gonyalves ICEN - L. N. E. T. L Department of Chemistry P-2686 Sacavem Cedex Portugal

Juan Gonzalo de los Reyes ICMA University of Zaragoza Plaza San Francisco, sIn E-50009 Zaragoza Spain

Fernande Grandjean Institut de Physique B5 Universite de Liege B-4000 Sart-Tilman Belgium

Bernd Grieb Max-Planck Institut fUr Metallforschung lnst. Werkstoffwissenschaft Heisenbergstrasse 5 D-7000 Stuttgart 80 Federal Republic of Germany

I. Rex Harris Department of Metallurgy and Materials University of Binningham Elms Road Binningham B15 2IT United Kingdom

Ernst-Theo Henig Max-Planck Institut fiir Metallforschung Heisenbergstrasse 5 D-7000 Stuttgart 80 Federal Republic of Gennany

Jan F. Herbst Physics Department General Motors Research Laboratories Warren, MI 48090-9055 USA

Peter Hoffmann KFA-Forschungszentrum Postfach 1913 D-5170 Jiilich Federal Republic of Gennany

David Howe Department of Electronic and Electrical Engineering University of Sheffield Mappin Street Sheffield S 1 3JD United Kingdom

Eva Jedryka Institute of Physics P. A. S. AI. Lotnikow 32/46 PL-02668 Warszawa Poland

Geraint Jewell Department of Electronic and Electrical Engineering University of Sheffield Mappin Street Sheffield S 1 3JD United Kingdom

Page 3: K. B.3A978-94-011... · 2017-08-25 · Oscar Moze Istituto ISM del CNR Via E. Fermi 38 1-00044 Frascati Italy Patricia B. Oliete Terraz ICMA, University of Zaragoza Faculdad de Ciencias

Matthias Katter SiemensAG. Research Laboratories Postfach 3220 D-8520 Erlangen Federal Republic of Germany

Frank Kayzel Natuurkundig Laboratorium University of Amsterdam Valckenierstraat 65 NL-10 18XE Amsterdam The Netherlands

Danny Kendall Department of Mathematical Sciences Cockcroft Building Moulsecomb Brighton, East Sussex, BN2 4GJ United Kingdom

Hans R. Kirchmayr Institute of Experimental Physics Technical University Vienna Wiedner Hauptstrasse 8 A-1040 Vienna Austria

Norman C. Koon Naval Research Laboratory 4555 Overlook A venue, SW Washington, DC 20375-5000 USA

Helmut Kronmliller Max-Planck Institut flir Metallforschung Institut flir Physik Heisenbergstrasse 1 D-7000 Stuttgart 80 Federal Republic of Germany

Lexiang Liao Mc Gill University Department of Physics 3600 University Street Montreal H3A 2T8 Canada

Gary J. Long Department of Chemistry University of Missouri-Rolla Rolla, MO 65401 USA

Antoon A. Moolenaar Radiation Physics Department Interfacultair Reactor Instituut Mekelweg 15 NL-2629 JB Delft The Netherlands

Oscar Moze Istituto ISM del CNR Via E. Fermi 38 1-00044 Frascati Italy

Patricia B. Oliete Terraz ICMA, University of Zaragoza Faculdad de Ciencias Plaza San Francisco sIn E-50009 Zaragoza Spain

Jose M. C. B. Oliveira Faculty of Sciences University of Porto Pra~a Gomes Teixeira P-4OOO Porto Portugal

Pierre Panissod Institut de Physique et Chimie des Materiaux CNRS-Universite Louis Pasteur rue B. Pascal 4 F-67070 Strasbourg France

Massimo Pasquale Istituto Elettronico Nazionale Galileo Ferraris Corso Massimo d' Azeglio 42 1-10125 Torino Italy

793

Page 4: K. B.3A978-94-011... · 2017-08-25 · Oscar Moze Istituto ISM del CNR Via E. Fermi 38 1-00044 Frascati Italy Patricia B. Oliete Terraz ICMA, University of Zaragoza Faculdad de Ciencias

794

Monique Petit Centre de Recherche de Voreppe-Pechiney B. P. 27 F-38340 Voreppe France

Carmen Pique Rami Instituto de Ciencia de Materiales de Aragon Universidad de Zaragoza E-50009 Zaragoza Spain

Bernd Reinsch Max-Planck Institut fUr Metallforschung Heisenbergstrasse 5 D-7000 Stuttgart 80 Federal Republic of Gennany

Anthony V. Rosati Department of Chemistry Georgetown University Washington, DC 20007 USA

Umberto Russo Dipartimento di Chimica Inorganica Universita di Padova Via Loredan 4 1-35100 Padova Italy

Maria Armanda Sa Centro de Fisica da Universidade do Porto Pra~a Gomes Teixeira P-4000 Porto Portugal

Boris Saje Institute Josef Stefan Jamova39 Y-61000 Ljubljana Yugoslavia

Thomas Schilling Vacuumschmelze Gruner Weg 37 D-6450 Hanau Federal Republic of Gennany

Ludwig Schultz Siemens AG. Research Laboratories P. O. Box 3240 D-8520 Erlangen Federal Republic of Gennany

Deborah Lynn Serra Department of Chemistry Rice University P.O. Box 1892 Houston, TX 77251 USA

Vladimir Sima Institut fiir Metallphysik Hospitalstrasse 3-5 D-3400 Gottingen Federal Republic of Gennany

Isabella Sosnowska IFF/KFA Jiilich D-5170Jiilich Federal Republic of Gennany

Hong Sun Department of Physics Trinity College IRL-Dublin 2 Ireland

Joao C. B. Waerenborgh LNETI,ICEN Department of Chemistry Estrada NacionallO P-2685 Sacavem Portugal

Marek Wojcik Physics Department University of Connecticut Storrs, CT 06268 USA

Bunsen Y. Wong MEMS Department Carnegie Mellon University Pittsburg, PA 15213 USA

Page 5: K. B.3A978-94-011... · 2017-08-25 · Oscar Moze Istituto ISM del CNR Via E. Fermi 38 1-00044 Frascati Italy Patricia B. Oliete Terraz ICMA, University of Zaragoza Faculdad de Ciencias

AUTHOR INDEX

Abache, C, 91, 20, 21; 281, 7; 551, 2

Abe, M., 388,47; 448, 8 Abragam, A, 313, 1; 352, 1 Abraham, S. C, 168, 1 Adler, E., 497, 12 Adroja, D. T., 257,24 Aharoni, A, 497, 1, 2 Ahmed, A, 90, 6; 572, 30 Akai, H., 168, 7 Alberdi, A., 413, 26 Alekseev, P. A, 523, 5 Algarabe1, P. A., 282;9-II,

19,26,28,30,32; 413, 17,20,21,25,26; 525, 28

Alper, AM., 224, 7 Alson, E. A, 413, II Altounian, Z., 353, 22; 389,

60,61 Amoretti, G., 525, 37 Anastasiadias, E., 224, 3 Andersen, O. K., 168,2-4 Andreef, A, 523, 5 Arif, S. K., 258, 47,48 Arko, A J., 169, 71; 388, 34 Arnaudas, J. I., 282, 9, 10,

19; 413, 17,20,21 Arzt, E., 258, 33; 583, 2 Asti, G., 25, 3; 282, 20,

21; 460, 5, 7-9; 526, 39 Atzmony, U., 429, 3; 448, 10

Baer, Y., 169, 55 Baines, G. D., 723, 2 Bakar, E., 524, 16, 19; 526, 43 Ballhausen, C J., II6, 8 Bara, J. 1., 389, 66 Baran, W., 617, 6 Barbara, B., 353, 28, 29 Bargouth, M. 0., 525, 30 Bartolome, J., 281, 2, 3;

282, 16; 413, 4, 5, 19, 26 Basarab, D. J., 617, 12 Bauminger, E. R., 429,

3; 448, 10 Bayley, S. G., 352, 5 Becker, J. J., 94, 60;

572, 1; 525, 35 Belorizky, E., 131,21;

552, 16 Belson, H. S., 429, 4 Benjamin, 1. S., 258, 54;

583, 1 Bennett, L. H., 92, 38-42;

352,2 Beresjuk, D.O., 257, 7 Bergman, G., 91, 22; 572, 2 Berlureau, T., 67, 24; 572, 34 Bernal, J. D., 25, 6 Berthier, Y., 353, 24, 27, 29 Bezinge, A., 551, 6 Birch, T. S., 679, 5, 7; 792, 5 Birgeneau, R. J., 523, 2 Blaha, P., 168, 6 Bleaney, B., 117, 17 Block, G., 67, 1 Blugel, S., 168, 7 Boas, M., 25, 8 Bodak, O. I., 91,25; 256,

5; 257, 7 Bogacz, B. F., 389, 66 Boge, M., 168,9; 388,52;

389, 54 Boland, B. C, 525, 34, 38 Boller, H., 91, 19 Boltich, E. B., 67, 2; 257,

23, 25; 281, 6; 282, 8; 413, 14

Bolzoni, F., 282, 15,21,22, 25; 413, 23; 460, 5, 9; 526,39; 551, 4

Boom, R., 67,17; 168,8; 583,6

Bornemann, H. J., 388, 53; 389,55

Borovik-Romanov, AS., 130,4 Boswell, P. G., 617, 5 Boules, N., 617, 8 Bowden, G. J., 258,47,48;

353, 29; 525, 34, 38 Bozorth, R. M., 5, 8; 48, 6 Bradford, M., 704, 1 Brewer, E. G., 93, 51, 56;

572, 21; Brooks, A. N., 617,8 Brouha, M., 524, 21; 552, 28 Brown, W. F. Jr., 497, 3, 4 Budnick,l. 1.,313, 10; 314,

795

Page 6: K. B.3A978-94-011... · 2017-08-25 · Oscar Moze Istituto ISM del CNR Via E. Fermi 38 1-00044 Frascati Italy Patricia B. Oliete Terraz ICMA, University of Zaragoza Faculdad de Ciencias

796

11-13; 353, 8; 388, 28 Bunbury, Do So Po, 258, 47, 48 Burriel, Ro, 281, 3; 413, 4 Burzo, E., 5, 9; 353, 23;

413, 14; 459, 1; 551, 3 Busch, Go, 523, I Buschow, Ko Ho Jo, 5, 13, 14,

17, 18; 67,3,4,6,7,9, 10, 12-14,23; 91, 15, 16, 27; 92, 30, 31, 37; 93, 48; 94, 62, 66, 67; 117, 23,24; 131, 19,20,22, 24; 168, 10, 11, 24, 33; 169,45, 53; 170, 78; 224, 2,5; 225, 18,20; 257, 9, 10, 14, 15, 17, 19,21, 22, 28; 258, 44, 46, 49, 50; 259, 69, 71; 282, 31, 34; 313, 7; 314, 14, 17-20; 353, 15, 17, 21, 29; 388, 30,39,42,44,51; 389, 68-74, 77, 80; 413, 13, 22; 460, 15; 497, 5; 523, 4; 524, 20-22; 525, 25, 27, 30, 32, 36, 37; 526, 42; 551, 7-13; 552, 15, 19,23-32; 572, 3-5, 12, 13

Butler, Mo Ao, 352, 6

Caciuffo, Ro, 525, 36, 37 Cadieu, Fo Jo, 258, 31, 32 Cadogan, Jo Mo, 67, 24; 117,

20; 168, 12, 21; 282, 27; 353, 18, 29; 389,56; 448, 11; 572, 34

Cahan, Do Jo, 352, 2 Callaway, Jo, 168, 13 Callen, Eo Ro, 429, 9, 11 Callen, Eo, 388, 47; 448, R Callen, Ho Bo, 429, 9 Calvert, L. Do, 170,85 Campbell, I. Ao, 131, 17 Campbell, Po, 617,4 Capellen, J 0, 4, 2 Capellmann, Ho, 168, 14, 15, 29 Carter, Go c., 352, 2 Castets, Ao, 524, 7 Cavin, 00 Bo, 258, 56 Chabot, B., 91, 24 Chaboy, Jo, 281, 2, 3; 413,

4, 19 Chalmers, Bo Jo, 723, 2, 3;

744,2,3 Chang, Wo c., 460, 3 Chen, Ho Y., 282, 12; 353, 26 Chen, So Ko, 460, 3 Chen, Y. L., 572, 6 Chenevier, Bo, 281, 2; 413, 19 Cheng, So Fo, 257, 23, 29 Chevalier, B., 67, 24; 572, 34 Ching, Wo Y., 131, 11; 170,

90; 388, 32, 37, 38 Chistyakov, 00 Do, 523, 3, 5 Christides, c., 257, 27; 282,

29; 389, 78 ChristodouIou, C. No, 413, 10 Chrzas, Jo, 413, 27 Chuang, Yo c., 460, 17 Clark, A. Eo, 4, 5; 92, 29;

429,4, 11; 572, 7 Clark, Ro, 25, 8 Clarke, Jo Po, 617,12; 679, 4 Clauberg, R., 168, 16 Clegg, A. Go, 679, 2 Cobb, C. Ho, 352, 5 Coehoom, Ro, 94, 68; 131, 15;

168, 17-20; 313,5; 388, 33; 389, 75,7~429, I; 551, 7; 572, 4, 8

Coey, Jo Mo Do, 5, 27, 28; 67, 11, 15,24; 93,44; 1I7, 20; 131,23; 168, 12,21; 257, 1I, 27; 259, 72; 281, 5; 282, 27; 353, 18; 388, 43; 389, 54, 56, 76, 79; 448, II; 526, 40; 572, 34

Cohen, Mo Ro, 25, 4 Coles, B. Ro, 256, 4 Colpa, Jo Ho Po, 524, 8 Condon, Eo Uo, 116,4,5 Corliss, c., 116, 3 Coulthardt, Mo, 168, 22 Courtois, A., 387, 22 Cox, B. No, 168,22; 169,55 Creagh, Do c., 352, 5 Croat, Jo Jo, 4, 3; 5, 7;

67, 5, 16; 90, 1,2, 7, 8, 10; 92, 35; 169,40; 388,25;448, 1,3;497, 6; 572,9-11;583,4

Crombie, A. c., 25, 7; 26, 9

Page 7: K. B.3A978-94-011... · 2017-08-25 · Oscar Moze Istituto ISM del CNR Via E. Fermi 38 1-00044 Frascati Italy Patricia B. Oliete Terraz ICMA, University of Zaragoza Faculdad de Ciencias

Crooks, J. E., 48, 8 Crow, J. E., 429, 6, 12 Cullen, J. R., 429, II Cullity, B. D., 5, 10; 47, 2 Cyrot, M., 131, 12 Czjzek, G., 388, 52, 53; 389,

54, 55

Daams, J. L. c., 91, 16; 572, 12

Dai, S., 353, 12 Dalmas de R€otier, P., 67, II

93,44; 28~ 17; 388,43 Danielsen, 0., 169,56 Dariel, M. P., 429, 3; 448, 10 Das, B. N., 4, 6; 90, 4; 388,

47; 448, 1,5,8,9; 572, 19 David, W. I. F., 67, 21; 257,

16, 18; 525, 24, 26 Davis, R. L., 93, 47; 258,

47; 388,47 de Boer, F. R., 67, 6, 17;

92, 30; 94, 62; 168, 8; 257, 9,21; 259, 71; 389, 72; 551, 9, 10; 552, 17, 19, 20, 26; 583, 6

de Chatel, P. F., 67, 17; 583,6

De Gennes, P. G., 131, 16 De Grave, E., 387, II de Jongh, L. J., 169,45; 389,

73; 523, 4; 552, 30 de Mooij, B. D., 388,42; 67,

6, 7, 10; 91, 15, 16; 92, 30,31; 94, 66; 13l, 20, 225, 20; 257, 9, 10, 28; 389, 68, 70, 72; 413, 13; 497, 5; 524, 20, 21; 551, 7-10; 552, 23; 572, 3,4

de Vos, K. J., 572, 14 de Vries, J. W. c., 388, 51 de Wijn, H. W., 526, 42; 552, 27 Dederichs, P. H., 168, 6, 7 del Moral, A., 130, 10; 282,

9,10,19,26,32;413, 16, 17,20,21,25,26

Demerdash, N. A., 744, I Den Broeder, F. J. A., 224, 5 Denissen, C. J. M., 67, 7;

94, 66, 68; 168, 23; 389, 70, 77; 551, 13;

552, 19; 572, 8 Deportes, J., 256, 3; 257, 6 Deppe, P., 313, 7, 9; 353,

19; 388, 26 Deryagin, A. V., 282, 24 Desclaux, J. P., 130,6; 526,44 Devgan, S. K., 723, 3,4 di Fabrizio, E., 168,27 Ding, J., 67, 8; 258, 39;

572, 15 Dirken, M. W., 67, 9; 168,

24; 169,45; 257,19; 389, 73; 552, 30

Doolan, K. R., 353, 29 Dormann, F., 353, 29 Drabkin, I. E., 25, 4 Dubiel, S. M., 387, 6 Dubois, J. M., 353, 13 Duchateau, J. P. W. B., 94,

68; 551, 7; 572, 8 Duh, J. G., 460, 3 Dunlop, J. B., 93,47; 388,49 Durst, K. D., 497, 7; 498,

22, 25-27, 35

Eastham, J. F., 617, 9 Ebert, H., 168, 26 Eckert, J., 259, 58 Edwards, D. M., 168, 25 Ehold, J. R., 224, 4 Ehrenreich, H., 169, 66 Eibler, R., 413, 22; 460; 15, 16 Elbicki, J. M., 257, 23, 24 Elk, K., 460, 10 Engelhardt, M. A., 169,48,

71; 388, 34 Erdmann, K., 313, 7, 8; 314,

17-20; 389, 80 Ervens, W., 497, 7; 498, 22 Etourneau, J., 67, 24; 572, 34 Evans, B. J., 387, 12 Eyring, H., 116, II Eyring, L., 5, 9, 15; 130,

I; 459, I; 524, 13

Fath, A. F., 792, I Feder, R., 168, 16 FeIner, I., 525, 29 Fernandez, J. M., 282, 16 Fernengel, W., 497, 12; 498, 22

797

Page 8: K. B.3A978-94-011... · 2017-08-25 · Oscar Moze Istituto ISM del CNR Via E. Fermi 38 1-00044 Frascati Italy Patricia B. Oliete Terraz ICMA, University of Zaragoza Faculdad de Ciencias

798

Ferreira, L. P., 67, II; 388, 43 Fidler, 1., 497, 9 Figgis, B. N., II6, 10 Fillunger, H., 460, 13 Florio, 1. V., 524, 23 Ford, C. 1., 744, 1 Franse, 1. 1. M., II7, 25;

130, 2, 8; 131, 20; 258, 45; 413, 13; 448, 4; 524, 8; 551, 14; 552, 18-20

Freeman, A. 1., i30, 6, 7; 169,59; 387, 8; 526,44

Freeman, A. R., 169,37,46 Fremy, M. A., 131,21; 552, 16 Frick, B., 524, 10 Friedt, 1. M., 388,41, 50 Frings, P. H., 524, 8 Fruchart, D., 67, II; 93, 44;

170,74; 281, 2, 3; 282, 16,17; 388,43;413,4,19

Fruchart, R., 67, II; 91, 13; 93, 44; 168, 28; 282, 16, 17; 388,41,43, 50

Fu, J., 386, 1; 387, 20; 389, 67 Fuerst, C. D., 93, 53-58; 94,

63; 413, II Fujii, H., 413, 3 Fujimura, S., 4, 4; 67, 20;

90,3,12; 91, 18; 281, I; 353, 9; 413, 7, 15; 448, 2; 498, 38; 583, 3, 13

Fujita, A., 388, 27, 46 Fulde, P., 130,4; 168, 29;

524, 12; 525, 35 Fultz, B., 387, 7 Fundamenskii, V., 91, 25 Furrer, A., 523, 4 Furukawa, G. T., 413, 2

Garcia, L. M., 281, 3; 413, 4 Gaskell, P. H., 91, 23 Gavigan, J. P., 130,2; 131,

21; 168, 21; 282,27; 353, 18; 389, 55, 56, 76, 79; 448, 11; 526,40; 552, 16

Gelatt, C. D. Jr., 170, 87 Geller, S., 91, 26 Gerard, A., 387, 12, 19 Gerardin, R., 387,22 Gersdorf, R., 168, 30; 552, 17

Gibb, T. c., 387, 4 Gigler, c., 460, 13 Gignoux, D., 524, 7 Gilfrich, 1., 256, 3 Givord, D., 91,14; II7, 22;

131, 21; 168, 31, 32; 256, 3; 353, 18; 388, 31, 52; 389, 54, 56; 448,6, 11; 526, 41; 552, 16

Gladyschevskji, E. I., 256, 5 Glardon, R., 224, 9 Gleimann, G., 116, 9 Gleitzer, c., 387, 10, 22 Gonser, U., 313, 3; 352, 2;

387,18 Goodwin, H. A., 116, 14 Goremychkin, E. A., 523, 3 Gossard, A. c., 313, 6; 352,4 Grandjean, F., 5, 19; 47,3;

II7, 23, 25; 130,5; 131; 25; 313,4,5; 314,15, 16; 353, 12; 386, 1-3; 387,10-13, 19,20,23, 24; 388, 33, 39, 44; 389, 62, 64, 71; 429, 1, 2; 448,4

Greenwood, N. N., 387, 4 Greidanus, F. 1. A. M., 523,4 Greissmann, H., 523, 5 Grieb, B., 225, 15, 19, 22,

23; 226, 24, 26, 27 Griffith, J. S., 116, 7 Gronefeld, M., 497 ,8 Grossinger, R., 94, 62

169, 53; 258, 33; 259, 73; 413,22; 460, 12, 13, 15-18; 552, 32; 572, 17

Gschneider, K. A. Jr., 5, 25; 130, 1; 524, 13 .

