25
IAM-DT-3: SS 2005 Prof. Dr.- Ing. P. J. Mauk Universität Duisburg-Essen Institut für Angewandte Materialtechnik LEC-DT3-Journal_Bearings.doc Seite 1 von 25 Journal bearings/Sliding bearings Operating conditions: Advantages: - Vibration damping, impact damping, noise damping - not sensitive for vibrations, low operating noise level - dust tight (if lubricated by grease) - simple design; separable into two parts, easy to handle - small total required space, adjustable to different design demands and conditions - for big shaft diameters cheaper than rolling bearings - with good lubrication very high rotational speed possible - with good and appropriate lubrication nearly free of wear Disadvantages: - without sufficient lubrication very quickly failure of bearing - in certain cases expensive and complicated lubrication system required - high consumption of lubricant - run-in time necessary - surface quality of shaft surface very important Friction conditions in sliding bearings: (Slide 01) : Friction conditions between a moving and non-moving surface

Journal bearings/Sliding bearings - uni-due.de SS 2005 Prof. Dr.- Ing. P. J. Mauk Universität Duisburg-Essen Institut für Angewandte Materialtechnik LEC-DT3-Journal_Bearings.doc

  • Upload
    vudung

  • View
    219

  • Download
    4

Embed Size (px)

Citation preview

Page 1: Journal bearings/Sliding bearings - uni-due.de SS 2005 Prof. Dr.- Ing. P. J. Mauk Universität Duisburg-Essen Institut für Angewandte Materialtechnik LEC-DT3-Journal_Bearings.doc

IAM-DT-3: SS 2005 Prof. Dr.- Ing. P. J. Mauk Universität Duisburg-Essen Institut für Angewandte Materialtechnik

LEC-DT3-Journal_Bearings.doc Seite 1 von 25

Journal bearings/Sliding bearings

Operating conditions: Advantages:

- Vibration damping, impact damping, noise damping - not sensitive for vibrations, low operating noise level - dust tight (if lubricated by grease) - simple design; separable into two parts, easy to handle - small total required space, adjustable to different design demands and

conditions - for big shaft diameters cheaper than rolling bearings - with good lubrication very high rotational speed possible - with good and appropriate lubrication nearly free of wear

Disadvantages:

- without sufficient lubrication very quickly failure of bearing - in certain cases expensive and complicated lubrication system required - high consumption of lubricant - run-in time necessary - surface quality of shaft surface very important

Friction conditions in sliding bearings:

(Slide 01) : Friction conditions between a moving and non-moving surface

Page 2: Journal bearings/Sliding bearings - uni-due.de SS 2005 Prof. Dr.- Ing. P. J. Mauk Universität Duisburg-Essen Institut für Angewandte Materialtechnik LEC-DT3-Journal_Bearings.doc

IAM-DT-3: SS 2005 Prof. Dr.- Ing. P. J. Mauk Universität Duisburg-Essen Institut für Angewandte Materialtechnik

LEC-DT3-Journal_Bearings.doc Seite 2 von 25

Case a): hydrodynamic lubrication (Flüssigkeitsreibung)

- complete separation of both surfaces by a lubricant film, the bearing pressure is entirely supported by the fluid pressure in the film generated by the relative motion of both surfaces

- film thickness: 0.008 mm - 0.020 mm - typical friction coefficients: µ = 0.002 - 0.010 (Optimum condition: desired situation)

Case b): mixed-film lubrication (Mischreibung)

- surface roughness peaks get in contact and their is partial hydrodynamic support under certain proper conditions the surface wear can be mild

- coefficients of friction : µ = 0.004 - 0.10 Case c): boundary lubrication (Trockenreibung)

- surfaces are in contact continuously by and extensively, the lubricant is continuously “smeared” over the surfaces and provides a continuously renewed absorbed surface film that reduces friction and wear

- typical coefficients of friction: µ = 0,05 - 0,20

Slide 02): Situation of a sliding bearing:

- a fixed bearing enclosed the rotating shaft - rotating journal (shaft) and sleeve are separated by a lubricant - shaft and sleeve has a eccentricity - the gap continuously narrow - the lubricant is drawn in to this gap in the direction to the minimum thickness - the lubricant is sheared, there is a velocity gradient in the film

