13
Justin Blumenstiel (1) Fiona He (2) Casey M. Bergman (2) (1) Dept. of Ecology & Evolutionary Biology, University of Kansas (2) Faculty of Life Sciences, University of Manchester An age-of-allele test of neutrality for transposable element insertions

Justin Blumenstiel (1) Fiona He (2) Casey M. …bergmanlab.genetics.uga.edu/wp-content/uploads/2010/02/...Justin Blumenstiel (1) Fiona He (2) Casey M. Bergman (2) (1) Dept. of Ecology

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Justin Blumenstiel (1) Fiona He (2) Casey M. …bergmanlab.genetics.uga.edu/wp-content/uploads/2010/02/...Justin Blumenstiel (1) Fiona He (2) Casey M. Bergman (2) (1) Dept. of Ecology

Justin Blumenstiel (1)Fiona He (2)

Casey M. Bergman (2)

(1) Dept. of Ecology & Evolutionary Biology, University of Kansas(2) Faculty of Life Sciences, University of Manchester

An age-of-allele test of neutrality for transposable element insertions

Page 2: Justin Blumenstiel (1) Fiona He (2) Casey M. …bergmanlab.genetics.uga.edu/wp-content/uploads/2010/02/...Justin Blumenstiel (1) Fiona He (2) Casey M. Bergman (2) (1) Dept. of Ecology

A brief introduction to models of TE evolution

• Selfish DNA sequences, intra-genomic parasites

• Transposition rates >> excision rates

• Equilibrium maintained by transposition-selection balance

• Mechanism of negative selection is debated

• TE insertions at low frequency because of negative selection

• Recent genomic evidence casts doubt on the assumption of equilibrium and inference of negative selection

Page 3: Justin Blumenstiel (1) Fiona He (2) Casey M. …bergmanlab.genetics.uga.edu/wp-content/uploads/2010/02/...Justin Blumenstiel (1) Fiona He (2) Casey M. Bergman (2) (1) Dept. of Ecology

Petrov & Hartl (1998) Mol. Biol. Evol. 15:293-302

Estimating the age of ‘pseudogene-like’ retrotransposon insertion alleles

Page 4: Justin Blumenstiel (1) Fiona He (2) Casey M. …bergmanlab.genetics.uga.edu/wp-content/uploads/2010/02/...Justin Blumenstiel (1) Fiona He (2) Casey M. Bergman (2) (1) Dept. of Ecology

D. mel - D. sim speciation

Bergman & Bensasson (2007) PNAS 104:11340-5

a_in

vader2

_6

b_m

icro

pia

_4

c_T

abor_

3

d_17.6

_11

e_S

talk

er_

4

f_ro

ver_

3

g_flea_16

h_copia

_28

i_m

dg3_10

j_ro

o_86

k_T

ranspac_4

l_opus_16

m_blo

od_22

n_412_24

o_B

urd

ock_13

p_div

er_

9

q_T

irant_

20

r_jo

ckey2_7

s_H

ele

na_7

t_C

r1a_36

u_baggin

s_6

v_G

4_10

w_D

oc3_7

x_G

5_8

y_B

S_15

z_Juan_9

zz_D

oc_53

0.00

0.02

0.04

0.06

0.08

0.10

0.12D

iverg

ence (

sub/s

ite)

0

1.80

3.60

5.41

7.21

9.01

10.81

Age (

Mya)

Retrotransposon demographics in D. melanogaster

Page 5: Justin Blumenstiel (1) Fiona He (2) Casey M. …bergmanlab.genetics.uga.edu/wp-content/uploads/2010/02/...Justin Blumenstiel (1) Fiona He (2) Casey M. Bergman (2) (1) Dept. of Ecology

Bartolome et al. (2009) Genome Biology 10:R22

Horizontal transfer of D. melanogaster TE families

silent site divergence

Page 6: Justin Blumenstiel (1) Fiona He (2) Casey M. …bergmanlab.genetics.uga.edu/wp-content/uploads/2010/02/...Justin Blumenstiel (1) Fiona He (2) Casey M. Bergman (2) (1) Dept. of Ecology

Project aims

• Develop a non-equilibrium model of neutral TE evolution that relaxes the assumption of a constant TE insertion rate.