Gschneidner, K. A. Jr., 4, 2; 5,9,1525; 130, 1; 459,1 524, 13

Gu, Z. Q., 388, 32 Gubbens, P. C. M., 67, 12;

117,24; 168,33; 258, 49,50; 388, 51; 389, 74; 552,29

Gueramian, M., 551, 6 Guertin, R. P., 429, 6, 12 Guertler, M., 224, 3 Guertler, W., 224, 3 Guillen, R., 67, 11; 388,43

Page 9: K. B.3A978-94-011... · 2017-08-25 · Oscar Moze Istituto ISM del CNR Via E. Fermi 38 1-00044 Frascati Italy Patricia B. Oliete Terraz ICMA, University of Zaragoza Faculdad de Ciencias

Gunnarsson, 0., 169,34 Giitlich, P., 116, 15 Guttman, L., 168, 1 Gyorffy, B. L., 168, 26; 169, 35

Haasen, P., 572, 18 Hadfield, D., 616, 3; 679, 3 Hadjipanayis, G. C, 90, 5;

413,10; 448, 1; 497, 9, 10; 572, 16

Hagan, L., 117,21 Hamed, S. A, 723, 2 Harris, F. E., 387, 18 Hartelius, C C., 169, 54 Hasegawa, H. J., 169, 36 Hathaway, K. B., 169, 37 Hazelton, R. C, 90, 5; 448,

1; 572, 16 Hedin, L., 168, 5 Hegde, H., 258, 31, 32 Heine, V., 169, 38 Heisz, S., 572, 17 Hellstern, E., 259, 59; 413,

9; 583, 5, 7-9 He1mholdt, R. B., 67, 13, 14;

94, 67; 525, 25; 551, 11; 552,24

Helmho1dt, R. H., 257, 15, 17, 22 Henig, E. T., 224, 12, 14, 16,

17; 225, 19-23; 226, 24, 27; 489,40;572, 31

Hennion, B., 524, 7 Henry, N., 91, 17 Herber, R. H., 387, 15 Herbst, J. F., 4,3; 5, 7, 16,

24; 67, 5, 16; 90, 1, 2, 7, 8; 92, 34-36, 43; 93, 45, 46, 50, 53-55, 57, 58; 94, 63; 169, 39,40; 259, 61; 353, 10; 387, 23; 388, 25, 35,40; 389, 59; 413, 11; 448, 1,3; 497, 6; 572, ll; 538, 4

Herget, C, 497, 14 Herzberg, G., 116, 1 Herzer, G., 497, 12 Hicks, T. J., 524, 17 Hihara, T., 352,5 Hilscher, G., 527, 17 Himmel, H. W., 617, 10

Hirabayashi, M., 497, II Hiraga, K., 91,18; 413, 7;

497, II Hirahara, E., 352, 5 Hirosawa, S., 90, 12; 281, 1,

2; 353, 9, 14, 19,20; 388,27,29,45,46; 389, 56; 413,15,19; 448,11; 498, 39; 583, 13

Hiroyoshi, H., 282, 23; 353, 9, 20

Hock, S., 497, 13, 14; 498, 27 Hoenig, H. E., 524, 9 Hoffer, G., 460, 4 Hog, J., 170,84 Hohenberg, P., 169,41 Holz, A, 489, 15 Homma, M., 259, 66; 572, 25 Hong, N. M., 258, 45 Honodera, H., 353, 11 Honsinger, V. B., 723, 1 Hoppee, J. 1.,48,9 Horton, G. K., 387, 16 Hosoya, M., 258, 41 Hovestreydt, E., 91, 24 Howe, D., 617, 11; 679, 1,

5-7; 723, 3; 792, 5 Bu B. P., 67, 15; 168, 21;

257,11,27; 282, 27; 353, 12; 389, 76, 79; 526,40

Hu, J., 257, 20 Huang Y. K., 257, 9 Huang, M. Q., 413, 44 Huang, Y. K., 67, 6; 92, 30;

94,62; 551, 10 Hubbard, J., 169,42,43 Huiskamp, W. J., 523,4 Hutchings, M. T., 116, 13;

130, 3; 169, 44 Huth, G., 792, 4 Hiitten, A, 572, 18

Iandelli, A 256, 4 Ibarra, M. R., 282, 9-11, 19,

26,28,30,32; 413, 16-21, 25, 26; 525, 28

Ibberson, R. M., 525, 27, 36,37

Inoue, J., 131, 13

799

Page 10: K. B.3A978-94-011... · 2017-08-25 · Oscar Moze Istituto ISM del CNR Via E. Fermi 38 1-00044 Frascati Italy Patricia B. Oliete Terraz ICMA, University of Zaragoza Faculdad de Ciencias

800

Ipser, H., 225, 13 Itoh, K., 258, 43

Jaccarino, V., 352, 2 Jacobs, T. H., 67, 12; 169,

45,53; 259, 71; 389, 73, 74; 551, 13; 552, 19, 26, 29, 30, 32

Jahn, L., 460, 10 James, W. J., 257, 6; 314, 16;

353, 12; 387, 13, 20; 389, 57,58,62,64

Janak, J. F., 169, 61, 63 Jansen, H. J. F., 169, 37,

46,47,59 Jaswal, S. S., 169,48, 71;

388,34 Jeandey, C., 388, 52; 389, 54 Jedryka, E., 313,4; 314, 13,

14; 353, 8, 14, 15, 17; 388,29,30

Jeitschko, W., 67, 1 Jen, S. U., 413, 8 Jenkins, M. K., 679, 5 Jepsen, 0., 168, 4 Jewell, G., 679, 7 Ji, S. Q., 130, 2 Jiang, S. Y., 282, 13 Jiles, D. c., 5, 21 Jin, H., 388, 48 Jin, M., 388, 48 Johnston, J. H., 387, 5 Jones, T. J. L., 525, 34 Joven, E., 282, 32

Kakehashi, Y., 168, 29 Kalychak, J. M., 256, 5 Kamprath, N., 258, 31, 32 Kan~matsu, K., 258, 43 Kapltonov, AM., 282, 24 Kaplan, N., 353, 29 Karyagin, S. V., 387, 21 Kaspar, J. S., 168, 1 Kato, H., 282, 23 Katter, M., 258, 33, 35-37,

40, 51; 259, 62, 73, 74; 460, 14; 572, 33

Kaufmann, L., 224, 6 Kaun, L. P., 523, 5 Kawakami, M., 352, 5

Kebe, B., 257, 6 Keller, J., 525, 35 Keresztes, A, 460, 13 Kiao, L. X., 353, 22 Kido, G., 460, 1"1; 526,45 Kim, A., 497, 10 Kimball, G. E., II6, II Kirchmayr, H. R., 5, 9, 15;

94,62; 130, 1; 224, 4; 256,3;413,22;459, 1; 460, 15-18

Kittel, c., 169,49; 498, 16, 17

Klein, B. M., 170,86 Kneller, E., 498, 18 Knoch, K. G., 225, 19 Kobayashi, K., 413, 1 Koch, C. c., 258, 56 Koestler, c., 259, 63, 68 Kohmoto, 0., 572, 35 Kohn, W., 169, 41, 50 Koi, Y., 352, 5 Kolk, B., 387, 16 Kollar, J., 168, 4 Kolmakova, N. P., 353, 16 Kondorskii, E. I., 169,51 Kong, L. S., 257, 13, 26 Koon, N. c., 5, 16, 24; 90,

4;93,50; 388,47;429, 3,5-7,10,12;448, I, 5, 7-10; 572, 19

Korenman, V.,169, 52 Kostikas, A., 257, 27; 282,

29; 389, 78; 572, 24 Kou, X. c., 169, 53; 460, 17,

18; 552,32 Kouvel, J. S., 169,54 Kowalczyk, A, 282, 33 Krakauer, H., 170, 82, 86 Krause, P. c., 792, 3 Kreber, E., 387, 18 Krewenka, R., 94, 62; 460, 18 KronmUller, B., 497, 7, 8,

14; 498, 19-27, 31, 35 Ku, H. c., 460, 3 Kubaschewski, 0., 224, 10 KUbler, J., 170,87 Kurz, W., 224, 9 Kvashnin, G. M., 282, 24

Page 11: K. B.3A978-94-011... · 2017-08-25 · Oscar Moze Istituto ISM del CNR Via E. Fermi 38 1-00044 Frascati Italy Patricia B. Oliete Terraz ICMA, University of Zaragoza Faculdad de Ciencias

Lachowicz, H. K., 413, 24 Laforest, 1., 5, 11; 526, 41 Landau, L. D., 498, 28, 29 Landgraf, F. 1. G., 226, 25 Lang, 1. K., 169,55 Langell, M. A., 169,48 Laughlin, D. E., 257, 23 Lavagna, M., 131, 12 Lawless, K. R., 90, 5; 448, 1;

572, 16 Lazaro, F. 1., 281, 3; 413,

4, 18,28 Lebenbaum, D., 353, 29; 429,

3; 448, 10 Le Caer, G., 353, 13 Leccabue, F., 282, 15; 551, 4 Lee, R. W., 4, 3; 67, 5; 90,

I, 2, 9; 92, 34, 35; 93, 51; 258, 52; 448, I; 497, 6; 572, II, 20, 21; 583,4, 12

Lemaire, H., 5, 12; 256, 3 Lera, F., 281, 3; 413, 4 Le Roux, D., 282, 17 Leupold, H. A., 617, 12;

679, 4 L'Heritier, P. L., 67, II; 93,

44; 282, 16, 17; 388,41, 43, 50

Li, H. S., 67, 15; 91, 14; II7, 22; 130,2; 131,21; 168, 21, 32; 257, II, 27; 282,27; 353, 18; 388, 31, 52, 53; 389, 54, 56, 76, 79; 448, 6, II; 526, 40; 552, 16

Li, 1., 389, 62 Li, Z. W., 389, 63 Liao, L. X., 389, 61 Lifshitz, E. M., 498, 28, 29 Lihl, F., 224,4 Lilot, A. P., 387, 12 Lindgard, P. A., 169, 56; 170, 79 Liou, S. H., 388, 47; 448, 8 Lipo, T. A., 792, 2 Lippold, B., 532, 5 Liu, N. c., 258, 31; 551, 5 Liu, Y. P., 792, 5 Lloyd, P., 168, 22 Loewenhaupt, M., 130,4;

524, 9, 10, 12 Long, G. J., 5, 19; 47,3;

II6, 15; 117,23,25;

130,5; 131,25; 313,4, 5; 314,15, 16; 353,12; 386,1-3; 387, 5-7, 10, II, 13, 14, 17,20-24; 388, 33, 39, 44; 389, 57, 58,62,64, 71; 429, 1, 2;448,4

Lonsdale, K., 91, 17 Lovesey, S. W., 524, 14-16,

19; 526, 43 Low, W. F.,679, 1,6; 723, 3 Lowde, R. D., 524, 18 Lu, Q., 131, 18 Lukas, H. L., 224, 12

Ma, B. M., 67, 2; 257, 25 Machowska, E., 353, 23 Mackenzie, I. S., 313, 2; 352, 3 Madsen, J., 168,4 Malaman, B., 387, 22 Malik, S. K., 67, 2; 257, 24,

25; 282, 12; 353, 26 Maradudin, A. A., 387, 16 Marasinghe, G. K., 388, 39;

389,62, 64, 71 Marcus, P. M., 169, 62 Markova, I. A., 523, 5 Marquina, c., 282, 9-II, 19,

32; 413, 17,20,21,25 Marshall, R. c., 48, 7 Marshall, W., 524, 14, 18 Martin, W. c., 117,21 Martinek, G., 226, 27; 498,

25,27,30,31 Martinez, A., 388, 47; 448, 8 Martinson, P. J., 353, 29 Marusi, G., 67, 15 Marusin, E. P., 91, 25 Maruyama, H., 389, 56; 448, 11 Maslova, E. V., 224, 1 Mathon, 1., 169,58 Matsuo, T., 413, 1 Matsuura, Y., 4, 4; 67, 20;

90,3,12; 91,18;281, 1; 413, 7, 15; 448, 2; 497, II; 498,38; 583, 3

Mattens, W. C. M., 67, 17; 168, 8; 583, 6

Matthews, D. M. H., 792, 5 Matz, 523, 5 Mazzone, G., 168,27

801

Page 12: K. B.3A978-94-011... · 2017-08-25 · Oscar Moze Istituto ISM del CNR Via E. Fermi 38 1-00044 Frascati Italy Patricia B. Oliete Terraz ICMA, University of Zaragoza Faculdad de Ciencias

802

McCaig, M., 679, 2 McCausland, M. A. H., 313, 2;

352,3 McCullough, J. P., 413, 2 McKamey, C. G., 258, 56 McKewen, K. A., 524, II McMasters, O. D., 429, II McNaughton, J. L., 413, 6 Meisner, G. P., 94, 65 Me!amud, M., 92, 40-42 Menovsky, A A., 130,2; 552, 20 Messina, c., 25, 2 Meyer, c., 389, 55 Miedema, A R., 67,17; 168,

8; 552, 28; 583,6 Mihalisin, T. W., 429, 6, 12 Miller, R. H., 744, 1 Miller, T. J. E., 704, 2 Milstein, J. B., 429, 7 Min, B. I., 169, 59 Miraglia, S., 281, 3; 282, 17;

413,4 Mishra, R. K., 5, 16; 93, 49,

50; 259, 70; 572, 22, 23 Missell, F. P., 226, 25; 258, 38 Mitchell, I. V., 5, 23; 168,

21; 497, 5 Mitsek, A I., 353, 16 Modaressi, A., 387, 22 Mohn, P., 169,60, 62 Mohri, K., 572, 35 Moore, C. E., 116,2 Moreau, J. M., 91, 14; 117,

22; 258, 38 Moriya, T., 168, 25 Morris, J. W. Jr., 387, 7 Morrish, A H., 353, 12; 389, 63 Mortimer, C. T., 413, 6 Morup, S., 386, 2; 387, 9 Moruzzi, V. L., 169, 61-63 Moze, 0., 67, 21; 257, 16, 18;

282,15,22,25,26,30; 413,23; 525, 24, 26-28, 36, 37, 40

Mueller, F. M., 429, 7 Muench, G., 90, 6; 572, 30 Muhle, E., 523, 3 Muir, W. B., 353, 22; 389,

60,61 Muller, A, 256, I 552, 17

Muller, G., 226, 24

Muller, J., 551, 6 Murad, E., 387, 5 Murani, A. P., 524, 9 Murray, J. L., 169, 52

Nadolski, S., 353, 23 Nagai, H., 170, 92; 256, 3;

352,5 Nagata, H., 413,5 Nakagawa, H., 460, II Nakagawa, Y., 282, 23; 353,

20; 526, 45 Nakamura, Y., 170,92 Narasimhan, K. S. V. L., 90, 11 Nassar, N., 353, 27 Natkaniec, I., 523, 3 Navarro, R., 281, 2, 3; 413,

4, 19 Nee!, L., 498, 32-34 Nehl, T. W., 744, I Nesor, H., 224, 6 Niarchos, D., 257, 27; 282,

29; 389,78;572,24 Niessen, A K., 168, 8; 583, 6 Niessen, A. R., 67, 17 Noland, A., 26, 10 Novotny, D., 792, I Nowik, 1.,429, 3; 448, 10;

525,29 Nozieres, J. P., 258, 38 Nucera, R. R., 792, 3

Obermyer, R. T., 282, 8 Odabasi, H., 116, 5 Oddou, J. L., 388, 52; 389, 54 Oesterreicher, H., 91,19-21;

281, 7; 551, 2 Ofer, S., 429, 3; 448, 10 Ogata, Y., 413, I Ogino, K., 170,92 Oguchi, T., 169, 59 Ohashi, K., 67, 18; 257, 8;

526,45 Okada, M., 259, 66; 572, 25 Okagaki, T., 258, 43 Okamota, T., 413, 3 Oles, AM., 169,64 Ono, F., 281, 1 Onodera, H., 388, 27, 45, 46;

Page 13: K. B.3A978-94-011... · 2017-08-25 · Oscar Moze Istituto ISM del CNR Via E. Fermi 38 1-00044 Frascati Italy Patricia B. Oliete Terraz ICMA, University of Zaragoza Faculdad de Ciencias

389, 65 Osborne, Ro, 524, 19 Ostertag, Wo, 92, 32 Osugi, Ro, 67, 18; 257,8;

526, 45 Oswald, Eo, 413, 14 Overfelt, Ro A, 94, 60 Overton, Bo Po, 744, I

Paccard, L., 258, 38 Palenzona, Ao, 256, 4 Panissod, Po, 313, 3,4, 10;

314, 13, 14; 352, 2; 353, 8, 13-15, 17; 388, 29, 30

Pareti, L., 67, 15, 21; 257, 16,18; 282,11,15,22, 25, 30; 413, 23, 24; 525, 24, 26,28; 526,40; 551,4

Park, Ho Ko, 551, 1 Parker, Fo To, 281, 4 Parker, Ro Jo, 5, 22; 704, 3 Parks, Ro Po, 169, 65 Parthe, Eo, 91, 24 Pastushenkov, Jo, 498, 35 Pauling, L., 572, 2 Pearson, Wo Bo, 91, 28; 92, 38 Pecora, L. Mo, 459, 2 Pedziwiatr, Ao To, 93, 59;

281,6; 282, 12, 14; 313, 10; 314, II, 12; 353, 18, 26; 388, 28; 551, 3

Pei, Xo Do, 257, 13, 26 Penfold, Jo, 525, 33 Peng, So So, 169, 47 Perlow, C. Mo, 5, 26 Perrier de Ia Bathie, Ro,

448, 6 Perry, A Jo, 224, 8 Petrello, c., 168, 27 Pettifor, Do Go, 168, 8; 169, 66 Petzow, Go, 224, 12, 14, 17,

19,21-23; 226,24,27; 498, 40; 572, 31

Pindor, Ao Jo, 169,35 Pinkerton, Fo Eo, 4, 3; 5, 7;

67,5, 16, 19; 90, 1,2, 7; 92, 34; 94, 63, 64; 169, 40; 259, 65; 448, I, 3; 497, 6; 572, 11, 26, 27; 583, 4, 14

Pique, c., 281, 3; 413, 4

Poerschke, Ro, 497, 14 Poldy, C. A, 5, 15; 130, I Pontonnier, L., 93,44; 282,

16, 17 Pope, Jo Mo, 353, 29 Portis, A Mo, 313, 6 Potenziani, Eo, 313, 10; 314,

11, 12; 388, 28; 617, 12; 679,4

Poulsen, Uo Ko, 168,4 Pourarian, Fo, 67, 2; 257,

25; 282, 8, 13, 18 Prager, Mo, 524, 9 Prange, Ro Eo, 169, 52 Pratt, Go Wo, 5, 20; 47, 5;

117, 18 Price, Do c., 388, 49 Priestly, Mo Go, 429, 7 Pringle, 0o Ao, 5, 19; 47, 3;

314, 16; 353, 12; 386, 1; 387, 13,20,24; 388, 39; 389, 57, 58, 62, 64, 71

Przybylski, Mo, 387, 6 Puertolas, Jo A, 282,16

Qian, Xo Ro, 258, 32 Quickenden, To 1.,48, 7

Rado, Go To, 47, I Radusewicz, Po, 413, 27 Radwanski, Ro Jo, 117,25; 130,

2, 8, 9; 131,20; 169,67; 259, 71; 413, 13; 448, 4; 524, 8; 552, 18, 20, 26

Rainford, B. Do, 523, 1 Ramachandrarao, Po, 572, 28 Ramsden, Vo So, 617, 7 Rao, Po Mo, 387, 19 Rathenau, Go Wo, 498, 36 Ray, Ao Eo, 498, 37 Reader, Jo, 117,21 Regnard, Jo Ro, 282, 16 Ren, Y. Go, 169, 48 Renko, To, 617, 5 Rhyne, Jo Jo, 169, 68; 429,

12; 524, 6 Rillo, c., 281, 2, 3; 282,

16; 413, 4, 19 Rinaldi, So, 460, 7, 8 Rippert, Eo Do, 413, 27

803

Page 14: K. B.3A978-94-011... · 2017-08-25 · Oscar Moze Istituto ISM del CNR Via E. Fermi 38 1-00044 Frascati Italy Patricia B. Oliete Terraz ICMA, University of Zaragoza Faculdad de Ciencias

804

Robinson, A. L., 4, i, 2 Roeland, L. W., 552, 17 Rogl, P., 225, 13 Ronan, C. A., 25, I Rosenberg, M., 67, 8; 257, 14;

258,39; 313, 7,9; 314, 17-20; 353, 19; 388,26, 29; 389, 80; 572, 15

Rubinstein, M., 448, 5 Rundle, R. E., 524, 23 Ryan, D. H., 353, 22; 389,

60,61

Sacchetti, F., 168, 27 Sadikov, W. I. P., 523, 5 Sagawa, M., 4, 4; 67, 20; 90,

3, 12; 91, 18; 281, 1,2; 314, 12; 353, 9,14, 19, 20; 388, 27-29, 45, 46; 389,56;413,3,7,15, 19; 448, 2, II; 497, II; 498, 26, 38, 39; 583, 3, 13

Saito, H., 460, II Saito, N., 282, 23 Sanchez, J. L., 551,4 Sanchez, J. P., 388,41, 50 Sands, D. E., 258, 42 Sankar, S. G., 5, 16, 24; 67,

2; 93, 50; 169,69; 257, 23-25, 29; 282, 8, 13

Sano, Y., 389, 65 Sassik, H., 572, 17 Sastry, G. V. S., 572, 28 Savitskii, E. M., 523, 5 Savitskiy, Y. M., 224, I Sawatzky, G. A., 169, 57 Scarbrough, J. 0., 258, 56 Schafer, W., 525, 31 Schaffel, N. A., 93, 51; 572, 21 Schlafer, H. L., II6, 9 Schlup, J., 413, 10 Schneider, G., 224, II, 12,

14, 16, 17; 225, 21-23; 226,25; 258, 38;498,40; 551,5; 572, 31

Schnitzke, K., 258, 34-36, 39; 259, 62, 67, 74; 572, 29, 33; 583, 10, II

Scholl, R., 460, 10 Schubert, K., 256, 2 Schultz, L., 67, 22; 93, 52;

94,61; 258, 33-37,39, 40, 51, 53, 55, 57; 259, 58-60, 62-64, 67, 73, 74; 413, 9; 572, 29, 32, 33; 583, 2, 5, 7-11, 15

Schwarz, K., 168, 6; 169,62, 70 Schweizer, J., 169, 70; 526, 41 Scott, D. W., 413, 2 Sedov, V. L., 169, 51 Seeger, A., 498, 19 Segnan, R., 338, 47; 448, 8 Segre, C. U., 413, 27 Seitz, F., 116, 13 Sellmyer, D. J., 90, 6; 169,

48, 71; 388, 34; 572, 30 Sham, L. J., 169,50 Shenoy, G. K., 387, 14 Shi, Y., 388, 48 Shiga, M., 552, 21 Shimizu, M., 131, 13, 14;

170, 72, 73 Shimizu, R., 583, 13 Shiozaki, Y., 258, 41 Shoemaker, C. 8., 91,13; 170,74 Shoemaker, D. P., 91, 13, 22;

170, 74 ShortIey, G. H., II6, 4 Shtrikman, S., 497, I Simopoulos, A., 389, 78 Sinha, S. K., 130, 4; 524, 13 Sinha, V. K., 257, 23, 24, 29 Sinnema, S., 94, 62; 131,20;