Page 3: Journal bearings/Sliding bearings - uni-due.de SS 2005 Prof. Dr.- Ing. P. J. Mauk Universität Duisburg-Essen Institut für Angewandte Materialtechnik LEC-DT3-Journal_Bearings.doc

IAM-DT-3: SS 2005 Prof. Dr.- Ing. P. J. Mauk Universität Duisburg-Essen Institut für Angewandte Materialtechnik

LEC-DT3-Journal_Bearings.doc Seite 3 von 25

-shear stresses in the lubricant are Proportional to the velocity gradient

~dv v

dy hτ µ= ⋅

h: thickness of lubricant film v: rotational speed of shaft µ: proportional factor→ dynamic viscosity ( acc. to DIN 1342 and 51550) Measured by falling sphere viscometer (Kugelfallviskosimeter), a ball falls inside

an oil filled tube:

vh

τ µ= ⋅ 2

1Ns

Pa sm

η µ= = ⋅⎡ ⎤ =⎢ ⎥⎣ ⎦

2 2 .

N Ns m

S mmm mm= ⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

A derivate unit is often used

' 'µ

η µρ

= = kinematic viscosity 2m

S

⎡ ⎤⎢ ⎥⎣ ⎦

Page 4: Journal bearings/Sliding bearings - uni-due.de SS 2005 Prof. Dr.- Ing. P. J. Mauk Universität Duisburg-Essen Institut für Angewandte Materialtechnik LEC-DT3-Journal_Bearings.doc

IAM-DT-3: SS 2005 Prof. Dr.- Ing. P. J. Mauk Universität Duisburg-Essen Institut für Angewandte Materialtechnik

LEC-DT3-Journal_Bearings.doc Seite 4 von 25

(Slide 03): Viscosity and density of oils and lubricants depending on temperature

- SAE 70: oil type (Society of Automobile Engineers) Old dimensions for viscosity: 1 stokes = 1 St = 1 cm2/s → Kinematic viscosity 1 Centistokes= 1 cSt = 1 mm2/s =1 Z

Page 5: Journal bearings/Sliding bearings - uni-due.de SS 2005 Prof. Dr.- Ing. P. J. Mauk Universität Duisburg-Essen Institut für Angewandte Materialtechnik LEC-DT3-Journal_Bearings.doc

IAM-DT-3: SS 2005 Prof. Dr.- Ing. P. J. Mauk Universität Duisburg-Essen Institut für Angewandte Materialtechnik

LEC-DT3-Journal_Bearings.doc Seite 5 von 25

- High viscosity : Higher forces can be taken at low speeds with high loads but high friction values - Low viscosity : Smaller loads can be taken but higher speeds are possible with less internal friction

Density and specific heat of oil is also temperature-depended: (acc. to VDI-2204)

( )( )51 65 10ρ ρ −− ⋅= ⋅ −t to ot t

tρ : Density at temperature t toρ : Density at temperature t0 = 15° C ; t = actual temperature 3856 2.345 4.605p oC tρ= − ⋅ + ⋅ (ρ0 > 896 kg/m3) 2910 1.290 4.605p oC tρ= − ⋅ + ⋅ (ρ0 ≤ 896 kg/m3)

(Slide 04): Geometry and pressure distribution for a journal bearing

Page 6: Journal bearings/Sliding bearings - uni-due.de SS 2005 Prof. Dr.- Ing. P. J. Mauk Universität Duisburg-Essen Institut für Angewandte Materialtechnik LEC-DT3-Journal_Bearings.doc

IAM-DT-3: SS 2005 Prof. Dr.- Ing. P. J. Mauk Universität Duisburg-Essen Institut für Angewandte Materialtechnik