• Obtain allele frequency data for a large sample of TEs in ancestral and derived populations of D. melanogaster.

• Test whether observed TE allele frequencies are consistent with ages of TE insertion estimated from genomic data to infer forces controlling TE evolution.

Page 7: Justin Blumenstiel (1) Fiona He (2) Casey M. …bergmanlab.genetics.uga.edu/wp-content/uploads/2010/02/...Justin Blumenstiel (1) Fiona He (2) Casey M. Bergman (2) (1) Dept. of Ecology

An age-of-allele model for TE insertions

• Question: what is the probability that an allele of age t is present in i copies in a sample of n chromosomes?

• Calculate probability of i descendants from a single ancestor given j ancestors (Feller 1957)

• Calculate probability of j ancestors at time t under standard neutral model (Tavare 1984)

• Calculate probability of insertion at time t given s substitutions in a fragment of length l under Poisson process (Bayes 1763)

Page 8: Justin Blumenstiel (1) Fiona He (2) Casey M. …bergmanlab.genetics.uga.edu/wp-content/uploads/2010/02/...Justin Blumenstiel (1) Fiona He (2) Casey M. Bergman (2) (1) Dept. of Ecology

Allele frequency data for TE insertions

• 190 loci (90 LTR and 100 non-LTR)

• 2 PCR per loci per strain (TE+flank / L+R flanking regions)

• 12 strains from 2 populations - Zimbabwe (from Stephan Lab) & North Carolina (from Mackay Lab)

• Insertion in genomic sequence is included as 13th allele to account for ascertainment bias

• Individual strain allele frequency data consistent with pooled strain allele frequency data from Gonzalez et al. (2008)

Page 9: Justin Blumenstiel (1) Fiona He (2) Casey M. …bergmanlab.genetics.uga.edu/wp-content/uploads/2010/02/...Justin Blumenstiel (1) Fiona He (2) Casey M. Bergman (2) (1) Dept. of Ecology

lower frequencythan expected

higher frequencythan expected

Fit of expected allele frequency under neutral model to observed frequency in North Carolina

0 50 100 150

-50

510

rank difference

observed-expected

Page 10: Justin Blumenstiel (1) Fiona He (2) Casey M. …bergmanlab.genetics.uga.edu/wp-content/uploads/2010/02/...Justin Blumenstiel (1) Fiona He (2) Casey M. Bergman (2) (1) Dept. of Ecology

Expected allele frequency fits observed allele frequency over a wide range of ages

-8 -7 -6 -5 -4 -3

-50

510

log(subs/site)

observed-expected

Page 11: Justin Blumenstiel (1) Fiona He (2) Casey M. …bergmanlab.genetics.uga.edu/wp-content/uploads/2010/02/...Justin Blumenstiel (1) Fiona He (2) Casey M. Bergman (2) (1) Dept. of Ecology

Preliminary observations

• Majority of TE insertions in North Carolina are at or close to expected frequency given age since insertion under neutrality

• Some loci deviate strongly from predicted frequency and may reflect loci under positive and negative selection

• Model accurately predicts observed allele frequency over wide range of insertion ages

• Model parameterized with current estimate of African population size leads to poor predictions but yields better fit with ancestral population size

Page 12: Justin Blumenstiel (1) Fiona He (2) Casey M. …bergmanlab.genetics.uga.edu/wp-content/uploads/2010/02/...Justin Blumenstiel (1) Fiona He (2) Casey M. Bergman (2) (1) Dept. of Ecology

Ongoing and Future Work

• Use model to generate maximum likelihood estimate of Ne under assumption that insertion alleles are neutral

• Analysis of the fit of model to data according to:

- TE class

- TE family

- X vs. autosome

- recombination

• Resolution of best summary statistic(s) to assess global fit of the model to the data

Page 13: Justin Blumenstiel (1) Fiona He (2) Casey M. …bergmanlab.genetics.uga.edu/wp-content/uploads/2010/02/...Justin Blumenstiel (1) Fiona He (2) Casey M. Bergman (2) (1) Dept. of Ecology

Justin Blumenstiel Fiona He

Nicolas SvetecWolfgang Stephan

Acknowledgements