413, 13; 524, 8; 552, 20 Sinnemann, T., 257,14; 314,

19; 388, 26; 389, 80 Sirota, D. I., 353, 16 Sitzia, A. M., 744, 2 Skriver, H. L., 170, 75, 76 Slater, J. C., 170, 77 Slichter, C. P., 352, I Smid, I., 225, 13 Smit, H. H. A., 170, 78; 524; 21 Snow, A. I., 524, 23 Soeda, H., 572, 35 Solzi, M., 67,21; 257, 16,

18; 282, II, 15, 25, 30; 525, 24, 26, 28

Sosnowska, I., 524, 10 Spada, F., 91, 20 Spear, K. E., 224, 7 Spooner, E., 744, 3 Stadelmaier, H. H., 225, 14,

Page 15: K. B.3A978-94-011... · 2017-08-25 · Oscar Moze Istituto ISM del CNR Via E. Fermi 38 1-00044 Frascati Italy Patricia B. Oliete Terraz ICMA, University of Zaragoza Faculdad de Ciencias

16, 17,21; 226, 24, 27; 257, 12; 313, 9; 498, 40; 551, 1,5; 572, 3\

Staunton, J., 169, 35 Stearns, M. B., 352, 7 Stefanski, P., 282, 33 Stevens, J. G., 387,6, 7 Stevens, K. W. H., 117, 16, 17 Stewart, A. M., 256, 4 Stirling, W. G., 524, 11 Stocks, G. M., 169,35 Stollhoff, G., 168, 29; 169, 64 Stoner, E. C, 170, 80, 81;

498,41 Strange, P., 168,26 Streever, R. L., 92, 33 Strnat, K. J., 67, 23; 92, 32;

460,4; 498, 42; 552, 31; 616, I

Strom-Olsen, J. 0., 353,22 389,60,61

Sudhoff, S. D., 792, 3 Suga, H., 413, 1 Sugar, J., 116,3; II7, 21 Suhl, H., 47, I Sun, H., 5, 27; 257, 13, 26;

259, 72 Sun, X. K., 413, 22; 460, 6,

15-17 Szpunar, A., 388, 36 Szpunar, B., 170,79 Szymczak, H., 413, 24 Szytula, A., 389, 66

Tagawa, M., 448, 2; 498, 38 Takahashi, M., 460, 11 Taneko, T., 526, 45 Tasset, F., 168, 32; 169, 70;

388,31; 526, 41 Tawara, Y., 67,18; 257, 8;

526,45 Taylor, A. D., 524, 19; 525,

34,38 Terekhova, V. F., 224, I Teshima, N., 572, 35 Tharp, D. E., 314, 16; 353,

12; 387,13; 389,57,58 Thiel, R. C, 67, 45; 168,

24; 169,45; 170, 78; 257, 19; 388, 51; 389,

73;524,21;552,30 Thole, T., 170, 83 Thomas, G., 259, 63 Thuy, N. P., 258, 45 Timme, R. W., 429, 8 Togawa, N., 4, 4; 67, 20; 90,

3; 583, 3 Tokuhara, K., 281, I; 353,9;

583, 13 Tokunaga, M., 460, 18 Tomkinson, J., 525, 33 Touborg, P., 170,84 Trautwein, A., 387, 18 Tsokol, A. 0., 91, 25 Tsubokawa, Y., 583, 13 Tsujimara, A., 170, 92 Tuberfield, K. C, 523, I Turnbull, D., 116, 13; 169, 66 Tyson, J., 448, 5

Urban, K., 259, 58 Uwatoko, Y., 413, 3

Vaillant, F., 93, 44; 282, 16, 17

van Apeldoorn, J. H. J., 168, 33; 258,49

Vandenberghe, R. E., 387, II van den Hoogenhof, 525, 32 van der Goot, A. S., 224, 2 van der Kraan, A. M., 67, 12;

117,24; 168,33; 258, 49,50; 388, 51; 389, 74;552,29

van der Marel, D., 169, 57 van der Velden, J. N. J., 258,49 van Diepen, A. M., 526, 42;

552,27 van Mens, R., 389, 68 van Noort, H. M., 91, 15, 16;

92, 37; 353, 21; 388, 24; 572, 3

van Stapele, R. P., 131, 19 van Vucht, J. H. N., 525, 32 van Wingerden, D. J., 67, 19;

259,65;572,27 Vasquez, A., 388,41,50 Verhoef, R., 130, 2; 257, 21;

389,72;551,9;552,18-20 Viadeu, T., 353, 27

805

Page 16: K. B.3A978-94-011... · 2017-08-25 · Oscar Moze Istituto ISM del CNR Via E. Fermi 38 1-00044 Frascati Italy Patricia B. Oliete Terraz ICMA, University of Zaragoza Faculdad de Ciencias

806

Villars, V., 170, 85 Villas-Boas, V., 258, 38 Vincent, H., 282, 17 Vleggaar, J. J. H., 67, 13;

257, 15, 17; 525, 25 Vogel, R. H., 387, 12 Vogt, 0., 523, 1 von Barth, U., 168,5 Vuilliet, P., 67, II; 388,43

Wakiyama, T., 460, 11 Wallace, W. E., 67, 2; 93, 59;

257,23-25,29,30; 281, 6; 282,8, 12-14, 18; 313, 10; 314, 11, 12; 353,18,26; 388,28; 413, 14; 551, 3

Walter,J., 116, 11 Wang, C. S., 170,86 Wang, F. E., 256, 3 Wang, T., 257, 20 Wang, X, Y., 67, 24 Wang, Y., 257, 20 Wang, Z., 257, 20 Warlimont, H., 616, 2 Watson, R. E., 92, 38-42;

130,7; 169,39 Waugh, J. L. T., 572, 2 Wecker, J., 67, 22; 93, 52; 94,

61; 258, 33-37,40,51,53; 259; 59,62,64, 67, 73, 74; 413, 9; 572, 29, 32, 33; 583, 5, 10, 11, 15

Wei, S. H., 170,82 Weinert, M., 170, 82 Wernick, J. H., 91, 26 West, J. G. W., 704, 1 Westfall, R. S., 25, 5 Westrum, E. F. Jr., 413, 2 Wiener, P. P., 26, 10 Wiesinger, G., 225, 13; 572, 17 Wilkins, J. W., 169,39 Will, G., 525, 30, 31 Williams, A R., 169,61; 170,

87; 552, 22 Williams, C. M., 429,3,5-7,

10; 448, I, 7, 9, 10 Williams, W. G., 525, 38 Wilson, G. V. H., 352, 5 Winter, H., 169, 35 Winter, J., 352, 2

Wivel, c., 387, 9 Wohlfarth, E. P., 4,5; 5,17,

18;47,1;67,23;92,29; 93,48; 131,24; 168, 10, 11; 170, 88, 89; 225,18; 498, 41; 551, 12

Wojcik, M., 313,4,9; 314, 11, 13, 14; 353, 8, 14, 15, 17; 388, 29, 30

Wolf, H. D., 224, 4 Wolfers, P., 67, II; 93, 44;

282, 17; 388, 43 Wolf rat, J. c., 552, 17 Woodgate, G. K., 116, 6 Wrzeciono, A, 282, 33

Xian-Zhong, W., 572, 34 Xie, D., 387, 20; 389, 62 Xu, Y., 257, 23

Yamada, H., 131, 14; 282, 23; 353, 20; 388,45,46;526,45

Yamada, 0., 281, I; 389, 56; 448, 11

Yamagishi, K., 259, 66; 572, 25 Yamaguchi, N., 572, 35 Yamamoto, H., 4, 4; 67, 20; 90,

3, 12; 91,18; 281, I; 388, 27,45; 389,65;413, 3,7, 15; 448, 2; 498, 38; 583, 3, 13

Yamasaki, J., 572, 35 Yamauchi, H., 353, 9; 388, 45,

46; 389,65 Yanagida, M., 572, 35 Yang, D. P., 314, 12; 388, 28 Yang, F. M., 94, 62; 130, 2 Yang, F., 389, 72 Yang, Y. c., 170,91; 257, 6,

13; 389, 57, 58 Yang, Y., 257, 26 Yao, Y. D., 413, 8 Yaouanc, A, 67, 11; 93,44;

281,2; 282,16,17; 388, 43;413,19

Yelon, W. B., 5, 7; 67, 16; 90, 7, 8; 92, 35, 36, 43; 93, 45, 46; 169,40; 257, 6; 353, 10; 387,20; 388,25, 35,40; 389,

Page 17: K. B.3A978-94-011... · 2017-08-25 · Oscar Moze Istituto ISM del CNR Via E. Fermi 38 1-00044 Frascati Italy Patricia B. Oliete Terraz ICMA, University of Zaragoza Faculdad de Ciencias

59, 62; 448, 3 Yokoyama, To, 67, 18; 257, 8 Yoneyama, To, 572, 35 Yoshida, Ho, 526, 45 Yoshie, Ho, 170,92 Yvon, Ko, 551,6

Zalesskij, A. Vo, 352, 3 Zangh, So Go, 353, 12 Zangh, Yo Do, 353, 25 Zasadzinski, 1o Fo, 413, 27 Zeiger, Ho 1o, 5, 20; 47, 5;

117, 18 Zeller, Ro, 168, 7 Zeludhev, I. So, 352, 3 Zermili, So, 413, 25

Zha, Y. Bo, 257, 13, 26 Zhang, L. Y., 67, 2; 257, 25,

30; 282, 18 Zhang, So, 257, 20 Zhang, Y. Do, 313, 10; 314,

11, 12; 388, 28 Zhang, Zo Do, 257, 21; 389,

72; 551, 9, 10 Zhao, To So, 460, 17 Zhong, Xo Fo, 131, 11; 170,

90; 388, 38 Zhong, Xo Po, 259, 71; 552, 26 Zhou, Xo Zo, 389, 63 Zijlstra, Ho, 413, 12 Zorn, Go, 583, 8 Zou, Xo Zo, 353, 12 Zougane1is, Go, 389, 78 Zurek, Zo, 387, 6

807

Page 18: K. B.3A978-94-011... · 2017-08-25 · Oscar Moze Istituto ISM del CNR Via E. Fermi 38 1-00044 Frascati Italy Patricia B. Oliete Terraz ICMA, University of Zaragoza Faculdad de Ciencias

SUBJECT INDEX

Ab-initio calculations, 123, 133 Ab-initio self-consistent field

bands, 136f Ac brushless machines, 688, 691 Ac susceptibility, 263, 276 Acoustic devices, 588 Acoustic transducers, 589 Activation energy of

crystallization, 561 Actuators, 588f, 592, 600, 679f Adiabatic calorimeter, 393 Adiabatic calorimetry, 392 Aerospace, 600 Air-gap flux density, 728, 731, 733 Air-gap machine, 747, 749f, 752f Air-gap tapered, 747, 749f, 752f Air-gap tapered outer zone, 748 Air power gap, 704 AI-Fe-Nd phase diagrams, 218f Alignment principle, 683 Allotropic solids, 177 Alloy microstructure, 553f Alloys amorphous, 27 Alloys with cobalt, 84 AI-Mn phase diagram, 560 Alnico, 28, 66, 586f, 588,

618, 632, 634, Alnico coercive field, 486 Alnico magnets, 485, 554, 612 Alnico-5, 2, 587 Alnico-8, 587 a-iron, 358f, 363, 365, 576 a-FeOOH,361 a-Fe20 3, 358f, 361, 365f AlNiFe2 microstructure, 554 Amber attraction, 10 Amorphous alloy preparation,

554 Amorphous alloys, 27,49, 560 Amorphous crystalline

transformation, 561 Amorphous magnet materials, 560 Amorphous magnetic alloys, 79 Amorphous metals, 574 Ampere definition, 28f Ampere's experiment, 31 Ampere's law, 43, 649 Ancient scientific instruments, II Angle actuators, 683 Angular momentum, electron, 47

Angular motion actuators, 697 Animist, 21 Animist philosophy, 16 Anisotropic dipolar terms, 303 Anisotropic ferromagnet

nmr studies, 315f Anisotropic hyperfine

coupling, 321 Anisotropic hyperfine fields, 320 Anisotropic internal fields, 287 Anisotropic magnetic

properties, 315f Anisotropic materials, 320 Anisotropic nmr doublets, 327 Anisotropic nmr line shape, 323 Anisotropic orbital

approximation, 303 Anisotropy, 62, 573 Anisotropy and spin-

reorientation, 330 Anisotropy coefficients, 449f Anisotropy constant, 62 Anisotropy constant units, 46

130 Anisotropy constants, 262f, 266,

334,480 Anisotropy effective energy, 470 Anisotropy energy, 62 Anisotropy energy calculation, 425f Anisotropy energy from 3d-4f, 127 Anisotropy energy minimization, 262f Anisotropy energy units, 130 Anisotropy field, 449f Anisotropy field determination, 449f Anisotropy field singularity, 406,

453 Anisotropy fields for RFell Ti, 238 Anisotropy free energy, 334 Anisotropy magnetic, 44 Anisotropy magnetostrictive

materials, 419 Anisotropy shape, 555 Anisotropy sublattice, 64 Anisotropy temperature

dependence, 266 Anisotropy temperature zones, 268 Anisotropy units, 450 Annassagoras, 16 Annealing melt-spun ribbons, 571 Antiferromagnetic interactions, 59

809

Page 19: K. B.3A978-94-011... · 2017-08-25 · Oscar Moze Istituto ISM del CNR Via E. Fermi 38 1-00044 Frascati Italy Patricia B. Oliete Terraz ICMA, University of Zaragoza Faculdad de Ciencias

810

Antiphase domain boundary, 559 Applications of magnets, 49, 69 Archimedes, 10 Aristotelian theory, II, 21 Aristotle, 15, 19 Aristotle rebellion, 19 Armature reaction mmf, 748 Armature toroidal winding,

723, 738, 741 Aspherical electrostatic

potential, 164 Aspherical 4f charge density, 159 Astro and aerospace, 589 Astrolabium, 18 Asymmetry paramcter, 364, 367 Atom magnetic moment units, 30 Attraction electrostatic, 22 Attraction magnetic, 22 Audio transducers, 592 Aufbau principle, 112 Augmented spherical wave

method, 136f Automotive applications, 589, 594 Automotive market, 593 Available magnctic energy, 44 A verage crystal-field model, 440 A verroe, 16, 19 Avogadro's number units, 30 Avogadro's number, 30, 38 Axial flux disc machine, 737 Azimuth measurement, 18

Back-emf, 642, 764f Back-emf constant, 768, 774 Back-emf waveforms, 760, 765f,

768 Bacon, Roger, 18 Ball mills, 245 BaFe120 19 , 2, 70 BaFcl20 19 coercive field, 485 Ballistic demagnetization

factor, 622 Ballistic methods, 623 Band polarization volume

change, 540 Band structure calculations,

52, 120, 124, 373 Band structure theory, 133f Bandwidth, 134 Bar magnet demagnetizing field, 42 Barium hexaferrite magnets, 485

Barium ferrites, 2, 70, 462, 485 Beam control systems, 588, 592 Beginning of magnetism research, 17 Bessel function, 425, 467, 519 B-Fe phase diagram, 195 B-Fe-Dy phase diagrams, 214f B-Fe-Dy reaction scheme, 215 B-Fe-Nd phase diagrams, 209f B-Fe-Nd reaction scheme, 211 BiMn critical domain diameter, 472 Binary intermetallic compounds, 50 Binary phase diagrams, 175, 189, 227 Binary systems, 179 Binomial probability distribution,

318,550 Biosurgical applications, 589 Bipolar drive, 759 Bivariant equilibria, 175 B-Nd phase diagram, 196 Bloch domain walls, 323 Bloch modified domain walls, 337 Bohr magneton, 36, 38 Bohr magnet on number, 31, 38 Bohr magnet on units, 30 Boltzmann constant, 38 Boltzmann constant units, 30 Boltzmann statistics, 505 Bonded ferrite magnets, 610f Bonded isotropic phases, 568 Bonded magnets, 82 Bonded NdFeB magnets, 610f Bonded permanent magnets, 456 Boron field anisotropy, 312 Boron hybridization, 155 Boron hyperfine field, 312 Boron isotopic substitution, 290 Boron nmr studies, 283f Boron site in Nd2FeI4B, 75 Boron transferred hyperfine field,

297,311 Boron-IO gyromagnetic factor, 289 Boron-II gyromagnetic factor, 289 Boron-II nmr signal, 289 Bright field electron micrograph, 81 Brillouin functions, 59 Brillouin zone, 134, 138, 155 Brown's paradoxon, 472, 485 Bruno, Giordano, 24 Brushed dc motor topology, 685 Brushed dc motors, 605, 607, 684 Brushless ac machines, 688, 691 Brushless dc controls, 693

Page 20: K. B.3A978-94-011... · 2017-08-25 · Oscar Moze Istituto ISM del CNR Via E. Fermi 38 1-00044 Frascati Italy Patricia B. Oliete Terraz ICMA, University of Zaragoza Faculdad de Ciencias

Brushless dc drives, 758 Brushless dc machines, 687f, 723f,

739f Brushless dc motors, 590f, 605,

607f, 758f, 766, 784 Brushless dc servomotors, 607 Brushless dc switching strategy,

692 Brushless drive systems, 759 Brushless motor drives, 594f Brushless motor topologies, 691 Buckling magnetization, 465 Buckling magnetization mode, 468

Calculation of magnetization, 151, 446

Calorimetry studies, 392 Calorimetry differential scanning,

394f Canting angle, 434 Casting normal, 49 CaCus-type structure, 65, 69, 75f,

123, 149, 228[, 243, 449 CEAM Newsletter, 4 CeCo4 B-type structure, 65 Ce2Co l4B transferred field

constants, 312 Ce2FeI4B, 64, 79 Ce2Fel4B anisotropy field,

407, 455 Ce2Fel4B anisotropy

singularity, 406 Ce2Fel4B boron transferred

field, 309 Ce2Fel4B boron-l0 nmr, 306 Ce2Fel4B iron-57 nmr, 302f Ce2Fel4B magnetic structure,

289 Ce2Fel4B transferred field

constants, 312 Ce2 Fel4C magnetic properties, 530 Ce2Fel4C structural properties, 530 Ce2Fel7 magnetic properties, 547 Ce2Fel7 valence anomaly, 547 Ce2Fel7 Curie temperature, 545 Ce2Fep C Curie temperature, 545 Cell boundary charge density, 166f Ce(Mn,Fe)12' 228 CeMn6Ni-type structure, 65 Ceramic magnets, 587 Ceramic ferrite, 618

C-Fe-Nd phase diagrams, 217f Cgs units, 130 Cgs-emu and SI units, 30 Cgs-emu units in magnetism, 30 Charge density cell boundary, 166f Charge fluctuation suppression, 140 Chemical potential, 173 Chemical shift in nmr, 285 Chemical short range order, 318 Chinese develop magnetism, 10 Chinese magnetism, 8 Chinese sources, 9 Cholesky decomposition technique,

670 Chopper circuit, 777 Chopper drive, 777 Chromium oxides, 28 Classification of magnets, 27 Clausius-Clapeyron equation, 177 Closed magnetic induction line, 43 Closure of domains, 349 Co3B,85 Cobalt basal anisotropy, 268 Cobalt containing alloys, 84 Cobalt cost, 2, 70 Cobalt critical domain diameter,

472 Cobalt density of states, 146 Cobalt domain wall nmr, 328 Cobalt expense, 2, 70 Cobalt hardened alloys, 84 Cobalt isopleth, 199 Cobalt oxides, 28 Cobalt site selectivity in

Nd2FeI4B,313 Cobalt steel, 587 Cobalt-57, 355, 381 Cobalt-59 hyperfine fields, 330 CoBe12,228 Co containing alloys, 85 Co-Cu-Sm phase diagram, 200f Coercive field, 27,41, 119, 461f,

468f Coercive field magnitude, 462 Coercive field temperature

dependence, 493 Coercive force, 55 Coercive force versus wheel

velocity, 567 Coercivity, 2, 44, 79, 172, 573,

576, 578f Coercivity in Sm-Fe-Ti, 250

811

Page 21: K. B.3A978-94-011... · 2017-08-25 · Oscar Moze Istituto ISM del CNR Via E. Fermi 38 1-00044 Frascati Italy Patricia B. Oliete Terraz ICMA, University of Zaragoza Faculdad de Ciencias

812

Coercivity, intrinsic, 80 Coercivity maximum for ribbons, 86 Coercivity of melt-spun ribbons, 85 Coercivity of Sm-Fe-T magnets, 246f Coexisting phases, 176 CoFe20., 361 Co-Fe-Sm reaction scheme, 203f Cogging torque saturation, 781 Cohesion in solids, 166 Cohesive energy of 3d metals, 139 Coil magnetizing field, 745 Coil magnetomotive force, 753 Coil mmf plots, 753 Coil volume, 680 Collapse of magnetic induction, 46 Color of magnets, 15 Co magnetic moment, 146 Common tangent phases, 174 Commutation, 758f Commutation angle, 764 Commutation diodes, 766 Commutator motor, 590 Compass card, 15 Compass, Einstein quote, 8 Compass, floating, 14 Compass, history, 8 Compass, military use, 14 Compass, iron needle, 14 Compass, navigation, 14, 20, 23 Compass, origin, 12 Compass, soft iron, 14 Compensation point, 59 Compensation temperature, 59, 537 Competing substitutional

anisotropy, 270 Complex susceptibility, 504 Component, thermodynamic, 172 Composites, 573, 576f Compressibility, 540 Condenser bank, 456 Condon-Shortley parameters, 95,

113 Conducting time, 771 Conduction electron bands, 120 Conduction electron exchange, 286 Conduction electron hopping, 142 Conduction electron

hybridization, 120 Conduction electron polarization,

286, 292, 303 Conduction electron polarization

field, 380 Conduction electron spin

polarization, 286 Conduction electrons, 123 Cone region induction, 273 Conical domain walls, 295, 309, 312,

337 Conical magnetic behavior, 271 Conical magnetic structure, 507 Conical walls, 328 Constant current drive, 789 Constitutional diagrams, 171 Controlled drive systems, 757 Controlled recrystallization, 536 Coordinate systems in phases, 179 Coordination geometry, llOf Coordination number, 105 Copper rich SmCo" 462 Core electron Hamiltonian, 96f Core polarization, 303 Core polarization field, 286, 380 Correlation effects, 139 Corrosion resistance, 568 Cosmology theories, 24 Co-Sm phase diagrams, 193f, 200f,

557 Coulomb,25 Coulomb correlation energy, 141 Coulomb force, 593 Coulomb repulsion, 135 Coulomb repulsive interaction, 140 Coupled grains, 493 CoZr,27 CrBe12,228 Critical domain diameters, 469 Critical domain formation diameter,

470 Critical exponent, 276 Critical nucleation diameter, 471 Critical particle size, 566 Critical radii for rotation, 468 Critical rotation angle, 474 Critical scaling theory, 276 Critical single domain diameter,