LEC-DT3-Journal_Bearings.doc Seite 6 von 25

Geometrical definitions of bearings

- length of bearing : l or (b) - sleeve diameter of bearing: d1, d1 ≈ d2 ≈ d - shaft diameter: d2 (d) - clearance S = d1-d2 - related clearance: ψ = S/d = (d1-d2)/d ≈ (d1-d2)/d2 - minimum film thickness of lubricant film:

h0 = hmin = 2 2S dδ ψ δ⋅ = ⋅ ⋅

δ = related thickness of lubricant film

δψ

= =⋅

0 0/ 2

2dS

h h

- eccentricity of bearing:

e = S/2 –h0 = ψ ε⋅ ⋅2d

- related eccentricity

δε −= =/ 2

1S

e

- angular speed of bearing

2

60 sec

n radπω ⎡ ⎤= ⎢ ⎥⎣ ⎦ n: rpm ≡ revolutions per minute

- sliding speed of bearing n=π •d • n’ n’: operating rpm of bearing [ ]1/ s - specific pressure in the bearing

PL = P = iF

b d F: bearing force; b: width of bearing; d: diameter of bearing

Page 7: Journal bearings/Sliding bearings - uni-due.de SS 2005 Prof. Dr.- Ing. P. J. Mauk Universität Duisburg-Essen Institut für Angewandte Materialtechnik LEC-DT3-Journal_Bearings.doc

IAM-DT-3: SS 2005 Prof. Dr.- Ing. P. J. Mauk Universität Duisburg-Essen Institut für Angewandte Materialtechnik

LEC-DT3-Journal_Bearings.doc Seite 7 von 25

(Slide 05): Design data for journal bearings

Page 8: Journal bearings/Sliding bearings - uni-due.de SS 2005 Prof. Dr.- Ing. P. J. Mauk Universität Duisburg-Essen Institut für Angewandte Materialtechnik LEC-DT3-Journal_Bearings.doc

IAM-DT-3: SS 2005 Prof. Dr.- Ing. P. J. Mauk Universität Duisburg-Essen Institut für Angewandte Materialtechnik

LEC-DT3-Journal_Bearings.doc Seite 8 von 25

Design data for journal bearings:

- tabulated data for sliding bearings for different conditions in engineering - determining conditions for bearings are:

• Max. design pressure P = PL in MPa • diameter clearance ratio ( related clearance)

ψ =Cd

• bearing ratio:

ld

or β=bd

Some simple bearings: Bearing material grease lubrication Lubrication by hand N/mm2 dropped oil Sliding speed u (m/s) pressure PL u PL Cast iron 1 0.4 3 0.8 Bronze, Cu – alloy 2 0.6 2 1.2 Al – alloy 2 0.3 2 0.4 Pb – Sn – alloy 3 0.1 3 0.3 Sinter material 1 1 3 1.8 (oil filled)

Page 9: Journal bearings/Sliding bearings - uni-due.de SS 2005 Prof. Dr.- Ing. P. J. Mauk Universität Duisburg-Essen Institut für Angewandte Materialtechnik LEC-DT3-Journal_Bearings.doc

IAM-DT-3: SS 2005 Prof. Dr.- Ing. P. J. Mauk Universität Duisburg-Essen Institut für Angewandte Materialtechnik

LEC-DT3-Journal_Bearings.doc Seite 9 von 25

(Slide 06): Data about bearing materials

(Babbitt metal: Lagerweissmetall: Zinnlager)

Page 10: Journal bearings/Sliding bearings - uni-due.de SS 2005 Prof. Dr.- Ing. P. J. Mauk Universität Duisburg-Essen Institut für Angewandte Materialtechnik LEC-DT3-Journal_Bearings.doc

IAM-DT-3: SS 2005 Prof. Dr.- Ing. P. J. Mauk Universität Duisburg-Essen Institut für Angewandte Materialtechnik

LEC-DT3-Journal_Bearings.doc Seite 10 von 25

(Slide 07): Demands on bearing materials

• fatigue strength in operation • good sliding properties

• seizure resistance (Notlaufeigenschaft)

• corrosion resistance

• embedability: hard partials are embedded in the soft outer layer • compatibility: the bearing sleeve fits itself to rotating journal during run in

time

Page 11: Journal bearings/Sliding bearings - uni-due.de SS 2005 Prof. Dr.- Ing. P. J. Mauk Universität Duisburg-Essen Institut für Angewandte Materialtechnik LEC-DT3-Journal_Bearings.doc

IAM-DT-3: SS 2005 Prof. Dr.- Ing. P. J. Mauk Universität Duisburg-Essen Institut für Angewandte Materialtechnik