472 Critical spin-reorientation

behavior, 276 Cr02 critical domain diameter, 472 Crossover nucleation diameter, 470 Crystal-field, 385,416,472 Crystal-field anisotropy, 62 Crystal-field at rare-earth, 264

Page 22: K. B.3A978-94-011... · 2017-08-25 · Oscar Moze Istituto ISM del CNR Via E. Fermi 38 1-00044 Frascati Italy Patricia B. Oliete Terraz ICMA, University of Zaragoza Faculdad de Ciencias

Crystal-field average model, 440 Crystal-field coefficients, 514,

520 Crystal-field degeneracy, 104f Crystal-field energy levels, 513 Crystal-field excitations, 504 Crystal-field for rare-earth, 159 Crystal-field free energy, 442 Crystal-field ground states, 110 Crystal-field Hamiltonian, 96f,

122,417,439,508 Crystal-field in magnetism, 95f Crystal-field in Y2_xErxFe14B, 431f Crystal-field interactions, 119f,

122, 133,499 Crystal-field multi pole terms, 122 Crystal-field operator, 98f Crystal-field operator equivalence,

105 Crystal-field parameters, 62, 65,

379f, 417, 439, 509 Crystal-field parameters for

R2Fe14B, 162 Crystal-field point charge, 161 Crystal-field potential, 95f, 122 Crystal-field scaling, 440, 447 Crystal-field splitting, 104f Crystal-field splitting diagram, 109 Crystal-field splitting in l\"d2Fe14B,

115 Crystal-field terms, 63, 101 Crystal-field theory, 415f, 431f Crystalline electric field, 119f, 416 Crystallization activation energy,

561, 563 Crystallization amorphous alloys,

563 CrZr, 576 Cubic coordination environment,

III Cubic crystal-field operator, 105 Cubic crystal-field parameters, 123 Cubic crystal-field splitting, 109 Cubic spline curve, 640f Cu2Mg-type structures, 149 CuNiCo, 587 CuNiFe, 587 Curie constant, 37 Curie law, 37f Curie law behavior, 398 Curie temperature, 2f, 38, 65,

147, 358, 365, 381, 383, 386,

398,576,578 Curie temperature for R(Fe,X)12'

235 Curie temperature, magnets, 63 Curie temperature, resistivity, 412 Curie-Weiss law, 38 Curling magnetization, 465 Curling magnetization modes, 467f Current loop, 36 Current loop moment, 35 Current speed efficiency, 686 Current waveforms, 724f, 728, 773,

779f Cylindrical rotors, 712

Darwin correction, 138 Dc brushless machines, 687f, 723f,

739f Dc commutator motors, 666 Dc machines, 743f, 747, 752, 754 Dc motor control characteristics,

687f Dc motor drive, 687 Dc motor equivalent circuit, 685 Dc motor topologies, 685 Dc traction motor, 754 Dc generators, 743 Debye frequency, 380 Declination, magnetic, 23 Definition of ampere, 28f Definition of magnetic susceptibility,

37 Definition of magnetic induction,

32 Definition of magnetic moment, 35,

38 Definition of magnetization, 36 De Gennes factor, 124, 126 Degree of freedom, 172 Degree of freedom summary, 178 'De magnete', 20f Demagnetization, 606f Demagnetization characteristic,

629,633,635,640,666 Demagnetization curve, 42, 44, 618,

620, 624~ 632, 666, 744 Demagnetization curves, 579f Demagnetization curves for

Nd2Fe14B, 83 Demagnetization energy product, 38

813

Page 23: K. B.3A978-94-011... · 2017-08-25 · Oscar Moze Istituto ISM del CNR Via E. Fermi 38 1-00044 Frascati Italy Patricia B. Oliete Terraz ICMA, University of Zaragoza Faculdad de Ciencias

814

Demagnetizing effects, 37,41 Demagnetizing factor, 398, 465,

480, 617, 622f Demagnetizing field, 34, 39, 41f,

464, 633 Demagnetizing stray fields, 484,

495 'De mundo', 20f Density-flux distribution, 726,

728f Density functional theory, 135 Density of state exchange

splitting, 143 Density of states, enhanced, 322 Density of states in bcc iron, 145 Densely packed metals, 136 Design of magnets, 44 Deterioration of nucleation, 479 Development of scientific method,

18 Diamagnetic induction, 34 Diamagnetism, 33 Die-upset Nd-Fe-B magnets, 84 Die-upsetting, 82, 579 Differential scanning calorimetry,

394f, 560, 576 Differential scattering cross

section, 501 Differential thermal analysis, 394 Diffusion equation, 652 Dimensional analysis in magnetism,

30 Diogenes, 16 Dipolar domain wall field, 308 Dipolar field anisotropy, 312 Dipolar field contribution, 153 Dipolar magnetic energy, 47 Dipole moment, 35 Dirac- F ock relativistic

calculations, 520 Dirac-F ock screening interactions,

123 Direct axis synchronous reactance,

704, 708, 712, 716, 718 Direct dipolar fields, 286 Direction of magnetization, 62 Dirichlet boundary conditions, 662f Disc magnet type machine, 723,

737f, 741 Discovery of magnetic induction, 16 Discovery of magnets, 8

Discovery of Nd2Fe14B, If Disordered local moment model for

Te, 148 Dispersion curve, 322 Dispersion curve simulation, 326 Dispersionless electronic

excitations, 518 Dispersive magnetic excitations,

499 Distribution of flux density, 726,

728f Distribution of hyperfine fields,

378, 381f Distribution of isomer shifts, 381 Distribution of magnetization, 477 Distribution of quadrupole

interactions, 381 Diviner's board, 9, 13 Domain closure, 349 Domain, conical walls, 309, 328 Domain critical diameters, 469 Domain formation, critical diameter,

470 Domain frequency, 322 Domain, minority walls, 349 Domain reversal, 491 Domain wall anisotropy, 304 Domain wall changes, 287 Domain wall deterioration, 490 Domain wall, dipolar field, 308 Domain wall dipole field variation,

308 Domain wall dispersion curve, 322 Domain wall displacement, 319, 469,

490 Domain wall energy, 471 Domain wall geometry, 320, 327, 334 Domain wall intensity enhancement,

287 Domain wall mobility, 320, 334 Domain wall motion, 288 Domain wall nmr, 283f, 315f, 327 Domain wall nmr frequencies, 300 Domain wall nmr of Nd2Co14B, 329 Domain wall pinning, 80, 492, 568 Domain wall profile, 320 Domain wall propagation, 321 Domain wall rotation, 288 Domain wall supression, 317 Domain wall width, 320, 482 Domain walls, 462 Domains, 38

Page 24: K. B.3A978-94-011... · 2017-08-25 · Oscar Moze Istituto ISM del CNR Via E. Fermi 38 1-00044 Frascati Italy Patricia B. Oliete Terraz ICMA, University of Zaragoza Faculdad de Ciencias

Domestic applications, 589 Doppler shift, 356 Dq definition, 109 Drive circuit, 766, 785f Dryness of magnets, 16 DyCos, 126 DY2COI7' 63f, 500 (DYl~xErx)2FeI4B conical behavior, 271 (DYl~xErx)2FeI4B critical regime, 275 (DYl~xErx)2Fe14B magnetic phases, 271 DyFe2, 190 DyFe3, 190 DY2FeI7' 190 DY6Fe23' 190 DY2FeI7 Curie temperature, 545 DyFe3 lattice parameters, 244 DyFe3 Mossbauer studies, 244 DY2Fep magnetic properties, 547 DY2FeI4B, 63f, 79, 371, 379 DYlsFeFBg, 579 DY2FeI413Hx spin-reorientation,

274f DY2FeI413 magnetization, 399 Dy-Fe phase diagram, 190 Dy-Fe-13 phase diagram, 214f Dy-Fe-B reaction scheme, 215 Dy-Fe-13 ribbons, 89 DY2Fel4B susceptibility, 399 DY2FeI4C, 64, 383 DY2Fel4C Curie temperature, 535 DY2FeI7C Curie temperature, 545 DY2Fel4C magnetic properties, 530 DY2Fel4C structural properties, 530 Dy F ell Ti lattice parameters, 232 DyFe11Ti magnetic properties,

232,239 DyFelOV2 lattice parameters, 232 DyFelO V2 magnetic properties, 233 Dynamic magnet applications, 45 Dynamic magnetic susceptibility,

404,501,504 Dynamic steady-state performance,

758 Dysprosium-15I,379 (DyTb)Fe2 magnetostriction, 418 DYxTbl~xFe2 spin-orientation, 427 (DyTbHo)Fe2 magnetostriction, 418

Earth's iron core, 24 Earth's meridians, 17 Earth's tides, 24

Easy direction of magnetization, 62 Easy magnetization axis, 262f Eddy current, 652 Effective anisotropy energy, 470 Effective Bohr magnet on number, 38 Effective demagnetization factor,

480 Effective magnetic moment, 38 Effective molecular field, 59 Efficiency, 772f Eigenfunction mixing, 522 Einstein compass quote, 8 Einstein frequency, 380 Elastic constants, 425 Electric current units, 30 Electric field gradient, 315f, 364,

367, 548 Electric field gradient

calculation, 164 Electric motors, 69 Electric quadrupole moment, 160 Electric steel, 27 Electrical angle, 769 Electrical loading limits, 700 Electrical machine design, 743f Electrical machines, 588, 606 Electrical power, 680 Electrical resistivity, 408f Electricity magnetism

differentiation, 23 Electromagnetic circuit, 618f,

628, 638 Electromagnets, 27, 39 Electromechanical actuator, 600 Electromechanical devices, 585 Electromechanical energy

conversion, 680 Electromechanical machines, 45 Electron angular momentum, 47 Electron correlation effects, 139 Electron correlation in iron, 147 Electron correlation length, 148 Electron dispersion relation, 134 Electron exchange correlation, 133 Electron exchange interaction, 142 Electron homogeneous gas, 135, 139 Electron hopping energy, 140 Electron hopping process, 134 Electron micrographs, 557 Electron micrographs of

Nd2FeI4B, 80 Electron microscopy, 568

815

Page 25: K. B.3A978-94-011... · 2017-08-25 · Oscar Moze Istituto ISM del CNR Via E. Fermi 38 1-00044 Frascati Italy Patricia B. Oliete Terraz ICMA, University of Zaragoza Faculdad de Ciencias

816

Electron spin magnetic moment, 36 Electronegativity parameter, 166f Electronic band structures, 374 Electronic charge density, 362f Electronic structure calculations,

133 Electroscope, 22 Electrostatic potential, 122 Emf excitation, 704, 707f, 712,

716,718 Emf waveform, 609 EMMA conference, 4 Energy band formation, 134 Energy band parameters, 119f Energy conservation, 679 Energy conversion system, 680 Energy density, 42, 44 Energy density units, 30 Energy levels for NdH , 128 Energy product, 2, 28, 45, 50, 69,

81f, 86, 88, 579, 586, 589, 591, 613,624

Energy product definition, 38 Energy product improvement, 2, 29 Energy product maximum, 50, 88 Energy product of SmCos, 44f Energy product, relative values, 51 Energy product theoretical

maximum, 89 Energy product units, 30 Energy storage in magnets, 27, 42 Enhanced density of states, 322 Enhancement nrnr factor, 318 Enhancement of nrnr intensity, 287f Enthalpy of formation, 55 Epicurean philosophy, 16 Epithermal flux distribution, 505 Epithermal neutron scattering, 523 Equilibria, bivariant, 175 Equilibria, invariant, 175 Equilibria, tervariant, 175 Equilibria, univariant, 175 Eq uilibrium diagrams, 171 Equilibrium in thermodynamics, 172 Eq uilibrium microstructures, 71 Equilibrium phase rule, 173 Equilibrium volume magnetization,

150 Erbium-I66,381 Er2Co17, 63f Er2Col4B transferred field

constants, 312 (Ero.4DYo.6)2FeI4B, 403 (ErO.4DYo.6)2FeI4B magnetization,

402 (ErO.9DYo.I)2FeI4B spin-reorientation,

404 (ErxDYI_X)2FeI4B spin-reorientation,

406 ErFe2 neutron scattering, 428 ErFe),243 Er2Fe17 Curie temperature, 545 Er2 Fe17 magnetic properties, 547 ErFe) lattice parameters, 244 ErFe) Mossbauer studies, 244 ErFe.Als, 507 Er2 FeI4B, 63f, 79, 367f Er2Fe'4B boron-II nmr, 308 Er2Fc'4B easy plane system, 121 Er2Fel4B free energy, 265 Er2Fel4B heat capacity, 393f Er2Fel4B iron sublattice

anisotropy, 268 Er2Fel4B magnetic structure, 289 Er2Fe'4B magnetization, 399, 446f Er2 Fel4B susceptibility, 399 Er2Fel4B transferred field

constants, 312 Er2Fel4B-type structure, 120 Er2FeI4C, 64, 383 Er2Fel4C Curie temperature, 535 Er2Fel4C dsc curves, 396 Er2Fel4C magnetic properties, 530 Er2 Fel4C magnetization, 529 Er2Fel4C spin-reorientation, 530 Er2Fel4C structural properties,

530 Er2Fe17C Curie temperature, 545 Er2Fe12Mn2C, 383 Er1Fe'4-xMnXC high field studies, ErFellTi,507 ErFellTi lattice parameters, 232 ErFellTi magnetic properties, 232, 239 ErFe IOV2, 507 ErFelOV2 lattice parameters, 232 ErFelO V2 magnetic properties, 233

539, ErMn.Alg crystal-field parameters,

514 ErMn.Alg energy levels, 513 (ErO.9Ndo.I)2FeI4B magnetization, 400f (ErxNdl'X)2FeI4B spin-reorientation,

Page 26: K. B.3A978-94-011... · 2017-08-25 · Oscar Moze Istituto ISM del CNR Via E. Fermi 38 1-00044 Frascati Italy Patricia B. Oliete Terraz ICMA, University of Zaragoza Faculdad de Ciencias

406 Ermogens, 11 ErNilOSi2 neutron spectrum, 512 ESD FeCo, 587 ESD 32, 587 European development of

magnetism, 10 Europium-151,358 Eutectic, 179 Eutectic, binary system, 182 Eutectic composition, 182 Eutectic horizontal, 181 Eutectic line, 181 Eutectic reaction, 181, 186f Evolution of energy product, 29 Exchange correlation energy, 144 Exchange correlation potential, 135 Exchange coupling mean field, 57 Exchange energy, 463, 468f, 540 Exchange field, 119f, 417, 468f Exchange interaction, 119, 264, 499 Exchange interaction parameters,

122 Exchange polarization, 286 Exchange splitting of ferromagnetic

bands, 143 Excitation emf, 704, 707f, 712,

716,718 Excitation torque, 681, 694, 71Of,

785 Excitation torque constant, 787 Expense of cobalt, 2 Expense of ferrite magnets, 3 Experimental machines, 713f Experimental magneto stricti on, 419 Extended inhomogeneity, 483 External magnetic induction, 33 Extraction magnetometer, 400

Faraday balance, 396 Faraday's law, 593, 642, 649, 685 Fe-Al-Nd phase diagrams, 218f FeB, 27, 75, 195 Fe2B, 195 Fe-B phase diagram, 195 Fe3B based alloys, 568 Fe3B metastable phase, 568 Fe2B soft magnetic phase, 488 FeBe12, 228 Fe3C,75 FeC03, 363

Fe-Co phase diagram, 189f Fe-Co-Cr, 587 Fe-Co-Cu phase diagram, 197f FeCo magnetic needles, 557 Fe-Co-Sm phase diagram, 202 Fe-Co-Sm reaction scheme, 203f FeCrCo alloys, 587 Fe-Dy phase diagram, 190 Fe-Dy-B reaction scheme, 215 Fe-Fe interactions, 61 Fe magnetic moment, 146 Fe-Nd phase, 576f Fe-Nd phase diagram, 191 Fe71Nd2oAI2B7 hysteresis loop, 491 Fe-:\'d-B phase diagrams, 209f Fe-!\:d-B reaction scheme, 211 FenNd1sBg hysteresis loop, 491 Fe-Nd-C phase diagrams, 217f Fe77Nd13.5DYl.sBg hysteresis loop,

491 FeNiAl coercivity, 556 FeNiAl heat treatment, 556 FeNiAl pseudo binary phase

diagram, 556 Fe2!\:iAl microstructure, 554 FeNi ferromagnetic volume, 541 FeNi non-magnetic volume, 541 Fe3Ni ferromagnetic volume, 541 Fe3Ni non-magnetic volume, 541 Fe20 3 critical domain diameter, 472 Fe30 4 critical domain diameter,

472 Fe3P, 75 Fe2POS' 361, 366, 368f Fe-R interactions, 61 Fermi contact field, 286 Fermi contact hyperfine field, 158 Fermi contact term, 153 Fermi-Dirac distribution, 147 Fermi energy, 124 Fermi level, 125, 134, 147 Fermi level in Y2FeI4B, 156 Fermi level, non spin-polarized, 144 Fermions, 135 Ferrimagnetic sublattices, 57 Ferrimagnets, 57 Ferrite, 585f, 634, 666 Ferrite core memory, 27 Ferrite magnet characteristics, 699 Ferrite magnets, expense, 3 Ferrite permanent magnets, 66 Ferrite production, 3

817

Page 27: K. B.3A978-94-011... · 2017-08-25 · Oscar Moze Istituto ISM del CNR Via E. Fermi 38 1-00044 Frascati Italy Patricia B. Oliete Terraz ICMA, University of Zaragoza Faculdad de Ciencias

818

Ferromagnetic coupling, 122 Ferromagnetic Curie point, 515 Ferromagnetic induction, 34, 38 Ferromagnetic interactions, 59 Ferromagnetic magnetization, 40 Ferromagnetic materials, 38 Ferromagnetic saturated Co, 146 Ferromagnetic saturated Ni, 146 Ferromagnetic unsaturated Fe, 146 Ferromagnetism, 33 Fe-Sm phase diagram, 192 FeZr, 576f Fe)Zr, 255 FeZrB, 576 Field coil magnet excitation, 743f Field coil magnetomotive force, 752f Ficld constants, 58f Field excitation control, 743 Field induced spin-reorientation,

277 Fine magnetic needles, 557 Fine particle magnets, 554 Finite element analysis, 617f, 632,

637, 647f, 652, 656f, 661, 663f, 666, 668f, 672f, 703, 707, 710, 716,732,737

Finite element model, 785 First magnetic measurements, 10 First order magnetic transition,

533 First order magnetization, 447, 521 First order magnetization process,

239, 261f, 278, 406, 450, 515 First order phase transitions, 392 Floating compass, 14 Floating magnet, 10, 17 Fluctuating band model for Te, 148 Fluctuating band magnetism, 148 Fluctuation lifetime, 470 Flux, 618f, 623, 625f Flux density, 32, 66, 624, 632,

635, 656, 661 Flux density distribution, 726,

728f Flux density radial mean, 737 Flux distribution, 703, 707f, 716 Flux leakage, 637 Fluxmeter, 623 Fomp phase diagram, 279 Fomp phase transitions, 277 Force development, 681 Formation kinetics, 553

Formation of energy bands, 134 4f charge density distribution, 159 4f electron spin-orbit coupling, 415 4f electron states, 499 4f electronic charge cloud, 515 4f ion electronic structure, 126 4f localized electrons, 133 4f magnetic properties, 415 4f rare-earth bandwidths, 141 4f rare-earth charge distribution, 419 4f-3d intermetallics, 504 4f-4f interactions, 124 Four phase equilibrium, 186 Free energy, 173f, 176, 463 Free ynergy analysis, 439 Free energy, magnetocrystalline, 449 Free energy of anisotropy, 334 Free energy of Er,Fe14B, 265 Free energy of0id,Fe14B, 265 Free induction nmr decay, 316 Free ion Hamiltonian, 96f Freewheel diode, 772 Fundamental concepts of magnetism,

27 Fundamental units, 28 Fundamentals of anisotropy, 415f

Gadolinium-I55, 358, 379 Galileo, 18f, 24 Gauss' law, 43 GdCos, 126 GdCos electric field gradient, 165 Gd2Col1 electric field gradient, 165 Gd2Co14B, 64 Gd,Co14B boron-II nmr, 311 Gd,Co14B boron transferred field,

311 Gd2Co14B electric field gradient,

I64f Gd2Co14B magnetic structure, 289 Gd2Co14B transferred field

constants, 312 Gd electric field gradient, 165 GdFe),243 Gd2Fe17 Curie temperature, 545 GdFe) electic field gradient, 165 GdFe12 electric field gradient, 164f Gd2Fe 17 electric field gradient, 165 GdFe) lattice parameters, 244 Gd2Fel7 magnetic properties, 547 GdFe) Mossbauer studies, 244

Page 28: K. B.3A978-94-011... · 2017-08-25 · Oscar Moze Istituto ISM del CNR Via E. Fermi 38 1-00044 Frascati Italy Patricia B. Oliete Terraz ICMA, University of Zaragoza Faculdad de Ciencias

GdFe,2_xAI" 57 GdFe8AL, Curie temperature, 564 GdFelOAl2 Curie temperature, 564 GdFegAL, structure, 564 GdFe,oA12 structure, 564 Gd2FeI4B, 64, 235, 371, 379f Gd2Fel4B anisotropy field, 407,

455 Gd2Fel4B anisotropy singularity,

406 Gd2Fel4B boron-IO nmr, 306 Gd2Fel4B boron transferred field,

309 Gd2Fel4B crystal-field parameters,

163 Gd2Fel4B electric field gradient,

164f Gd2Fel4B iron-57 nmr, 302f Gd2Fel4B magnetic structure, 289 Gd2Fel4B transferred field

constants, 3 I 2 Gd2Fe'4C, 64, 383 Gd2Fe17C" 385 Gd2Fe17Cx composition dependence,

549 Gd2Fe17Cx crystal-field, 549 Gd2Fel4C Curie temperature, 535 Gd2Fe17C Curie temperature, 545 Gd2Fel,Cx electric field

gradient, 548 Gd2Fe'4C hyperfine fields, 301 Gd2Fe'4C iron-57 nmr, 301f Gd2Fe'4C magnetic properties, 530 Gd2Fe'4C magnetic structure, 289 Gd2Fe'4C magnetization, 531 Gd2Fe17Cx Mossbauer spectroscopy,

548, 550 Gd2Fel4C nmr studies, 288 Gd2Fel4C simulated nmr spectrum,

304 Gd2Fe'4C structural properties, 530 Gd2Fe'4C thermal expansion, 542 Gd2Fe17C unit cell volume, 545 GdFe1OCr2, 228 GdFe1OMo2, 228 GdFe1OSi2, 228f GdFe1OTi2, 228 GdFellTi lattice parameters, 232 GdFellTi magnetic properties, 232,