LEC-DT3-Journal_Bearings.doc Seite 11 von 25

(Slide 08): Bearing geometries:

a) full bearing 360° bearing b) partial bearing 180° bearing

Page 12: Journal bearings/Sliding bearings - uni-due.de SS 2005 Prof. Dr.- Ing. P. J. Mauk Universität Duisburg-Essen Institut für Angewandte Materialtechnik LEC-DT3-Journal_Bearings.doc

IAM-DT-3: SS 2005 Prof. Dr.- Ing. P. J. Mauk Universität Duisburg-Essen Institut für Angewandte Materialtechnik

LEC-DT3-Journal_Bearings.doc Seite 12 von 25

Sliding bearings / Oil film bearings:

Specific load for a sliding bearing: (mean)

P = PB = F

d b⋅ F: Bearing force (Lagerkraft)

b: Bearing width (Lagerbreite) d: bearing diameter (Lagerdurchmesser)

P = 2

N

mm

⎡ ⎤⎢ ⎥⎣ ⎦

mean pressure

The journal rotates in the bearing with the sliding speed u :

u= d • π • n m

s⎡ ⎤⎢ ⎥⎣ ⎦

n’: journal rps [ ]1/ s n’=nM/60 , nM=rpm 1

min⎡ ⎤⎢ ⎥⎣ ⎦

Angular speed of journal (Lagerzapfen)

ω = 2 •π • n = 12

60

ns

π −• • ⎡ ⎤⎣ ⎦

Page 13: Journal bearings/Sliding bearings - uni-due.de SS 2005 Prof. Dr.- Ing. P. J. Mauk Universität Duisburg-Essen Institut für Angewandte Materialtechnik LEC-DT3-Journal_Bearings.doc

IAM-DT-3: SS 2005 Prof. Dr.- Ing. P. J. Mauk Universität Duisburg-Essen Institut für Angewandte Materialtechnik

LEC-DT3-Journal_Bearings.doc Seite 13 von 25

Due to friction a certain friction power is generated in the bearing:

[ ]f

NmP F u W

= • • =⎡ ⎤⎢ ⎥⎣ ⎦

µ: friction factor u: sliding speed Pf: friction power For the capacity if a sliding bearing a dimensionless factor is defined:

2 2 2

0 2 32

F S F SS

b d d b d

p ψ

η ω η

⋅= = =

⋅ ⋅ ⋅ ⋅ ⋅

⋅⋅

S: diameter difference: d1 - d2 (Lagerspiel) P: mean pressure of bearing η: viscosity of oil Pa•s d: journal diameter (bearing diameter) F: bearing force ω: angular speed of journal S0: Sommerfeld-Number A lot of design data for sliding bearings are related to the Sommerfeld number S0: The Sommerfeld number S0 can be calculated as a function of the relative

eccentricity ε and the width ratio β = b/d of the bearing. Calculation of Sommerfeld number

( )( ) ( )2

2 2 2 10 2

2

11 16

2 1

bS

d

α εεπ ε ε

α εε

−= − +

+−

⎛ ⎞ ⋅ ⋅ ⋅⎜ ⎟⎝ ⎠

with :

/ 2

1e

Sε δ= = − with 0

/ 2

h

Sδ = and ψ ε= − = ⋅ ⋅02 2

S de h

α1 = f(b/d) and α2 = f (b/d)

Page 14: Journal bearings/Sliding bearings - uni-due.de SS 2005 Prof. Dr.- Ing. P. J. Mauk Universität Duisburg-Essen Institut für Angewandte Materialtechnik LEC-DT3-Journal_Bearings.doc

IAM-DT-3: SS 2005 Prof. Dr.- Ing. P. J. Mauk Universität Duisburg-Essen Institut für Angewandte Materialtechnik

LEC-DT3-Journal_Bearings.doc Seite 14 von 25

(Slide 10)

Calculation acc. to DIN31652-2 ( for full bearings) ( see also slide 10a,b)

Page 15: Journal bearings/Sliding bearings - uni-due.de SS 2005 Prof. Dr.- Ing. P. J. Mauk Universität Duisburg-Essen Institut für Angewandte Materialtechnik LEC-DT3-Journal_Bearings.doc

IAM-DT-3: SS 2005 Prof. Dr.- Ing. P. J. Mauk Universität Duisburg-Essen Institut für Angewandte Materialtechnik