239 GdFeIOV2, 61, 228 GdFelOV2 lattice parameters, 232

GdFelOV2 magnetic properties, 233 GdFe1OW2,228 Gd-155 Mossbauer spectroscopy,

164, 230, 548 GdNis electric field gradient, 165 GdT2Si2, 167 General crystal-field operators, 110 General Motors Corp., If Generalized magnetic susceptibility,

504 Generator permanent magnets, 679 Generators, 27, 585, 588f, 592 Geomancy, II, 14 Geometry of magnet, 41 Gersdorf-Wohlfarth susceptibility,

144 Gibbs free energy, 173f Gibbs magnetic free energy, 463,

470 Gibbs triangle, 183 Gilbert, William, 20f Glass formation, 562 Goethite, 361 Gradient axis synchronous reactance,

704, 712, 716, 718 Grain boundary, 496 Grain boundary phase in

Nd2Fe,4B, 80 Grain microstructure, 462 Grain misaligned inhomogeneities,

495 Grain misalignment, 479 Grain size, 462 Grain size in Nd2Fe'4B, 82 Grain size reduction, 497 Grain surface wetting, 490 Grains in Nd2FeI4B, 80 Gram magnetic susceptibility units,

30f Gram susceptibility, definition, 37 Ground state electronic

configurations, 110 Ground state term symbols, 112 Gyromagnetic factor, 284 Gyromagnetic ratio, 316

Hamiltonian, 368 Hankel function, 136 Hard permanent magnetic materials,

355 Hardening mechanisms, 462

819

Page 29: K. B.3A978-94-011... · 2017-08-25 · Oscar Moze Istituto ISM del CNR Via E. Fermi 38 1-00044 Frascati Italy Patricia B. Oliete Terraz ICMA, University of Zaragoza Faculdad de Ciencias

820

Hartree-Fock radial integrals, 264 Headphones, 589 Heat capacity measurements, 391f Heat capacity of Er2FeI4B, 393f Heat capacity of Ho2FeI4B, 393f Heat capacity of Nd2FeI4B, 393f Heat capacity of Tm2 FeI4B, 393f Heat capacity of Y2FeI4B, 393f Heat capacity, spin-reorientation,

264 Heat of formation, 134 Heat of mixing, 55 IIeisenberg Hamiltonian, 119 Heisenberg interaction, 119 lIematite, 361 Heterogeneous equilibria, 175 Hexagonal crystal anisotropy, 47 I Iexagonal crystal-field parameters,

123 Hexagonal ferrites, 28 IIexagonal iron nets in

Nd2 Fe1"B, 74 I Iigh energy ball mill, 2-15 High energy magnets, 585, 590, 593,

600, 602, 607 High energy neutron spectroscopy,

499 High cnergy transfer spectrometer,

509 High field magnetic studies, 530,

537 High field magnetization, 52, 121,

499 High flux density, 66 High-spin configurations, 112 High-spin iron(II), 361, 363f High-spin iron(IlI), 361, 364 Historical meaning of magnetism, 8 History of the compass, 8 History of magnetism, 7, 22 Ho2Co 17, 63f Ho2C014B transferred field

constants, 3 12 (HoDyTb)Fe2 magnetostriction, 418 HoFe"243 Ho2Fe17 Curie temperature, 545 HoFe, lattice parameters, 244 Ho2Fe17 magnetic properties, 547 HoFe, Mossbaucr studies, 244 HoFe4Als, 507 Ho2Fel4B, 63f, 371, 378 Ho2Fel4B ac susceptibility, 263

Ho2Fel4B anisotropy field, 407, 455 Ho2Fel4B anisotropy singularity, 406 Ho2Fel4B boron-ll nmr, 310 Ho2Fel4B easy axis system, 121 Ho2Fel .B heat capacity, 393f H 02Fel4B initial susceptibility,

405 Ho2Fel4B magnetic structure, 289 Ho2Fel4B magnetization, 402 Ho2Fe1.B magnetization direction,

263 Ho2Fel4B susceptibility, 404 Ho2Fel4B transferred field

constants, 312 Ho2Fel4C, 64, 383 Ho2FeJ4C Curie temperature, 535 Ho2Fe17C Curie temperature, 545 Ho2Fel4C magnetic properties, 530 Ho2Fel4C magnetization, 532 Ho2Fel4C structural properties, 530 H02FeI4.xMnxC Curie temperature,

541 lIo2Fel4.xMnxC magnetic isotherms,

537f H02Fe14.xMnxC magnetization, 538,

541 HoFellTi, 507 HoFcllTi lattice parameters, 232 HoFe11Ti magnetic properties, 232,

239 HoFe lOV2 lattice parameters, 232 HoFe lOV2 magnetic propertics, 233 Holding devices, 592 Holz buckling mode, 478 . Holz nucleation field model, 479 HoMn.Als crystal-field parameters,

514 HoM n.Als energy levels, 513 HoMn.Als neutron spectrum, 510f Homogeneous electron gas, 135, 139 Homogeneous equilibria, 175 Homogeneous magnetic particles,

465 Homogeneous magnetization

buckling, 478 Homogeneous magnetization

curling, 478 Homogeneous magnetization

rotation, 465, 478 HoNi lOSi2 neutron spectrum, 512 Hopping electron processes, 142 HOo.866Tbo.134Fe2,419

Page 30: K. B.3A978-94-011... · 2017-08-25 · Oscar Moze Istituto ISM del CNR Via E. Fermi 38 1-00044 Frascati Italy Patricia B. Oliete Terraz ICMA, University of Zaragoza Faculdad de Ciencias

HOO•865 Tbo.135 Fe2 easy axis, 421 HOO•846 Tbo.'54Fe2 free energy, 421 (HoTb)Fe2 magnetic torque, 420 (HoTb)Fe2 magnetostriction, 418 Hox Tb'.xFe2 spin-orientation,

422,426f Hot-pressed magnets, 82, 86 Humidity of iron, 16 Hund's rule, 97, 110, 112, 139, 142 Hybrid excitation, 743, 745, 749f,

755 Hybrid excitation system, 745 Hybrid stepper motor, 695 Hydration of R1TM'4B, 274f Hyperfine coupling, 333 Hyperfine coupling tensor, 321 Hyperfine field, 285, 358f I Iyperfine field anisotropy, 295 Hyperfine field assignment, 298 Hyperfine field distribution, 386 Hyperfine field Fermi contact, 158 Hyperfine fields, 315f Hyperfine fields from nrnr, 283f Hyperfine interactions, 315f, 357f Hyperfine spectroscopies, 316 Hysteresis, 777f Hysteresis curve, 69 Hysteresis loop, 38f, 41, 405 Hysteresis loop types, 466f

Ideal nucleation field, 496 Impact printers, 592, 600 Improvement in energy product, 2 Improvement of permeability, 2f Impulse magnetization, 618 Inclination, magnetic, 20, 24 Inclinometer, 24 I nduced emf, 685 Inductance, 613, 673, 757, 778 Induction, magnetic, 69 Induction, definition, 32 Inelastic neutron cross section,

504 Inelastic neutron scattering, 501 Inelastic neutron structure factors,

519 Inelastic structure factor, 522 Inhomogeneous magnetic grains, 484 Inhomogeneous misaligned grains,

483 Inhomogeneous nucleation, 480, 483

Inhomogeneous rotation, 467 Inhomogeneous strain, 424 Inhomogeneous stray field

nucleation, 476 Initial magnetic research, 17 Initial permeability, 39, 639 Initial relative permeability, 41 Instability field, 466 Interdiffusion reaction, 576 Interelectronic repulsion, 112 Interelectronic repulsion

Hamiltonian, 96f Interelectronic repulsion

parameters, 95f Interfacial energy, 555 Intergranular phase in

Nd1Fe'4B, 81 Interior type motors, 703, 710,

712f Interior type rotor, 712 INTERMAG conference, 4 Intermetallic compounds, 49, 560 Intermetallic iron rare-earths,

415f Intermetallic magnetic excitations,

507 Intermetallic spin-reorientations,

261f Intermultiplet mixing in Sm3+, 499 Intermultiplet rare-earth

transition, 507 Internal anisotropic fields, 287 Internal energy, 391 Internal field anisotropy, 304 Internal field at a nucleus, 285 Internal hyperfine field, 285 Internal magnetic induction, 36 Internal rotor, 774 Interstitial carbon, 527, 550 I nterstitial carbon sites, 543 Intersublattice interactions, 57 Intersublattice molecular field,

125, 539 Intraatomic correlation energy,

140 Intrasublattice interactions, 57 Intrasublattice molecular field,

125 Intrinsic anisotropy, 87 Intrinsic coercivity, 80 Intrinsic magnetic anisotropy, 50 Intrinsic magnetic properties, 228

821

Page 31: K. B.3A978-94-011... · 2017-08-25 · Oscar Moze Istituto ISM del CNR Via E. Fermi 38 1-00044 Frascati Italy Patricia B. Oliete Terraz ICMA, University of Zaragoza Faculdad de Ciencias

822

Intrinsic polarization, 621 Invar concentration range, 541 Invar thermal expansion, 542 Invariant equilibria, 175 Invariant three phase equilibrium,

177,182 Inverse photoemission experiments,

142 Iron, axial anisotropy, 268 Iron-based steels, 359 I ron, bcc stability, 139 Iron, calculated Fermi contact, 154 Iron core of the earth, 24 Iron critical domain diameter, 472 Iron density of states, 145f Iron electron correlation, 147 Iron, fcc stability, 139 Iron, ferromagnetic volume, 541 Iron needle, 19 Iron needle compass, 14 Iron, non-magnetic volume, 541 Iron oxides, 28 Iron phosphate, 361 Iron-rich rare-earth carbides, 527f Iron-rich rare-earth compounds, 564 Iron-rich rare-earth ternaries, 65 Iron soft magnetic phase, 488 Iron spontaneous magnetostriction,

147 Iron transferred hyperfine field, 297 Iron(I I), 363f, Iron(I II), 363f, 366 Iron-57, 355f Iron-57 domain wall nrnr, 295 Iron-57 gyromagnetic factor, 289 Iron-57 nrnr signal, 289 Iron-57 nrnr spectral analysis, 292 Iron-57 nrnr studies, 283f, 288 Irreducible representations, 110, 113 Irreversible demagnetization, 618,

632, 634 Isobaric unary system, 178 Isomer shift, 358, 362f Isomorphous phase system, 179 Isomorphs of Nd2Fe14B, 78 I sopleths, 185 I sothermal pentahedron, 178 I sothermal phase diagram, 488 Isothermal phase diagram for

Nd-Fe-B,569 Isothermal sections, 185 Isothermal Sm-Co-Cu phase

diagram, 559 Isothermal tetrahedra, 179 Isotropic exchange interactions, 130 Isotropic Heisenberg interaction, 119 Itinerant electron model, 124 Itinerant electron moments, 143 Itinerant electron states, 138

l-state mixing, 522 Jandum, Jean, 19

Kerr magnetooptical effect, 490 Kissinger plot, 561 Klystron, 604, 615 Knight shift, 285 Kubic harmonic coefficients, 423 Kubic harmonics, 422

La2Co14B, 64 La2Co14B boron-II nrnr, 311 La2Co14B boron transferred field,

311 La2Co14B magnetic structure, 289 La2Co14B transferred field

constants, 312 La2Fe14B, 64 La2Fe14B anisotropy field, 407, 455 La2F e14B anisotropy singularity,

406 La2 Fe14B boron-IO nrnr, 306 La2 Fe14B boron transferred field,

309 La2Fe14B iron-57 nmr, 302f La2Fe14B magnetic structure, 289 La2Fe14B transferred field

constants, 312 La2Fe'4C, 75 LaFe1OV2,61 Lande g factor, 504 Lanthanide contraction, 78, 126 Laplace's equation, 650 Laplacian field, 652f Large coercivity microstructures,

566 Larmor precession, 316 Lateral plastic flow, 82 Lattice constants of Nd2Fe'4B,

78 Lattice symmetry, 418

Page 32: K. B.3A978-94-011... · 2017-08-25 · Oscar Moze Istituto ISM del CNR Via E. Fermi 38 1-00044 Frascati Italy Patricia B. Oliete Terraz ICMA, University of Zaragoza Faculdad de Ciencias

Lattice vibrations, 505 Laves layer, 243 Laves phase cubic compounds, 416 Laves phase intermetallics, 415 Laves phase structure, 420 Laves phases, 76, 500 Leakage, 617f, 632 Leakage factor, 625, 627, 632 Leakage flux, 624f, 627, 634 Leakage gap, 625 Leakage paths, 617 Leakage permeance, 625f Leakage unit permeance, 626 Legendre function, 129 Legendre polynomials, 99f, 107 Lever rule, 181 Life time of fluctuation, 470 Ligand field potential, 96 Ligand fields, 95f Limited motion actuators, 585, 697 Linear limited motion actuators,

697 Linear motor, 597 Linear muffin-tin orbitals, 138, 156 Linear taper pole gap, 747 Lineshape of nrnr, 321 Lineshape simulation, 324 Line-start motor, 615 Line-start synchronous motor, 613,

668 Liquid phase in magnets, 490 Liquidus invariant line, 180 Liquidus line, 180 Load angle, 668, 704f, 7IOf Load-angle characteristics, 779f Load limits, 698 Load line, 617, 620f, 746 Loadstone, 15 Load torque, 694, 780, 785f Local atomic topology

Nd2 Fe14B, 78 Local electron spin density, 135 Local environment nrnr effects, 317,

342 Local iron moments, 516 Localized electron states, 138 Local magnetic moments, 152 Local moments from neutron

diffraction, 153 Local-spin density function, 135 Longitudinal relaxation time, 284 Lorentz force, 593

Lorentz force equation, 727 Loudspeaker magnets, 634f Loudspeakers, 589 Loving stone, 9 Low-carbon steels, 28 Low-field magneto stricti on, 424 Low-spin configurations, 112 Low-spin iron(II), 363 Lu2Co 14B transferred field

constants, 312 Lu2Fe17 Curie temperature, 545 Lu2Fe17 magnetic properties, 547 Lu2Fe14B, 64, 79 Lu2Fe14B anisotropy field, 407, 455 Lu2Fe'4B anisotropy singularity,

406 Lu2Fe'4B boron-lO nrnr, 306 Lu2Fe'4B boron transferred field,

309 Lu2Fe'4B iron-57 nrnr, 302f Lu2Fe'4B magnetic structure, 289 Lu2Fe'4B transferred field

constants, 312 Lu2Fe'4C, 64, 383 Lu2Fe'4C Curie temperature, 535 Lu2Fe17C Curie temperature, 545 Lu2Fe'4C magnetic properties, 530 Lu2Fe'4C magnetization, 529, 531 Lu2Fe14C structural properties, 530 LuFellTi lattice parameters, 232 LuFe1OV2,61 LuFe lO V2 lattice parameters, 232 LuFe lOV2 magnetic properties, 233

Machine air gap, 747, 749f, 752f Machine circular pole face, 753 Machine design, 743f Machine excitation, 743, 745,

749f,755 Machine force, 679 Machine magnetization

characteristics, 755 Machine magnet layers, 751 Machine magnet types, 684 Machine magnet volume, 680 Machine permanent magnets, 679 Machine prototype, 741 Machine torque, 679 Machines without magnets, 747 Macroscopic anisotropy energy,

823

Page 33: K. B.3A978-94-011... · 2017-08-25 · Oscar Moze Istituto ISM del CNR Via E. Fermi 38 1-00044 Frascati Italy Patricia B. Oliete Terraz ICMA, University of Zaragoza Faculdad de Ciencias

824

262f Macroscopic demagnetization, 465 Macroscopic spin-reorientation

model,264 Macroscopic susceptibility, 145 Macroscopic units, 130 Magic, 11 Magic angle, 368 Magnes, 15 Magnesia, 15 Magnet air gap, 747, 749f, 752f Magnet applications, 49, 69 Magnet classification, 27 Magnet color, 15 Magnet comparison, 2 Magnet cost, 70 Magnet Curie temperature, 63 Magnet definition, 27 Magnet design, 44, 617 Magnet discovery, 8 Magnet dryness, 16 Magnet energy storage, 27, 42 Magnet fine particles, 554 Magnet, floating, 17 Magnet flux path, 739 Magnet geometry, 41 Magnet, historical classification,

15 Magnet in magic, 15 Magnet in medicine, 15 Magnet layer, 749, 751f, 755 Magnet layer non-uniform, 753 Magnet liquid phase, 490 Magnet load line, 746 Magnet machine design, 696 Magnet manufacturing, 553f Magnet market, 586, 588 Magnet material phase diagrams,

171 Magnet movement, 16 Magnet operating point, 44 Magnet, origin, 15 Magnet, perpetual motion, 18 Magnet production, 586 Magnet saturation, 41 Magnet, sex, 15 Magnet shape, 22 Magnet spherical, 17 Magnet technology, 89 Magnet toroidal, 43 Magnet volume, 680 Magnet working points, 699

Magnetic ac susceptibility, 263 Magnetic anisotropy, 44, 62, 415f,

431f,514 Magnetic anisotropy constants, 46 Magnetic anisotropy intrinsic, 50 Magnetic anisotropy of R(Fe,X)12'

235 Magnetica species, 17 Magnetic attraction, 22 Magnetic bearings, 605 Magnetic charm, 8 Magnetic circuit, 617f, 620f, 624f Magnetic cocrcivity, 44 Magnetic compass, II Magnetic coupling constants, 61,

536 Magnetic declination, 9f, 23 Magnetic dipolar energy, 47 Magnetic dipolar transitions, 284 Magnetic dipole interaction, 320 Magnetic dipole moment, 35f Magnetic domains, 38 Magnetic energy available, 44 Magnetic energy density, 42 Magnetic energy product, 28 Magnetic enthalpy, 392 Magnetic exchange interaction, 499 Magnetic excitations, 499 Magnetic excitations, dispersive,

499 Magnetic excitations in RTI2, 507 Magnetic excitations, non-

dispersive, 499 Magnetic field, 23 Magnetic field lines, 32 Magnetic field strength, 33 Magnetic field strength units, 30 Magnetic flux, 32 Magnetic flux density, 32 Magnetic flux distribution, 703,

707f,716 Magnetic free energy, 425, 441 Magnetic Gibbs free energy, 463, Magnetic hardening, 462, 571 Magnetic hardness, 38 Magnetic, homogeneous particles,

465 Magnetic hyperfine coupling, 321 Magnetic hyperfine interaction, 358 Magnetic hyperfine splitting, 358f Magnetic inclination, 20, 24 Magnetic induction, 27, 69

Page 34: K. B.3A978-94-011... · 2017-08-25 · Oscar Moze Istituto ISM del CNR Via E. Fermi 38 1-00044 Frascati Italy Patricia B. Oliete Terraz ICMA, University of Zaragoza Faculdad de Ciencias

Magnetic induction closed line, 43 Magnetic induction collapse, 46 Magnetic induction, definition, 32 Magnetic induction, discovery, 16 Magnetic induction, external, 33 Magnetic induction in materials, 31 Magnetic induction internal, 36 Magnetic induction remanent, 41 Magnetic induction units, 30 Magnetic induction values, 33 Magnetic inhomogeneity types, 488 Magnetic insight, 7 Magnetic internal energy, 391 Magnetic islands, 11 Magnetic levitation, 592 Magnetic loading limits, 698 Magnetic magicians, 11 Magnetic materials, 49 Magnetic microstructure, 461 f ;\![agnetic moment, 361, 373, 377 Magnetic moment definiton, 35 Magnetic moment units, 30 Magnetic mountains, 22 Magnetic needle distribution, 557 Magnetic needles, 10, 557 Magnetic nucleus model, 481 Magnetic open circuit, 43 Magnetic ordering temperature, 51 Magnetic permeability, 27 Magnetic person, 7 Magnetic phase diagram, 263 Magnetic pole strength, 36 Magnetic poles, 8, 27 Magnetic recording, 461, 472 Magnetic remanence, 44 Magnetic resonance tomography,

601 Magnetic reversed states, 478 Magnetic separation, 592 Magnetic separator, 604 Magnetic shape anisotropy, 50 Magnetic spoon, 10 Magnetic stones, 10 Magnetic storage devices, 27 Magnetic stray fields, 471 Magnetic structures R2CoI4B, 64 Magnetic structures R2FeI4B, 64 Magnetic structures R2FeI4C, 64 Magnetic susceptibility definition,

37 Magnetic system analysis, 743 Magnetic terreIIa, 22

Magnetic torque, 35,451 Magnetic torque in TbFe2, 419 Magnetic torque measurements,

431f Magnetic virtue, 16, 19 Magnetic volume charges, 476, 470 Magnetics Society Newsletter, 4 Magnetiser, 672 Magnetism and Greek philosophy,

16 Magnetism, beginning of

research, 17 Magnetism-electricity

differentiation, 23 Magnetism fundamental concepts, 27 Magnetism, history, 7 Magnetism in China, 8 Magnetism in medicine, 10 Magnetism in the middle ages. 17 Magnetism in \\festern cult~re, 15 Magnetism units, 27 Magnetization, 618, 625 Magnetization anisotropy, 321 Magnetization buckling, 465, 478 Magnetization calculation, 446 Magnetization characteristic, 640 Magnetization curling, 465, 478 Magnetization definition, 36 Magnetization diagram, 279 Magnetization distribution, 477 Magnetization inhomogeneity, 39 Magnetization of RFe IOV2, 236 Magnetization orientation, 262f,

473 Magnetization processes, 461 Magnetization resultant, 60 Magnetization rotation, 465, 478 Magnetization sublattice, 58 Magnetization units, 30 Magnetization, volume dependence,

146, 150 Magnetless machines, 747 Magneto-volume coupling, 540 Magneto-volume effects, 540 MagnetocrystaIIine anisotropy, 47,

51f, 78, 119, 159, 307,499 M agnetocrystaIline anisotropy

theory, 159f :VlagnetocrystaIIine energy, 463 MagnetocrystaIline free energy, 449 MagnetocrystaIIine rare-earth

825

Page 35: K. B.3A978-94-011... · 2017-08-25 · Oscar Moze Istituto ISM del CNR Via E. Fermi 38 1-00044 Frascati Italy Patricia B. Oliete Terraz ICMA, University of Zaragoza Faculdad de Ciencias

826

anisotropy, 133 Magnetoelastic coupling, 391 Magnetoelastic effects, 119, 425 Magnetoelastic properties, 391f Magnetoelasticity, 500 Magnetoelectric coupling, 391 Magnetomechanical applications,

593 Magnetomechanics, 588 Magnetometric demagnetization

factor, 622 Magnetomotive force, 619, 624f,

747 Magnetooptical Kerr effect, 490 Magnetostatic energy, 127, 463f Magnetostatic field, 649, 652, 674 Magnetostatic internal field, 463 Magnetostatic non-linear problems,

617 Magnetostriction, 119, 406f Magnetostriction constants, 425 Magnetostriction experimental, 419 Magnetostriction isotherm, 4lO Magnetostriction low fields, 424 Magnetostriction volume, 542 Magnetostrictive anisotropy, 419 Magnetostrictive materials, 416 Magnetostrictive strain, 415f Magnetrons, 615 Major ligand lines, 78 Manufacturing expense, 3 Mass magnetic susceptibility units,

30f Mass susceptibility definition, 37 Material permeability, 34 Materials for permanent magnets,

553f Maximum energy product, 45, 50,

88, 589, 624 Maxwellian flux distribution, 505 Maxwell stress integration, 785,

787 Maxwell's equations, 649, 652 Mean field approximation, 125 Mean field exchange coupling, 57 Mean field model predictions, 394 Mean field theory, 57,426, 533 Meaning of "magnetism", 7 Meaning of magnetism in history, 8 Mean pairing energy, llO Mean torque, 736

Measurement of anisotropy, 449f Mechanical alloying, 227, 245, 573f,

578 Mechanical limits, 700 Mechanical power, 680, 686 Melt-spinning, 69, 71f Melt-spinning magnetic hardening,

571 Melt-spinning Nd2Fe14B, 79 Melt-spun amorphous alloys, 562 Melt-spun magnets, 478 Melt-spun ribbon quench rate, 567 Melt-spun ribbons, 81, 83, 85f Melt-spun ribbons of~d-Fe-B, 79 Meridians of earth, 17 Metalloid systems, 75 Metallurgical precipitation, 553 Metastable high temperature phases,

2lO Metastable intermetallics, 49 :'vletastable iron-rich rare-earths,

564 Metastable magnet phases, 553f Metastable phases, 227, 554 Metastable solid solutions, 553f Metastable states, 173 Metastable ternary compounds, 561 Metastable Fe,B phase, 568 MgCu2-type structure, 76 Micromagnetic boundary condition,

468 Micromagnetic equation

coefficients, 476 Micromagnetic equations, 476, 481 Micromagnetic structure, 461f Micromagnetism, 461f Microphones, 589 Microscopic units, 130 Microstepping motors, 694 Microstructural inhomogeneity, 483 Microstructural parameters,

483,495 Microstructure, 71, 172, 461f, 573f Microstructure and coercivity, 566 Microstructure, deteriorating

effects, 486f Microstructure of alloys, 553f Microstructure of grains, 462 Microstructure optimization, 486 Microwave power devices, 585 Middle ages magnetism, 17 Miedema electronegativity

Page 36: K. B.3A978-94-011... · 2017-08-25 · Oscar Moze Istituto ISM del CNR Via E. Fermi 38 1-00044 Frascati Italy Patricia B. Oliete Terraz ICMA, University of Zaragoza Faculdad de Ciencias

parameter, 166f Miedema macroscopic model, 166 Miedema model, 576f Military use of compass, 14 Minimum nucleation field, 474 Minor hysteresis loops, 491,

579, 618 Minority domain walls, 349 Misaligned grain nucleation, 483 Misaligned grains, 479, 493, 496, :'vlisaligned phases, 487 Mixed valence, 361 M M:vI conference, 4 Mn-AI phase diagram, 560 MnAI magnets, 559 MnI.IlAlo.89, 559 :'vlnAlC, 587 MnBel2 ,228 MnBi critical domain diameter, 472 :Vln13.5DY4.gfe,.B,., dsc curve, 396f MoBel2 ,228 Modern scientific methods, 20 Modern scientists, 21 Modified Bloch domain walls, 337 Molar magnetic susceptibility

units, 30f Molar susceptibility definition, 37 Molecular effective fields, 59 Molecular exchange field, 515 Molecular field coefficients, 539 Molecular field constants, 58f Molecular field for NdH , 128 Molecular field in rare-earths,

125, 264 Molecular field model, 119f Molecular field theory, 60 Moment formation on volume

expansion, 146 Moment of current loop, 35 Momentum transfer, 501 Mossbauer effect spectroscopy, 52,

120, 127, 164,230,299, 315f, 355f Mossbauer hyperfine fields, 153,

290, 295, 302 Mossbauer-nrnr comparison, 299 Mossbauer selection rules, 434 Mossbauer single crystal work, 434 Mossbauer site preference, 340 Mossbauer spectra of

Nd2(Coo.9gFe}o2),4B, 77 Mossbauer spectra of Nd2Fe,4B,

332,435 Mossbauer spectroscopy, Gd-155, 548 Mossbauer spectroscopy, Tm-169, 548 Mossbauer study of GdFe IOV2, 233 Motion actuators, 679f, 697 Motor back-emf, 758, 778 Motor drives, 757, 777 Motor load-angle, 704f, 71Of, 713,

716 Motor-load inertia, 780 Motor performance, 722 Motor permanent magnets, 679 Motor power factor, 710, 712f, 716,

718,722 Motors, 27, 585, 588f, 592 Motor torque, 7l0f Movement of magnets, 16 Muffin-tin orbitals, 138 Multicomponent phase equilibrium,

188 M ulticomponent systems, I 75f, 188 Multidomain particles, 462 Multiplet nrnr lines, 321 Mutual inductance, 768, 774 Mutual inductance susceptometer,

403 Mutual induction coil, 405 Mysterious stone, 9

Narrow inhomogeneity, 482 Natural linewidth, 355f Naval Research Laboratory, I Navigation compass, 10, 14, 20, 23 NdB4, 196 NdB6, 196 Nd2Bs, 196 NbBe'2,228 NbBeJ-type structures, 149 Nd-B phase diagram, 196 (Nd.Ce,_x),s Fe77Bg anisotropy

field, 457f NdCo3,85 NdCos,126 Nd2Co17 , 63f, 85 Nd2Co'4B, 64, 88 Nd2Co'4B canted structure, 294 Nd2Co'4B canting angle, 337 Nd2Col4B conical domain walls, 337 Nd2Co,.B domain wall nrnr, 329 Nd2Co'4B easy axis system, 121 Nd2Co'4B hyperfine coupling, 333

827

Page 37: K. B.3A978-94-011... · 2017-08-25 · Oscar Moze Istituto ISM del CNR Via E. Fermi 38 1-00044 Frascati Italy Patricia B. Oliete Terraz ICMA, University of Zaragoza Faculdad de Ciencias

828

Nd2C0 14B hyperfine fields, 333 Nd2C014B hyperfine splitting, 333 Nd2C014B magnetic moments, 333 Nd2C0 14B magnetic structure, 289,

335 Nd-Co-B phase diagram, 85 Nd2C0 14B transferred field

constants, 312 NdiCo1_xCllx)14B magnetization, 452 Ndo_lsCCoyFel_y)o.nBo.og, 85 l\diCoxFc1.X)14B, 77, 85f l\diCo1_xFex)14B canting anglc, 342 NdlCoxFc1.X)14B composition, 88 NdiCoxre1_X)p, 77 l\diCoFc)14B, 373 l\d-(Co,Fe)-B melt-spun ribbons, 86 :\d-(Co,Fc)-B ribbon cocrcivity, 87 :\d-(Co,Fe)-B ribbon energy product,

87 :\J-(Co,rc)-B ribbon remanence, 87 :\d-(Co,Fc)-B spin-reorientation, 87 NdlCo1XFex)14B hyperfine field,

339f,344 l\d/Co1.xFex)14B Nd-145 nmr, 345 l\'d,(Co1_xFex)14B nmr, 338 Nd,(CoxFe1'X)14B phase transition,

397 l\d,(CoO.9gFc)o.Q2)14B Mossbauer

spectra, 77 NdiCo1_xFe.)1.B pseudo-binary

alloys, 337 NdiCo1_xFex)1.B random

substitution, 343 Nd2(Co1_xFex)1.B spin-echo nmr, 343 NdiCo1_XGaX)1.B magnetization,

450, 452 NdiCo1'XGeX)14B magnetization, 452 Nd,(Co1_xNiJl.B magnetization, 452 (Nd1_xDYx)lSFc17Bg, 579, 582 Nd13.sDY1.5Fe77Bg hysteresis loop,

491 Nd13.sDYl.sFen B. magnets, 489 Nd16.6sDY1.8sFe'sB6.5 magnets, 489 Nd2Fe17, 69, 76f, 567, 576 Nd2Fe17 coercive force, 566 Ndo.4Feo.6 coercivity, 566 Nd2Fe17 Curie temperature, 545 Nd2Fe17 magnetic properties, 547 Nd-Fe phase diagram, 191 Nd2Fe17 soft magnetic phase, 488 Nd-Fe-AI phase diagram, 218f NdiFenAI)B anisotropy field, 458

Nd2oFe71AI2B7 hysteresis loop, 491 NdllFe7sAl2)Bg magnets, 489 NdlsiFenA12)B6.5 magnets, 489 Nd20Fe71AI2B7 magnets, 494 Nd-Fe-B, 5S5f Nd-Fe-B alloy resistivity, 411 Nd-Fe-B bonded magnets, 66 Nd-Fe-B brushless motors, 607 Nd-Fe-B commutator motors, 606 l\d-Fe-B energy product, 44f ?\d-Fe-B isothermal phase diagram,

488, 569 :\d-Fe-B magnct characteristics, 699 :\d-Fe-B magnet rotors, 714 l\d-Fe-B magnets, 44f, 573f l\d-Fe-B market, 591 l\'d-Fe-B melt-spun magnets, 66 l\'d-Fe-B melt-spun ribbons, 79 l\'d-Fe-B motor, 606 l\'d-re-B optimum melt-spinning, 86 l\d-Fe-B phasc diagrams, 209f l\d~Fe-B plastic bonded magnets, 66 l\d-Fe-B powdcrcd magnets, 66 l\'d-Fe-B rcaction scheme, 211 Nd-Fe-B synchronous magnct motors,

703f l\'d-Fe-B unsintered magnets, 66 l\dFe4B., 492 NdFe4B4 non magnetic phasc, 488 NdFe12B6, 562 l\'dFe12B6 Curic temperaturc, 564 NdFe12B6 structure, 564 Ndo.12FcO.g2B006 stoichiometry, 84 Ndo.135Feo.S17Bo.048 ribbons, 80 Nd1.3Fe4B4' 561 Nd2Fe14B, 28, 63f, 69, 71, 79, 159,

208, 261f, 355, 362, 364f, 576, 578 Nd2Fe14B anisotropy field, 407,

455,458 Nd2Fe14B anisotropy singularity, 406 Nd2Fe14B Bloch walls, 566 Nd2Fe14B boron coordination, 296 Nd2Fe14B boron site structure, 75 Nd2Fe14B boron-IO nmr, 310 Nd2Fe14B boron-IO spin-echo nmr,

293f Nd2Fe14B canted structure, 294 Nd2Fe1.B canting angle, 337,436 Nd2Fe14B coercive field, 115, 494 Nd2Fe14B cobalt site selectivity, 313 Nd2Fe14B coercive field, 486 Nd2Fe14B critical domain diameter,

Page 38: K. B.3A978-94-011... · 2017-08-25 · Oscar Moze Istituto ISM del CNR Via E. Fermi 38 1-00044 Frascati Italy Patricia B. Oliete Terraz ICMA, University of Zaragoza Faculdad de Ciencias

472 Nd2Fe14B crystallography, 71f Nd2Fc14B Curie temperature, 3f Nd2Fe14B demagnetization curves, 83 Nd2Fc14B discovery, If, 49, 51, 227 Nd2Fe14B dsc curves, 395 Nd2Fe14B easy plane system, 121 Nd,Fe14B electron micrographs, 80f ~d2Fc14B cncrgy product, 432 Nd2Fe14B film resistivity, 411 0.'d,Fc14B first ordcr magnctization,

275 Nd2Fcl4B frcc cnergy, 265 Nd2Fel4B grain boundary phase, 80 l\:d)7eI4B grain micrograph, 81 Nd2Fcl4B grain sizc, 82 :-':d2Fc 14B hcat capacity, 393f Nd2Fe14B high-field magnctization,

121 :-':d2Fc14B hypcrfinc fields, 299 :-':d,Fc14B intcrgranular phasc, 81 :\"d,Fe14B iron coordination, 296 ~d2Fe14B iron hexagonal ncts, 74 :\"d,Fe14B iron-57 nmr spcctrum,

291, 303 Nd,Fel4B iron-57 spin-echo nmr,

293f Nd,Fel4B isomorphs, 78 Nd,Fel4B latticc constants, 78 0.'d,Fe14B local atomic topology, 78 0.'d2Fc14B magnctic anisotropy, 115 0.'d2Fe14B magnctic structure, 289 Nd2Fel4B magnctization, 407, 432f Nd2Fel4B magnetization direction,

263 Nd,Fel4B magnctostriction isothcrm,

410 Nd,Fe14B microstructure, 487 Nd,Fe14B Mossbauer hyperfine

fields, 299 Nd,Fe14B Mossbauer spectra, 332,

432,435 Nd,Fe14B Nd magnetic states, 344 Nd,Fcl4B Nd-145 nmr, 345 Nd,Fc14B nmr hyperfine fields, 299 Nd,Fel4B non-magnetic phase, 487 0.'d,Fc14B optical micrographs, 83 Nd2Fe14B phase diagram, 488 Nd2Fel4B preferential Co

substitution, 298 Nd2Fel4B production, 3 Nd2Fe14B projections, 74

Nd,Fe14B rapid solidification, 79 Nd2Fel4B resistivity, 410 Nd2Fc14B ribbon grains, 567 Nd2Fe14B silicon substitution, 167 Nd,Fe14B site designations, 73 Nd,Fc14B spd mcthod studics, 407 Nd2Fel4B spheroidal grains, 83 Nd,Fel4B spin-echo nmr spectrum,

292f Nd2Fel4B spin-reoricntation, 328 Nd,Fcl4B stoichiomctry, 76 ;-';d2Fe14B structure, 51, 72 Nd,Fcl4B thcrmal cxpansion, 408f Nd,Fc14B thin films, 411f 0.'d,Fc14B transfcrred field

constants, 312 :\d2FeI4B-typc structurc, 120, 449 Nd,Fe'3B3 crystallization, 563 ~d,FcnBJ Curic temperaturc, 564 ~d2Fc23B3 dsc plot, 563 Nd,Fc23B3 magnctization, 565 l\d,Fc"B3 structure, 561, 564 Nd,Fc'3B3.3 dsc plot, 563 T\d,Fc23B4 dsc plot, 563 Nd2Fen Bs dsc plot, 563 Nd2 Fe"B. dsc curvcs, 395 Nd3.7Fe77.3BI8 .• coercive force, 570 l\d3 .• Fe77.oBI9.' hysteresis loop, 570 Nd3.8Fe77.0BI9.2 magnetization, 570 Nd4.4Fe".7B\1.7 coercive force, 570 Nd4.9Fe7 •. oB17.1 coercive force, 570 Nd1SFc"B., 576, 578f Nd1S Fe77 B. hystercsis loop, 491 Nd1SFc"B. magnetic structure, 289 Nd1SFe"B. magnets, 489 Nd1SFc"B. nuclcation mechanism,

495 Nd16Fe76B., 579f Nd16 Fe"B8 domain patterns, 492 Nd16 Fe"B. permanent magnets, 492 Nd1 • .5Fe7SB6.5 magnets, 489 Nd-Fe-C phase diagrams, 217f Nd2 Fe14C, 64, 89, 383 Nd2Fe14C Curie temperature, 535 Nd2Fe14C dsc curves, 396 Nd2Fe14C first order transition, 533 Nd,Fe14C magnetic properties, 530 Nd,Fe14C magnetization, 529, 531 Nd2Fe14C neutron diffraction, 530 Nd2 Fe14C spin-reorientation, 530 Nd2Fe14C structural properties, 530

829

Page 39: K. B.3A978-94-011... · 2017-08-25 · Oscar Moze Istituto ISM del CNR Via E. Fermi 38 1-00044 Frascati Italy Patricia B. Oliete Terraz ICMA, University of Zaragoza Faculdad de Ciencias

830

Nd2Fel4C thermal expansion, 542 Nd2Fel4C transition temperature,

529 Nd2Fe17C Curie temperature, 545 Nd2FeI7C .. 89 Nd2Fe17Cx structure, 54 Nd2Fe17Cx transition temperature,

529 NdlSFe77_XCoxB8 boron-lO nmr, 295,

297 NdlSFe77_XCoxB8 iron-57 nrnr, 295 Nd1SFen-xCoxB8 magnetic structure,

289 NdlSFe71_XCoxB8 nrnr studies, 288, 296 NdiFe1_xCo.)14B, 381, 382 Nd2Fe14_XCoxB boron-IO substituted,

291 Nd2Fel4-XCOxC Curie temperature,

535 Nd2Fe14_xCrxC Curie temperature,

535 N d( F eO_92_XGaxBo_os)s.s anisotropy,

457f NdlFe13Ga)B anisotropy field, 458 Nd2Fe14_xMnxC Curie temperature,

535 NdFes6Si24 Curie temperature, 564 NdFes6Si24 structure, 564 NdlFe1_XSix)14B, 381 t\d2Fe12-sSil.5B, 381 NdiFe13Si)B anisotropy field, 458 Nd2Fe14_xSixC Curie temperature,

535 NdFe l1Ti lattice parameters, 232 NdFel1Ti magnetic properties, 232,

239 Nd(FeI2_XVx),386 NdFe10V2 lattice parameters, 232 NdFe lOV2 magnetic properties, 233 (Nd.La1_x)lSFe71B8 anisotropy

field,457 N~03' 488 (Ndl_xPrX)2Co14B nrnr, 351 (Ndl_xRx)2Fe14B spin-reorientation, 269 (Nd2_xYx)C014B magnetic phases, 272 (Ndl_xYx)2C014B nrnr studies, 347f (Nd. Y1_.)lSFenBs anisotropy

field,456 Nd3+ energy levels, 128 t\d3+ molecular field, 128 Near-neighbor interactions, 539 Neckam, Alexander, 17

Needle compass, origin, 13 Neel temperature, 358, 398 Neodynium-145 nrnr, 345 Neumann boundary conditions, 662f Neutron cross sections, 73 Neutron diffraction, 52, 73, 89, 120,

230, 373, 377, 381, 383, 386 Neutron diffraction local moments,

153 Neutron diffraction moments, 158 Neutron high energy spectroscopy,

499 Neutron inelastic scattering, 415,

428 Neutron magnetic field, 504 Neutron momentum transfer, 505 Neutron powder diffraction, 73, 89 Neutron scattering, 147 Neutron scattering cross section,

501 Neutron sources, 505 Neutron spectroscopy, 499 Neutron time of flight, 505 Newton-Raphson technique, 639,

664,666,669,673 NiAIFe2 microstructure, 554 Nicander, 15 Nickel, critical domain diameter,

472 Nickel, density of states, 146 NiFe20 4, 361 Ni magnetic moment, 146 NiSiF6_6H20, 113 Nrnr, 120, 127, 153,592 Nrnr anisotropic doublets, 327 Nrnr anisotropic line shape, 323 Nrnr background, 284 Nrnr chemical shift, 285 Nrnr enhancement factor, 318, 322,

324 Nrnr excitation field, 287 Nrnr excitation pulses, 291 Nrnr high-frequency triplet, 299 Nrnr hyperfine fields, 283f Nrnr imaging systems, 601, 602 Nrnr in anisotropic ferromagnets,

315f Nrnr intensities, 331 Nrnr intensity enhancement, 287f Nrnr Knight shift, 285 Nrnr lineshape, 321 Nrnr lineshape simulation, 324

Page 40: K. B.3A978-94-011... · 2017-08-25 · Oscar Moze Istituto ISM del CNR Via E. Fermi 38 1-00044 Frascati Italy Patricia B. Oliete Terraz ICMA, University of Zaragoza Faculdad de Ciencias

Nmr local environment effects, 317 Nmr methodology studies, 288 Nmr-Mossbauer comparison, 299 Nmr multiplet lines, 321 Nmr mUltiplet structure, 294 Nmr of domain walls, 283f Nmr of permanent magnets, 328 Nmr of Co1_XCrX alloys, 318 Nmr of Nd,(Co1_xFe.)14B, 338 Nmr relaxation time, 284 Nmr signal intensity, 284 Nmr simulated dispersion curves,

326 :'\mr simulated spectra, 304 Nmr site assignemnts, 331 Nmr spectrum of Th2FeI4B, 290 l\'mr, spin-echo, 284 0.'mr studies of l\'dlsFe17_xCoxB8' 288 Nmr studies of R(CoFe)B magnets,

31St' Nmr tomography, 588, 601 Nmr, zero-field, 317 l\' on-dispersive magnetic

excitations, 499 Non-equilibrium microstructures, 71 Non-linear discrete reluctance, 617 Non-linear effects, 617 Non-linear lumped parameter, 637,

648 Non-linear permeance curves, 647 Non-linear reluctance, 648 Non-linear reluctance network, 618 N on-spherical electronic repulsion,

96 Non-magnetic intergrain phases, 491 Non-magnetic isolating phases, 487 Normann, Robert, 20 Novel intermetallic compounds, 560 Novel magnetic materials, 49 Novel permanent magnets, 49 Novel ternary compounds, 63 Nuclear gyro magnetic factor, 284 Nuclear hyperfine interactions, 285 Nuclear internal field, 285 Nuclear magnetic dipole moment,

284 Nuclear magnetic resonance studies,

283f Nuclear magnetization, 284 Nucleated reversed domains, 492 Nucleation, 579 Nucleation centers, 462

Nucleation crossover diameter, 470 Nucleation deterioration, 479 Nucleation differential equations,

464 Nucleation field, 466, 468f, 472,

482,485,491 Nucleation field angle dependence,

475 Nucleation fields, 461f, 465, 496 Nucleation field temperature

changes, 475 Nucleation in inhomogeneous fields,

476,480 Nucleation in stray fields, 476 Nucleation mechanism, 495 Nucleation miniqlUm field, 474 Nucleation modes, 465 Nucleation parameters, 464 Nucleation surface charges, 469 Nucleation temperature -dependence,

475 Nucleation versus pinning, 490

Oblique magnetic field nucleation, 473

Oblique nucleation field, 474f Occultist, 21 Ockham, William, 19 Octahedral coordination, 98f Octahedral crystal-field operator,

104 Octahedral field splitting, 109 One-component systems, 175f Open magnetic circuit, 43 Operating load line, 44, 746 Operating point, magnet, 44,

620, 634 Operator equivalent methods, ll3f Optical micrographs of

Nd2FeI4B, 83 Optimal quenched ribbons, 568 Orb of virtue, 23f Orbital angular momentum, 47 Orbital angular momentum

operator, 154 Orbital moments, 151,320 Orbital notation, 110 Origin of the compass, 12 Origin of magnets, 15 Orthorhombic crystal-field

831

Page 41: K. B.3A978-94-011... · 2017-08-25 · Oscar Moze Istituto ISM del CNR Via E. Fermi 38 1-00044 Frascati Italy Patricia B. Oliete Terraz ICMA, University of Zaragoza Faculdad de Ciencias

832

parameters, 124 Overquenched ribbons, 83

Paramagnetic Curie law behavior, 398

Paramagnetic induction, 34 Paramagnetic moments, 31 Paramagnetism, 33 Parma high field coil, 403 Pauli neutron spin matrix, 501 Pauli paramagnetism, 541 Pauli principle, 142 Peregrinus, Petrus, 17f Peritectic, 179 Peritectic binary system, 182 Peritectic reaction, 181, I S6f Permanent magnet applications, 49,

5S5 Permanent magnet circuit, 644f Permanent magnet device, 617 Permanent magnet generator, 596,

663 Permanent magnet generators, 679 Permanent magnet machines, 679, 696 Permanent magnet machine types,

684, 701 Permanent magnet manufacturing,

553f Permanent magnet materials, 551,

553f Permanent magnet motor, 593, 596,

600 Permanent magnet motors, 679, 703f Permanent magnet optimization, 486 Permanent magnet phase diagrams,

171 Permanent magnet working points,

699 Permanent magnets, 618, 620, 757f,

777 Permanent magnetic materials, 49 Permeability, 34, 319, 638f, 650,

655f Permeability improvement, 2, 3 Permeability initial, 39 Permeability initial relative, 41 Permeability of a material, 33 Permeability of vacuum, 29f, 41 Permeability of vacuum, units, 30 Permeability units, 30

Permeance, 623f Permeance coefficient, 44f, 618,

620 Permeance curves, 648 Perpetual motion with magnets, 18 Phase coexistence, 172 Phase coordinate systems, 179 Phase current, 770, 775, 777f Phase diagram binary, 175 Phase diagram Co-Cu-Sm, 200f Phase diagram common tangent, 174 Phase diagram Co-Sm, 193f Phase diagram Fe-B, 195 Phase diagram Fe-Co-Cu, 197f Phase diagram Fe-Co-Sm, 202f Phase diagram Fe-Dy, 190 Phase diagram Fe-:\d, 191 Phase diagram Fe-:\d-Al, 21Sf Phase diagram Fe-:\d-B, 209f Phase diagram Fe-:\d-C, 217 Phase diagram Fe-:'\d-Dy-B, 22lf Phase diagram Fe-:\d-Tb-B, 221f Phase diagram F e-Sm, I Y2 Phase diagram for fomp, 279 Phase diagram Mn-AI, 560 Phase diagram l\d-B, 196 Phase diagram l'\d-Fe-B, 569 Phase diagram quaternary, 175 Phase diagram, R2T14B, 20Sf Phase diagram, R2T14C, 20Sf Phase diagram Sm-Co, 200f Phase diagram Sm-Co-Cu, 559 Phase diagram substitutional, 400 Phase diagram ternary, 175 Phase diagram tie line, 174 Phase diagram unary, 175 Phase in thermodynamics, 172 Phase lever rule, 181 Phase relations, 171 Phase rule, 173, 175, 185 Phase tie lines, 180 Phase transition, continuous, 392 Phase transition, first order, 392 Phase transition, second order, 392 Phasor diagram, 70Sf Phenomenology of spin-

reorientation, 262f Philososphy and magnetism, 16 Photo emission experiments, 142 Photoemission spin resolved, 148 Photoemission studies, 147 Pick up voltage, 456

Page 42: K. B.3A978-94-011... · 2017-08-25 · Oscar Moze Istituto ISM del CNR Via E. Fermi 38 1-00044 Frascati Italy Patricia B. Oliete Terraz ICMA, University of Zaragoza Faculdad de Ciencias

Pinned domain walls, 80 Pinning, 579 Pinning centers, 462 Pinning forces, 462 Pinning in SmCos, 462 Pinning in Sm2Cop , 462 Pinning versus nucleation, 490 Plastic flow, 82 Plato, 16 Point charge crystal-field, 161 Point charge model, 123 Point charge shielding, 166 Point group notation, 110 Point symmetry, 105 Pointing spoon, 13 Poissonian field, 652f Poisson's equation, 463f, 480, 650,

654 Polarized neutron studies, 124 Pole flux density, 718 Pole gap with linear taper, 747 Pole of magnet, 27 Pole strength, 36 Polymorphic solid transitions, 178 Poly thermal projections, 185 Powder diffraction patterns, 72 Powder metallurgy methods, 79 Power factor, 710, 712f, 716, 718,

722 Power factor angle, 668, 671 Power weight ratio, 700 Practical magnets, 69 Practical Nd2Fel4B magnets, 82 Pr2Co17, 63f Pr2CoI4B, 88 Pr2Col4B anisotropy, 273 Pr2Co l4B nmr studies, 347, 350 PriCoxFe1_.)14B, 88 Precipitation hardening, 558 Preferential site occupation, 50,

339 Preferential site substitution, 318 Preferential substitution in

l'\d2FeI4B, 298 Prehistory of magnetism, 7 Pr2Fel7 Curie temperature, 545 Pr2Fe17 magnetic properties, 547 Pr2FeI4B, 63f, 79, 365, 371, 384 Pr2Fel4B anisotropy field, 407, 455 Pr2Fel4B anisotropy singularity,

406 Pr2Fe23B3 Curie temperature, 564 Pr2Fel4B first order magnetization,

275 Pr2Fel4B high-field studies, 163 Pr2Fel4B magnetic structure, 289 Pr2Fel4B magnetization, 399 Pr2Fel4B magnets, 494 Pr17FeS3B30 magnets, 494 Pr2Fel4B spin-reorientation, 273 Pr2Fe23B3 structure, 564 Pr2Fel4B susceptibility, 399 Pr2FeI4C, 64 Pr2Fe17C Curie temperature, 545 Pr2Fel4C first order transition,

533 Pr2Fcl4C magnetic properties, 530 Pr2Fel4C structural properties, 530 PrlFeo_,Yin03)14B, 365f, 375, 383 PrlFeo_8Mno_2)14B, 383 PrlFe1_X'vlnx)14B, 365 Pr2Fel4-xMnxC lattice constants,

544 PrFe98Si32 Curie temperature, 564 PrFe98Si32 structure, 564 Principle of virtual work, 642 Principles of phase diagrams, 171 Prismatic phase diagrams, 183 Pro.4Ndl.sCol4B nmr, 350 Prototype machine, 741 (Pr2 _X YX)COI4B magnetic phases, 272 Prl.sYO_SCoI4B nmr, 350 Pseudo-dipole interaction, 320 Pseudo-ternary intermetallics, 261 f Pt-Co,587 Ptolomeus, 11 Pulsed field magnetometer, 403 Pulsed neutron sources, 505 PuNi3-type structure, 76, 240, 243

255

Quadrature axis synchronous reactance, 710f

Quadrupole coupling frequencies, 288

Quadrupole doublet, 364 Quadrupole interaction, 327, 361f Quadrupole moment, 160 Quadrupole shift, 367, 377 Quadrupole splitting, 358, 364,

833

Page 43: K. B.3A978-94-011... · 2017-08-25 · Oscar Moze Istituto ISM del CNR Via E. Fermi 38 1-00044 Frascati Italy Patricia B. Oliete Terraz ICMA, University of Zaragoza Faculdad de Ciencias

834

365,548 Quasibinary systems, 188 Quasicrystalline alloys, 574 Quasicrystalline powders, 245 Quaternary phase diagrams, 175,

221f Quench rate, 567 Quench rates for ribbons, 80

Racah operators, 520 Racah parameters, 95, 113 Radial-field brushless dc motor,

773 Radial flux density, 737 Radial wave functions, 106 Radio frequency field, 316 Railway traction motor, 752 Random site substitution, 318 Rapid quenching, 245, 573f, 579 Rapid quenching preparation, 227 Rapid solidification, 69f Rapid solidification techniques, 89 Rare-earth angular distribution,

159 Rare-earth anisotropy competition,

270 Rare-earth anisotropy contribution,

266 Rare-earth carbides, 527f Rare-earth charge density, 159 Rare-earth configuration '

fluctuation, 142 Rare-earth crystal-field, 114, 159,

264,439 Rare-earth electronic

configurations, 115 Rare-earth electronic structures,

133 Rare-earth electrostatic potential,

164 Rare-earth 4f bandwidths, 141 Rare-earth ground states, 115 Rare-earth impurities in yttrium,

162 Rare-earth intermetallics, 124 Rare-earth intermultiplets, 507 Rare-earth ionization energy, 115 Rare-earth iron intermetallics,

415f Rare-earth iron-rich ternaries, 65

Rare-earth J-multiplets, 499 Rare-earth magnetic anisotropy,

116,415f Rare-earth magnet loading, 698 Rare-earth magnets, 588 Rare-earth molecular field, 122,

125,264 Rare-earth Mossbauer

spectroscopy, 63 Rare-earth operator equivalents,

114 Rare-earth permanent

magnets, 585 Rare-earth single ion anisotropy,

159 Rare-earth single ion Hamiltonian,

126 Rare-earth spin-orbit interaction,

122 Rare-earth substitution in R2 Fe14B,

270 Rare-earth transition metal

compounds, 133 Rare-earth transition metal

exchange,450 Rare-earth wave functions, 97 RCo2, 59, 126, 500 RCos, 63,65, 120, 123, 126,587 R2Co17 , 2, 63, 65, 76, 120, 123 R-Co alloys, 587 RCos magnetic anisotropy, 280 RCos magnetic phases, 279 RCo3B2-type structure, 75 RCo12B,65 R2Co14B, 52f, 120f R2Co14B boron-II nmr, 311 R2Co14B hyperfine fields, 310 R2Co14B magnetic phases, 269 R2Co14B magnetic structures, 64 R2Co14B spin-reorientation, 270 R2Co14B transferred hyperfine

fields, 310 R2Co14C spin-reorientation, 270 RiCo,Fe)17, 587 R(CoFe)B magnet nmr studies, 315f Reaction scheme Fe-Co-Sm, 203f Reaction scheme Fe-Dy-B, 215 Reaction scheme Fe-Nd-B, 211 Rebellion against Aristotle, 19 Recoil-free absorption, 356 Recoil-free emission, 355f Recoil-free fraction, 356, 361, 380

Page 44: K. B.3A978-94-011... · 2017-08-25 · Oscar Moze Istituto ISM del CNR Via E. Fermi 38 1-00044 Frascati Italy Patricia B. Oliete Terraz ICMA, University of Zaragoza Faculdad de Ciencias

Recording media, 28 Recrystallization, 536 Relative energy products, 51 Relative permeability, 31, 33 Relative permeability units, 30 Relativistic Dirac-Fock

calculations, 520 Relativistic spin-orbit effects,

154 Relaxation nrnr time, 284 Relaxation resonance time, 470 Reluctance, 623f Reluctance factor, 618, 625 Reluctance magnetic circuit, 683 Reluctance torque, 681f, 710f Remalloy, 587 Remanence, 2, 44, 579, 582, 593 Remanent magnetic induction, 41 Reorientation of spin-transitions,

261f Research sources, 4 Resin bonded magnets, 245 Resin bonded permanent magnets,

579 Resistivity at spin-reorientation,

412 Resistivity at the Curie

temperature, 412 . Resonance relaxation time, 470 Resultant magnetization, 60 Reversed domains, 491 Reversed magnetic states, 478 R-Fe interactions, 61 RFe2 , 1 RFe2, 59, 126, 500 RFe2 Laves phases, 415 RFe2 magnetic anisotropy, 417 RFe2 magnetostriction, 416 RFe2 sound projection, 416 RFe2 transducers, 416 RFe3, 126 RFe12, 149 R2Fe17 , 54, 65, 383, 528 R6Fe23, 126 RFe3 Curie temperature, 237 R2Fe17 Curie temperature, 545 R2Fe17 crystal structure, 544 R2Fe17 interstitial carbon, 543 RFe3 intermetaliic compounds, 242 RFe3 magnetic anisotropy, 242 RFe3 magnetic properties, 242 R2Fe17 magnetic properties, 547

RFe3 magnetization, 243 RFe3 Mossbauer studies, 244 RFe4Als, 507 RFesA17,507 RFe~~, 507 RFe4B,65 R2Fe14B, 53, 63f, 120, 126, 133,

355,362,364, 369f, 387,416 R2Fe14B anisotropy field, 449f, 455 R2Fe14B boron local field, 307 R2Fe14B boron-IO nrnr, 306f R2Fe14B boron-II nrnr, 306f R2Fe14B boron transferred field,

309 R2Fe14B crystal-field parameters,

162 R2Fe14B crystal-fields, 431f R2Fe14B exchange coupling

constants, 536 R2Fe14B heat capacity, 393f R2Fe14B hydrogen up take, 403 R2Fe14B hyperfine fields, 305, 310 R2Fe14B iron-57 nrnr spectra, 300f R2Fe14B magnetic anisotropy, 431f R2Fe14B magnetic phases, 269 R2Fe14B magnetic structures, 64 R2 Fe14B Mossbauer studies, 432 R2Fe14B nrnr studies, 283f R2Fe14B single crystal studies, 432f R2Fe14B tetragonal structure, 500 R2Fe14B transferred hyperfine

fields, 310 R2Fe14BHx spin-reorientation, 275 R2Fe14C, 52f, 89, 383f R2Fe14C annealing temperatures,

528f R2Fe14C compensation temperature,

537 R2Fe14C Curie temperature, 535 R2Fe14C exchange coupling

constants, 536 R2Fe14C formation, 527f R2 Fe14C high field studies, 537 R2Fe14C hyperfine fields, 305 R2Fe14C iron-57 nrnr spectra, 300f R2Fe14C iron sublattice

anisotropy, 533 R2Fe14C magnetic phases, 269 R2Fe14C magnetic properties, 530 R2Fe14C magnetic structures, 64 R2Fe14C magneto-volume effect, 540 R2Fe14C mean field theory, 533

835

Page 45: K. B.3A978-94-011... · 2017-08-25 · Oscar Moze Istituto ISM del CNR Via E. Fermi 38 1-00044 Frascati Italy Patricia B. Oliete Terraz ICMA, University of Zaragoza Faculdad de Ciencias

836

R2Fel4C milled magnets, 534 R2Fel4C nmr studies, 283f R2Fel4C permanent magnets, 534 R2Fel4C recrystallization, 536 R2Fel4C sintered magnets, 534 R2Fel4C solid transformations, 528f R2Fe14C stability, 528f R2Fel4C structural properties, 530 R2Fel4C substitution effects, 536 R2Fel4C thermal expansion, 542 R2 Fe17C, 65 R2Fe17C saturation magnetization,

546 R2Fe17C structural properties, 543 R2Fe17C .. 51f, 527f R2Fel7CX crystal structure, 53f, 550 R2Fe17C3, 53 R2Fe 17C3 crystal structure, 544 R2FeI4.XCoxB magnetic phases, 272 RFc IOCr2, 55, 65 RFe lOCr2 magnet applications, 571 RFc lOCr2 spin-reorientations, 281 RFeI2.XCr .. 507 RFeI2.xM .. 55 RFcIOMo LS ' 228 RFeIO Mo2, 55, 65 RFe lO Mo2 magnet applications, 571 R2Fe17N3,4 RFe IOSi2, 55 RFc lOSi2 magnet applications, 571 R2FeIOSi2, 65 RFcI2.xSi .. 507 RFe1OT2,55 RlFe1.xTx)14B, 381 RFeI2.xTi .. 507 RFe12.xT .. 55 R(FeT)12' 386 RFe9Ti2, 65 RFeIOTi, 228 R(FellTi), 386 RFe lO•gTiL2, 65 RFe12Ti,55 RFellTi anisotropy fields, 238 RFcllTi Curie temperature, 237 RFellTi latticc parameters, 231 RFellTi magnet applications, 571 RFellTi magnetization direction,

237 RFellTi saturation magnetization,

234 RFcllTi spin-reorientations, 237,

280 RFellTistructure, 500 RFeIOTM2,76 RFeIOV2, 55, 64f, 228 RFeI2.XV .. 507 RFe lOV2 Curie temperature, 237 RFe lO V2 lattice parameters, 231 RFe lOV2 magnet applications, 571 RFe10V2 magnetization, 236 RFe lOV2 magnetization direction,

237 RFe lO V2 saturation magnetization,

234 RFe lOV2 spin-reorientation, 237,

281 RFe lO.SW1.2, 64 RFe12W,55 R(Fe,X)12 Curie temperature, 235 R(Fe,X)12 magnetic anisotropy, 235 R(FeI2.x\1X)' 385f Rhombohcdral crystal-field

parameters, 123 Ribbon maximum coercivity, 86 Ribbon quench ratcs, 80, 567 RIC J',;cwslettcr, 4 Rigid band model, 143 RKKY model, 124 RMn2, 59 RMn12,228 RMn.AIg excitations, 507 RMn.AI8 site occupancy, 514 R2 Mn17C .. 54 R(Mn,Co)12,228 R(Mn,Ni)12' 228 RNi" 59, 500 RNis, 500 RNi IOSi2, 508 RNilOSi2 site occupancy, 514 Rotating cxcitation fields, 687 Rotating sample magnetometer, 400 Rotation radii magnetization, 468 Rotor assessment, 703, 714, 716 Rotor flux density, 715 Rotor lamination, 707 Rotors, 27 Royal Navy, 20 R-R interactions, 61 R2Tl4B phase diagrams, 208f R2Tl4B spin-reorientation, 261f R2T14B transferred field constants,

312 R2T14BHx spin-reorientation, 274f

Page 46: K. B.3A978-94-011... · 2017-08-25 · Oscar Moze Istituto ISM del CNR Via E. Fermi 38 1-00044 Frascati Italy Patricia B. Oliete Terraz ICMA, University of Zaragoza Faculdad de Ciencias

R2TI4C phase diagrams, 208f R2TI4C spin-reorientation, 261f R-T exchange interaction, 267 RTM 12,76 R TMs-type structure, 76 R2TM17 type structure, 77 R2T14X,52f Runge-Kutta method, 673 Russell-Saunders states, 516 RZnI2,228

Saliency, 785f Saliency torque, 681f, 692, 694,

785f Saliency torque constant, 787 Saliency torque-displacement

characteristics, 785f Samarium-cobalt magnets, 618 Samarium cost, 70 Samarium dipole transition, 518 Samarium electronic configuration,

516 Samarium mUltiplet structure, 518 Samarium Russell-Saunders states,

516 Saturation magnetization, 69, 133,

451,617,637 Scalar relativistic calculations,

138 Scaling crystal-fields, 447 Scaling theory, 276 Scanning calorimetry, 394f, 560 Scanning electron micrographs, 80 Scientific method, 18, 20 Screening constants, 64 Screening parameters, 417 Second-order crystal-field

parameters, 65 Second-order crystal-fields, 130 Second-order Doppler shift, 364,

375 Second-order phase transitions, 392 Second-order Stevens factor, 63 Secular equation, 99, 107 s-electrons, 363 Self-consistent fields, 106 Self-consistent band structure,

136f Self-consistent charge density, 136 Self-demagnetizing effect, 632 Self-demagnetizing factor, 621

Self-demagnetizing field, 621, 623 Self-inductance, 768, 774 Sensors, 592 Servo-actuator system, 783 Servo systems, 612, 781 f Sex of magnets, 15 Shape anisotropy, 555 Shape magnet, 22 Shape magnetic anisotropy, 50 Sharp edge grains, 493 Short-range magnetic order, 316 SI and cgs-emu units, 30 SI-cgs-emu conversion, 30 SI units, 28,96, 130 Siderite, 363 Silicon steel, 27 Simulated nmr dispersion curves,

326 Simulated nmr spectra, 304 Simulation of nmr lineshape, 324 Single crystal free energy, 443f Single crystal Mossbauer spectra,

434f Single domain critical diameter, 472 Single domain particles, 462, 465,

472, 558, 567 Single domain theory, 566 Single-ion rare-earth Hamiltonian,

126 Single-phase bridge, 784 Single-phase motor, 758 Single-phase stepper motor, 694 Singular point detection method,

406f, 449f, 549 Singularity in anisotropy field,

406 Sintered anisotropic ferrite, 610f Sintered magnets, 478 Sintered Nd-Fe-B, 612 Sintered permanent magnets, 456 Sintered three phase magnets, 487f Sintered two phase magnets, 487 Sintering methods, 79 Sintering techniques, 81 Site assignments in nmr, 331 Site dependent magnetism, 333 Site occupancy, 509 Site preferential occupation,

55, 339 Site substitution preferential, 318 Site substitution random, 318 SI units in magnetism, 30

837

Page 47: K. B.3A978-94-011... · 2017-08-25 · Oscar Moze Istituto ISM del CNR Via E. Fermi 38 1-00044 Frascati Italy Patricia B. Oliete Terraz ICMA, University of Zaragoza Faculdad de Ciencias

838

Slater functions, 113 Slotless stator, 723, 733, 738,

741f Slotless toroidal windings, 738 Slotted stator, 723f, 734 Small magnetic particles, 461f SmCo, 586, 588, 590,592 SmCo based magnets, 70, 585, 599 SmCos, If, 28, 44f, 51, 69,

70, 75f, 126, 149, 159, 193, 245, 261f, 416,554,585

SmCos Bloch walls, 566 SmCos coercive field, 486 SmCos critical domain diameter,

472 SmCos-Cu rich, 462 SmCos energy coefficient, 44f SmCos magnet machines, 728 SmCos magnets, 449, 485, 558 SmCos multiplet mixing, 517 SmCos rotors, 714 Sm2Co" 193 Sm2Co 17 , 63f, 69f, 76f, 149,

159,416,554 Sm2Co17 coercive field, 486 Sm2Co1, magnets, 449, 485 Sm2Co17-type magnets, 462, 558 Sm3Co, 193 S~Co., 193 Sm2Co1.B, 64 Sm1Co1.B boron transferred field,

311 Sm2Co1.B boron-II nmr, 3II Sm1Co1.B magnetic structure, 289 Sm1Co l4B transferred field

constants, 312 Sm-Co-Cu isothermal phase Sm(Co,Fe,Cu,Hf), magnets,558 Sm(Co,Fe,Cu,Ti)7 magnets, 558 Sm(Co,Fe,Cu,Zr), magnet material,

553f Sm(Co,Fe,Cu,Zr)7 magnets, 558 Sm-Co-Fe reaction scheme, 203f Sm,(Co1.xMnx)17' 454 Sm-Co phase diagram, 193f, 200f,

557 Sm-F e-Co-Ti hysteresis loop, 249 SmFe1, 76, 192 SmFe1 multiplet mixing, 517 SmFe3, 192 SmFe3 lattice parameters, 244 SmFe3 Mossbauer studies, 244

SmFes,1 Sm2Fe17, 192, 585 Sm2Fel7 Curie temperature, 545 Sm2Fe1, magnetic properties, 547 Sm2Fe1.B, 63f Sm2Fel4B boron-II nmr, 308 Sm2Fel.B magnetic structure, 289 Sm2Fe l.B magnetization, 399 Sm2Fel4B susceptibility, 399 Sm2Fel4B transferred field

constants, 312 Sm2Fe23B3 Curie temperature, 564 Sm2Fe23B3 structure, 564 Sm2 Fe14C,64 Sm2Fel4C Curie temperature, 535 Sm2Fel4C magnetic properties, 530 Sm2Fel4C structural properties, Sm2Fe17C Curie temperature, 545 Sm2Fe17CO.6, 385 Sm2Fe17C .. 167 Sm2Fe17Cx anisotropy field, 549

530 SmFe9C02Ti,235 Sm2oFegoCoiOTiio demagnetization,

248 Sm2Fe17N3, 4, 28 Sm-Fe phase diagram, 192 SmFeiOT2,64 Sm2oFe70TIO diffraction patterns,

247 Sm- Fe-T magnets, 246 Sm-Fe-T preparation, 244 Sm(Fe,Ti)2' 250 Sm-Fe-Ti giant coercivity, 250 Sm-Fe-Ti system, 240 SmFellTi, 386 SmFellTi anisotropy field, 515 SmFell Ti critical field, 515 SmFellTi Curie point, 515 SmFellTi eigenstate mixing, 522 SmFellTi electronic excitation, 518 SmFellTi electronic transitions,

499 SmFellTi energy levels, 521 SmFellTi intermultiplet transitions,

515 SmF ell Ti J -state mixing, 517 SmFellTi lattice parameters, 232 SmFellTi magnetic properties, 232,

239 SmFellTi magnets, 449 SmFellTi neutron scattering, 516

Page 48: K. B.3A978-94-011... · 2017-08-25 · Oscar Moze Istituto ISM del CNR Via E. Fermi 38 1-00044 Frascati Italy Patricia B. Oliete Terraz ICMA, University of Zaragoza Faculdad de Ciencias

Sm7.7Fe76.9Tils.4 coercivity, 249 Sm20F e70 TilO, 241 Sm20F e70 TilO coercivity, 254 Sm2oFe66 Til2 coercivity, 254 Sm20 Fen Ti8 coercivity, 254 Sm2oFe7oTiIO demagnetization curve,

251 Sm2oFe7oTiIO diffraction pattern,

252 Sm2oFe7oTiIO hysteresis loop, 252f Sm26Fc641\o demagnetization curve,

251 Sm2Fc7Ti Curie tcmperature, 564 Sm2Fe7 Ti structure, 564 SmFclOV2 lattice parametcrs, 232 SmFclOV2 magnetic properties, 233 SmFcllV magnets, 449 Sm12Fen VIS hysteresis loop, 251 Smls Fe70 VIS hysteresis loop, 251 Sm2oFc70ZrlO demagnetization curve,

255 Sm2oFe70ZrlO diffraction patterns,

248 SmM~AI8 neutron scattering, 517 SmM~AI8 spin-orbit splitting, 518 (SrnZr)lCoFeCu)17,485 Soft amorphous magnetic alloys, 79 Soft iron compass, 14 Soft magnetic materials, 28, 568,

636,643 Soft magnetic precipitates, 462 Soft magnetic phases, 488 Soft-magnetic regions, 617 Solid-state reaction, 576 Solidus line, 180 Sources of research, 4 South pointing carriage, 8 South pointing spoon, 12f Spallation neutron source, 505 Species magnetica, 17 Speed current efficiency, 686 Speed-emf, 788 Speed ripple, 758 Spherical harmonics, 98f, 106, 110,

113 Spherical interelectronic repulsion,

96 Spherical magnet, 17 Spheroidal Nd2Fel4B grains, 80, 83 Spheroidal particles, 558 Spin-canting, 312

Spin-canting angle, 434 Spin-density functional

approximation, 135 Spin-echo decay, 316 Spin-echo decay amplitude, 288, 306 Spin-echo decay oscillations, 306 Spin-echo nrnr, 284, 373 Spin-echo nrnr of Nd2FeI4B, 293f Spinels, 361 Spin-flip processes, 143 Spin-fluctuation energy lowering,

139 Spin magnctic dipole moment, 36 Spin multiplicity, 97, 110 Spinodal decomposition, 554f Spin operators for rare-earth ions,

124 Spin-orbit excitations, 518 Spin-orbit Hamiltonian, 96f Spin-orbit interaction in rare-

earths, 122 Spin orientation diagrams,

419,425f Spin orientation in HoxTbl_xFe2,

422 Spin polarization, 135 Spin polarized Fermi lcvel, 144 Spin-reorientation, 127, 239, 330,

351,371,373,378f Spin-reorientation and iron

content, 340 Spin-reorientation critical

behavior, 276 Spin-reorientation critical

exponent, 276 Spin-reorientation, driving force,

432 Spin-reorientation field, 261f Spin-reorientation field induced,

277 Spin-reorientation heat capacity,

264 Spin-reorientation in films, 87 Spin-reorientation in Nd2FeI4B, 328 Spin-reorientation in RCos, 280 Spin-reorientation in RFeIOCr2, 281 Spin-reorientation in RFeIOV2, 280 Spin-reorientation in RFellTi, 280 Spin-reorientation in R2TI4BH ..

274f Spin-reorientation, macroscopic

839

Page 49: K. B.3A978-94-011... · 2017-08-25 · Oscar Moze Istituto ISM del CNR Via E. Fermi 38 1-00044 Frascati Italy Patricia B. Oliete Terraz ICMA, University of Zaragoza Faculdad de Ciencias

840

model,264 Spin-reorientation model, 262f Spin-reorientation resistivity, 412 Spin-reorientation temperature,

261f, 299, 335, 342, 397,400, 410,441

Spin-reorientation transitions, 88, 261f

Spin resolved photoemission, 148 Spin-state crossover, 112 Spin-state equilibrium, 112 Spontaneous critical rotation

angle, 474 Spontaneous magnetization, 59 Spontaneous magnetization energy,

463 Spontaneous volume expansion, 543 Spoon compass, 9 SrFeI2_xCrXOI9, 365 SrFe120 19, 70, 362, 364f Sro.6Fe20 J, 362 SrNiI2B6 , 562 Sd\i I2B6-type structure, 65 St. Amand, Jean, 19 Stability, thermal limit, 469 Star-connected dc motors, 767 Starter motors, 594 State hybridization of boron, 155 Static electric charge, 32 Stationary armature winding, 690 Stator current, 704 Stator excitation, 695 Stator rotor field variation, 727 Steady-state dynamic performance,

769 Steel magnets, 2 Stepper motor characteristics, 696 Stepper motor topologies, 694 Stepper motor torque, 694 Stepper motors, 612, 614, 637, 646~ 693, 758, 769, 777~ 784f

Stepping action, 787 Stevens constants, 239, 242 Stevens factors, 62f, 114f, 122 Stevens operator competition, 270 Stevens operator equivalents, 114,

122,417,440,509 Stevens operators, 129, 264, 266 Stoner criteria, 144 Stoner Curie temperature model, 147 Stoner itinerant electron model,

143 Stoner model for Te, 148 Stoner parameter, 143 Stoner Wohlfarth theory, 555 Strain gauge, 406, 409 Strain inhomogeneous, 424 Stray field elimination, 497 Stray field energy, 463f Stray field magnetization, 477 Stray field nucleation,476 Stray field sharp edge grains, 493 Stray field surface charges, 463, 476 Stray field volume charges, 463 Stray fields, 470, 480 Stray local field effects, 496 Strength of magnetic fields, 33 Strong crystal-field approximation,

97 Strongly coupled grains, 491 Structures of magnetic materials,

228 Stylus pickups, 589 Sublattice anisotropy, 64 Sublattice exchange coefficients,

520 Sublattice magnetization, 58, 515 Sublattice molecular fields, 520 Sublattice moments, 59 Sublattices in ferrimagnets, 57 Substitutional phase diagram, 400 Sumitomo Metals Co., If Superalloys, 573 Superparamagnetism, 462 Surface charges from stray fields,

476 Surface nucleation charges, 469 Susceptibility, initial, 319 Suspended magnetic needle, 10 Switches-relays, 592 Switching strategy, 692 Synchronous machine equivalent

circuit, 689 Synchronous machines, 687f Synchronous motors, 703f, 710 Synchronous reactance, 704, 708,

712,716,718 Synchronous speed, 688 Systeme International d'Unites, 28 System in thermodynamics, 172

Page 50: K. B.3A978-94-011... · 2017-08-25 · Oscar Moze Istituto ISM del CNR Via E. Fermi 38 1-00044 Frascati Italy Patricia B. Oliete Terraz ICMA, University of Zaragoza Faculdad de Ciencias

Ta8el2J 228 Tadpole compass, 13 Tales, 15 Tapered air gap, 747, 749f, 752f Tapered outer zone air gap, 748 Tb2C017, 63f Tb2C0148, 64 Tbo.30DYo.7oFel strain, 424 (TbDy)Fel magnetostriction, 418 (TbDyHo)Fe2 magnetostriction, 418 TbFe2,76 TbFe2 magnetic torque, 419 TbFe3 lattice parameters, 244 TbFe3 Mossbauer studies, 244 Tb2Fe17 Curie temperature, 545 TblFe17 magnetic properties, 547 TbFe4Alg, 507 Tb2Fe148, 63f Tb2Fe148 crystalcfields, 437 Tb2Fe148 magnetic anisotropy, 436f Tb2Fe148 magnetization, 432, 436 Tb2Fe148 Mossbauer studies, 432 Tb-Fe-8 ribbons, 89 Tbl Fe14C, 64 Tb2Fe14C Curie temperature, 535 Tb2Fe14C magnetic properties, 530 Tb2Fe14C magnetization, 532 Tb2Fe14C structural properties, 530 TblFe14C thermal expansion, 542 Tb2Fe17C Curie temperature, 545 TbFellTi,507 TbFellTi lattice parameters, 232 TbFellTi magnetic properties, 232,

239 TbFe10V2 lattice parameters, 232 TbFe lOV2 magnetic properties, 233 Tbo.2oHoo.sgDYo.22Fel strain, 424 (TbHo)Fe2 magnetostriction, 418 (TbHo )Fe2 magnetic torque, 420 Tbo.23Hoo.77Fe2 strain, 424 Tbo.2SHoo.7SFel strain, 424 TbM~AI8 crystal-field parameters,

514 TbM~AI8 energy levels, 513 TbM~AI8 neutron spectrum, 510f Temperature composition sections,

185 Temperature dependence of

anisotropy, 266 Temperature induced spin­

reorientation, 127 Terminal current, 772

Ternary compounds, 53, 63 Ternary iron carbides, 527f Ternary isobaric diagram; 185 Ternary phase diagrams, 49, 85,

175, 197f, 227 Ternary systems, 1, .183 Terrella, 22, 24 Tervariant equilibria, 175 Tesla, unit, 32 Tetragonal crystal anisotropy, 47 Tetragonal crystal-field

parameters, 124 Tetrahedral coordination

environment, III Tetrahedral crystal-field operator,

105 Tetrahedral field splitting, 109 Theoretical nucleation field, 485 Thermal ~gitation, 38 Thermal differential analysis, 394 Thermal expansion, 391, 406f Thermal expansion coefficient,

392,542 Thermal fluctuations, 469 Thermally demagnetized state, 492 Thermal properties, 391f Thermal stability limit, 469 Thermodynamic component, 172 Thermodynamic degree of freedom,

172 Thermodynamic equilibrium, 172 Thermodynamic phase, 172 Thermodynamic systems, 172 ThlFe148 boron transferred field,

309 Th2Fe148 boron-IO nmr, 290, 306 ThlFe148 boron-ll nmr, 290 ThlFe148 iron-57 nmr, 290, 302f Th2Fe148 magnetic structure, 289 Th2Fe148 simulated nmr spectrum,

304 Th2Fe148 transferred field

constants, 312 Thin films, 28 ThMn12, 52f, 386 ThMn12-type compounds,

occurence, 55 ThMn12-type structure, 55f,

65, 149, 228, 246, 499~ 507~ 571 ThMn12-type ternaries, 64 T~Mn23-type structure, 75, 149 Th2Ni17-type structure, 65,

841

Page 51: K. B.3A978-94-011... · 2017-08-25 · Oscar Moze Istituto ISM del CNR Via E. Fermi 38 1-00044 Frascati Italy Patricia B. Oliete Terraz ICMA, University of Zaragoza Faculdad de Ciencias

842

123, 149, 449, 527 Three-component systems, 175f 3d itinerant electrons, 133 3d metals cohesive energy, 139 3d-3d exchange interactions, 119 3d-4f anisotropy energy, 127 3d-4f interactions, 125 3d-4f intermetallics, 130, 504 3d" electronic configurations, 110 3dl valence shell configuration, 99f 3D magnetic phase diagram, 263 Three-phase brushless dc motors,

768,774 Three phase equilibrium, 181 Three-phase induction motor, 758 Three phase sintered magnets, 487f Three phase tie triangle, 185 Thulium-169,385 Th2Zn17-type structure, 65, 69, 76~ 123, 149,383,449,527,550

TiBel2,228 Ticonal XX magnet meterial, 557 Tides, 24 Tie line phase diagram, 174 Tie lines, 180 Tie triangle, 185 Time focused analyser, 509 Time of flight neutrons, 505 Tm-169 Mossbauer spectroscopy,

548 Tm2Co p ,63f TmFe, lattice parameters, 244 Tm2Fe17 Curie temperature, 545 Tm2Fel7 magnetic properties, 547 Tm2FeI4B, 63f, 79, 378 Tm2Fel4B easy axis system, 121 Tm2Fel4B heat capacity, 393f Tm2Fel4B high field studies, 163 Tm2Fel4B resistivity, 410 Tm2Fel4B thermal expansion, 409 Tm2Fel4B-type structure, 120 Tm2FeI4C, 64 Tm2Fel4C Curie temperature, 535 Tm2Fel4C magnetic properties, 530 Tm2Fe14C spin-reorientation, 530 Tm2Fel4C structural properties, 530 Tm2Fe17C Curie temperature, 545 Tm2Fe17C .. 385 Tm2Fel7Cx Mossbauer spectroscopy,

548 Tm2Fe17Co.4, 385 TmFell Ti lattice parameters, 232

TmFelOV2 lattice parameters, 232 TmFe1oV2 magnetic properties, 233 Toroidal magnet, 43 Toroidal winding, 723, 738, 741 Torque, 35,679, 722, 726f, 731f,

734f,740f Torque angle, 727, 729, 732, 734f Torque angle characteristics, 683f Torque development, 681 Torque-displacement characteristics,

648 Torque evaluation, 734 Torque load characteristics, 683f Torque magnetometry, 419 Torque maximum, 689 Torque mean, 736 Torque production, 681f Torque pulsations, 759, 777 Torque ripple, 729, 757f, 778 Torque saliency, 692 Torque-speed characteristic, 689,

757f,774 Torque-speed curves, 776 Torque variation, 731 Transducers, 592 Transferred field, 380 Transferred hyperfine field, 286, 303,

317 Transferred hyperfine field at boron,

297 Transformation amorphous-

crystalline, 561 Transformer cores, 27 Transformers, 592 Transient diffusion equation, 618 Transition-metal wave functions, 97 Transition probabilities, 522 Transition-type reaction, 186f Transmission electron micrograph,

84 Transmission electron microscopy,

80 Transport properties, 391f Transverse relaxation rates, 291 Transverse relaxation time, 284 Triac-controlled motor, 758 Two-component systems, 17 Sf Two domain particle, 470 Two-electron Slater functions, 113 Two phase equilibria, 179, 185 Two phase permanent magnets, 489 Two phase sintered magnets, 487f

Page 52: K. B.3A978-94-011... · 2017-08-25 · Oscar Moze Istituto ISM del CNR Via E. Fermi 38 1-00044 Frascati Italy Patricia B. Oliete Terraz ICMA, University of Zaragoza Faculdad de Ciencias

Two-phase stepper motor, 778 Two position magnetometer, 400 Typical magnetic induction

values, 33

Ubitron, 600 Ultrafine composites, 245 Unary phase diagram, 175 Unary systems, 177 Undercritical magnetization, 477 Uniaxial hot pressing, 82 Uniaxial hysteresis loops, 466f Uniform magnet layer machine, 751 U nit of permeance, 624, 626 Unit of tesla, 32 Unit of weber, 32 Units in magnetism, 27 Units in magnetism table, 30 Units of anisotropy, 450 Units of anisotropy energy, 130 Units, Sf system, 28 Univariant equilibria, 175 Univariant liquidus line, 180

Vacuum permeability, 29f, 41 Vacuum permeability units, 30 Valence electron charge density, 160 Valence electronic configuration, 99f Valence electron shielding, 166 Valence fluctuations, 120 VBe12,228 Versorium electroscope, 22 Vibrating sample magnetometer,

398f Vicalloy, 587 Virtual work technique, 648 Virtue, magnetic, 19 Voltage pick-up, 456 Volume charges, 476 Volume dependence of

magnetization, 146 Volume dependence of moments,

150 V olume expansion on moment

formation, 146 Volume magnetic susceptibility units,

30f Volume magnetostriction, 542 Volume spontaneous expansion, 543

Volume susceptibility definition, 37 VZr, 576

Wall width, 482 Wave function amplitude, 134 WBe12,228 Weak crystal-field, 113 Weak crystal-field approximation, 97 Weber, unit, 32 Western culture and magnetism, 15 Wigner-Eckart theorm, 113 Wigner-Seitz cell, 166, 371 Wigner-Seitz polyhedra, 78 Wigner-Seitz radius, 141 Wigner-Seitz sphere, 136, 150, 160,

164 Working points, magnets, 622f, 699 World magnet market, 588 Wyckoff notation, 72

X-ray diffraction, 86, 576, 577 X-ray diffraction patterns, 86

Y-Co binary compounds, 149 Y-Co strong ferromagnets, 152 YCo2,149f YCo" 149f YCo) moment, 151 YCo,,149f YCo, anisortopy field, 452 YCo, magnetic moment, 451f YCo, orbital moment, 155 Y 2Co l1 , 149f Y2COI4B, 64, 138 Y2C014B anisotropy, 273 Y2COl4B band structure, 155 Y2COl4B boron transferred field, 311 Y2Co14B boron-ll nrnr, 311 Y2COl4B hyperfine coupling, 333 Y2C014B local moments, 156f Y2COl4B magnetic structure, 289 Y2C014B nrnr studies, 347 Y2COl4B total moments, 156f Y2COl4B transferred field constants, 312 YI.8Ero.2FeI4B free energy, 441f YI.8ErO•2Fe1.B magnetization, 438 YI.8Ero.2FeI4B spin-reorientation, 442 Y2.xErxFe14B crystal-fields, 431 Y2_xErxFe14B single crystals, 437

843

Page 53: K. B.3A978-94-011... · 2017-08-25 · Oscar Moze Istituto ISM del CNR Via E. Fermi 38 1-00044 Frascati Italy Patricia B. Oliete Terraz ICMA, University of Zaragoza Faculdad de Ciencias

844

Y2_xErxFe14B spin-reorientation, 437 Y2_xErxFe14B torque measurements,

431f Y-Fe binary compounds, 149 YFe2, 124, 149f YFe2 calculated Fermi contact, 154 YFe3, 149f YFe3 calculated Fermi contact, 154 YFe3 lattice parameters, 244 YFe3 Mossbauer studies, 244 YFeI2, 150 YFCl2 hypothetical compound, 149 Y2Fe17 , 124, 149f, 153 Y2Fel7 calculated Fermi contact, 154 Y2Fcp magnctic propertics, 547 Y6Fc23, 149f, 153 Y6Fe23 atomic volume, 152 Y6Fc23 calculatcd Fcrmi contact, 154 Y6Fc23 dcnsity of statcs, 152 YFc12B6 magnctization, 565 Y2FcI4B, 64, 120, 136, 138,355,371,

373f, 383 Y2Fel4B anisotropy, 270, 432 Y2Fcl4B anisotropy field, 407, 455 Y2Fel4B anisotropy singularity, 406 Y2Fcl4B band structure, 155 Y2Fel4B boron transferred field, 309 Y2Fcl4B boron-IO nrnr, 306 Y2Fcl4B crystal-fic1d parameters, 439 Y2Fel4B density of states, 156 Y2Fel4B Fermi levc1, 156 Y2 Fel4B heat capacity, 393f Y2Fel4B hyperfine ficlds, 158 Y2Fel4B iron-57 resonance, 303 Y2Fel4B local moments, 156f Y2Fel4B magnetic structure, 289 Y2Fel4B single crystal studies, 120 Y2Fcl4B spin-rcoricntation, 273 Y,Fel4B thermal expansion, 408f Y~FeI4B total momcnts, 156f Y2Fel4B transferrcd fic1d

constants, 312 Y3Fc62Bl4 Curic tcmperature, 564 Y3Fc62Bl4 magnetization, 565 Y3Fe62Bl4 structurc, 564f Y,(Fel_xCoX)14B, 381

YFclOCr2, 228f Y(FeM)12' 386 Y,(Fel_xMnx)14B, 381, 383 Y(Fe,Mo)12' 228 YFelO Mo2,228f YFe IOSi2, 228f Y,(Fel_xTx)14B, 381 YFelOTi2, 228f YFelO.gTil.2, 230 YFell Ti lattice parametcrs, 232 YFcllTi magnctic properties, 232, 239 YFcllTi neutron diffraction, 509 YFellTi sublatticc magnetization, 515 YFe12_Ji .. 230 YFeg.SV3.5,233 YFe lOV2, 61, 228f YFe lOV2 lattice parameters, 232 YFelOV2 magnetic properties, 233 YFe lO V2 neutron diffraction, 514 YFeI2_XV" 230 Y(Fe,W)12' 228 YFe IOW2,228f YMnI2,228 YMn.AIg,509 Y(Mn,Fe)12' 228 YT" 149f YT~, 149f YTs, 149 YTI2, 149 Y6T23, 149f YTi(Fel.xCox)11 moments, 234 Yb2Fe17 Curie temperature, 545 Yb2FeI4B, 64, 380 Yb2Fel4B high field studies, 163 Yb2FeI4C, 64 Yb2Fc17C Curie tcmperature, 545 Ytterbium-174, 380

Zeeman interaction, 316, 358, 521 Zceman magneto static energy, 127 Zeeman pattern, 362 Zeeman splitting, 417 Zero field nrnr, 317 Zones of anisotropy, 268