LEC-DT3-Journal_Bearings.doc Seite 15 von 25

(Slide 10a)

The Sommerfeld number ( , / )o LS f b dε= with pure rotation

Page 16: Journal bearings/Sliding bearings - uni-due.de SS 2005 Prof. Dr.- Ing. P. J. Mauk Universität Duisburg-Essen Institut für Angewandte Materialtechnik LEC-DT3-Journal_Bearings.doc

IAM-DT-3: SS 2005 Prof. Dr.- Ing. P. J. Mauk Universität Duisburg-Essen Institut für Angewandte Materialtechnik

LEC-DT3-Journal_Bearings.doc Seite 16 von 25

(Slide 10b)

- heavy loaded bearings → big S0-numbers - low loaded bearings → small S0-numbers Practically: S0 > 1 ; only with high sliding speeds and low bearing loads S0 > 1 !

Page 17: Journal bearings/Sliding bearings - uni-due.de SS 2005 Prof. Dr.- Ing. P. J. Mauk Universität Duisburg-Essen Institut für Angewandte Materialtechnik LEC-DT3-Journal_Bearings.doc

IAM-DT-3: SS 2005 Prof. Dr.- Ing. P. J. Mauk Universität Duisburg-Essen Institut für Angewandte Materialtechnik

LEC-DT3-Journal_Bearings.doc Seite 17 von 25

Some practical values for the minimum oil film thickness in the bearing homin (Slide 11) : Experimental data for homin[ ]µm acc. to DIN 31652 T3 for different

shaft diameter and sliding speeds Empirical value of smallest allowable h0min acc. to DIN 31652 T3

The value h0 for the smallest gap in the bearing is given by 2 formulas:

For S0 > 1: 00

1 2

2 2 1

Sh

S

β

β=

⋅ +⋅ ⋅

For 0 2β< ≤ with β = b/d (width ratio of bearing)

And for S0 < 1 : 00

11

2 2 2

S Sh

β

β

+= −

⎡ ⎤⋅⎢ ⎥⎣ ⎦

For β≤ ≤0.5 2

These formulas give good approximation for h0 During operation of the bearing is necessary: h0 ≥ h0min

The rotational speed nmin, which is necessary to ensure homin is given by:

[ ]= i0minmin

0

1/h

n n sh

Minimum rotational speed

The value of n is calculated by use of the S0-number for S0 < 1

( )~

2

0 12

Pn S

ψ

η π= =

Page 18: Journal bearings/Sliding bearings - uni-due.de SS 2005 Prof. Dr.- Ing. P. J. Mauk Universität Duisburg-Essen Institut für Angewandte Materialtechnik LEC-DT3-Journal_Bearings.doc

IAM-DT-3: SS 2005 Prof. Dr.- Ing. P. J. Mauk Universität Duisburg-Essen Institut für Angewandte Materialtechnik

LEC-DT3-Journal_Bearings.doc Seite 18 von 25

The transition rotational speed nT is given by:

0

0

TT

hn n

h= ⋅ for h0 > h0min > h0T

A thumb-rule equation for the relative bearing clearance ψ is given by:

41 2

1

0.8S d d

ud d

ψ−

= = ≈ u: sliding speed

Where ψ is given 1/1000 (promille)

Practical conditions are: Small ψ-values for high speeds and loads, greater ψ-values for small loads and high speeds Some values for ψ in relation to ISO-fits for shafts and bearings are given in (Slide 12a,b)

(solide 12a)

Page 19: Journal bearings/Sliding bearings - uni-due.de SS 2005 Prof. Dr.- Ing. P. J. Mauk Universität Duisburg-Essen Institut für Angewandte Materialtechnik LEC-DT3-Journal_Bearings.doc

IAM-DT-3: SS 2005 Prof. Dr.- Ing. P. J. Mauk Universität Duisburg-Essen Institut für Angewandte Materialtechnik

LEC-DT3-Journal_Bearings.doc Seite 19 von 25

(Slide 12b)

Any sliding bearing do have friction in the oil film in the bearing gap. Some thumb rules for a related friction factor is:

For S0 < 1 (high speed bearing) 0

3

S

µ

ψ=

For S0>1 (high load bearing) µ

ψ=

0

3

S

Page 20: Journal bearings/Sliding bearings - uni-due.de SS 2005 Prof. Dr.- Ing. P. J. Mauk Universität Duisburg-Essen Institut für Angewandte Materialtechnik LEC-DT3-Journal_Bearings.doc

IAM-DT-3: SS 2005 Prof. Dr.- Ing. P. J. Mauk Universität Duisburg-Essen Institut für Angewandte Materialtechnik

LEC-DT3-Journal_Bearings.doc Seite 20 von 25

See also (slide 13): Vogelpohl diagram

(Slide 13)

Page 21: Journal bearings/Sliding bearings - uni-due.de SS 2005 Prof. Dr.- Ing. P. J. Mauk Universität Duisburg-Essen Institut für Angewandte Materialtechnik LEC-DT3-Journal_Bearings.doc

IAM-DT-3: SS 2005 Prof. Dr.- Ing. P. J. Mauk Universität Duisburg-Essen Institut für Angewandte Materialtechnik

LEC-DT3-Journal_Bearings.doc Seite 21 von 25

The related friction factor can also be calculated acc. to DIN 31652-2 to a formula system: ( see slide 14) The related friction factor / effµ ψ depending on the related excentricity ε and the related bearing width B/D acc. to DIN 31652-2

10yµ

ψ= where y = f (factor: based on S0 and b/d - ratio )

With this data the friction power is calculated

2fd

P F u Fµ µ ω= ⋅ ⋅ = ⋅ ⋅ ⋅

Page 22: Journal bearings/Sliding bearings - uni-due.de SS 2005 Prof. Dr.- Ing. P. J. Mauk Universität Duisburg-Essen Institut für Angewandte Materialtechnik LEC-DT3-Journal_Bearings.doc

IAM-DT-3: SS 2005 Prof. Dr.- Ing. P. J. Mauk Universität Duisburg-Essen Institut für Angewandte Materialtechnik

LEC-DT3-Journal_Bearings.doc Seite 22 von 25

The total friction power generates heat in the bearing, this heat must transferred out of the bearing partly by convection through the bearing housing and partly by the oil flow through the bearing: Pf = PA+PQ

PA: cooling power by convection PQ: cooling power by oil flow - bearings without pressured flow of oil:→ convection - bearings with pressured oil flow: →oil cooling If Pf = PA

= ( )0*F u A v vµ α⋅ ⋅ = ⋅ ⋅ −

α* : heat transition factor 2 2

Nm W

s m K m K=

⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

by surrounding air

* 7 12 wVα = +

with Vw: air speed [ ]/m s 1.25 /wV m s≈

Max. values for α* are 20 2

W

m K

⎡ ⎤⎢ ⎥⎣ ⎦

and A: surface area of bearing housing

For a cylindrical bearing housing: (DIN 31652)

( )2 2

2 H B H HA d d d bπ

π= − + ⋅ ⋅

dH: diameter of housing dB: bearing diameter bH: width of housing For a pedestal bearing (Stehlager)

2HH

A H bπ≈ ⋅ ⋅ +⎛ ⎞⎜ ⎟⎝ ⎠

H: height of pedestal

Page 23: Journal bearings/Sliding bearings - uni-due.de SS 2005 Prof. Dr.- Ing. P. J. Mauk Universität Duisburg-Essen Institut für Angewandte Materialtechnik LEC-DT3-Journal_Bearings.doc

IAM-DT-3: SS 2005 Prof. Dr.- Ing. P. J. Mauk Universität Duisburg-Essen Institut für Angewandte Materialtechnik

LEC-DT3-Journal_Bearings.doc Seite 23 von 25

A bearing in a machine compound: ( )15 20 B BA d b= ÷ ⋅ ⋅ θo : ambient temperature ( ≈ 20°c) θ : max. bearing temperature ≈ 70°c ÷ 100°c If cooling is done by oil flow, the necessary oil flow is:

( )2 1

fc

PQ

c ρ ϑ ϑ=

⋅ ⋅ − Qc: oil flow

3m

s

⎡ ⎤⎢ ⎥⎣ ⎦

c: specific heat of oil = f (θ) ρ: density of oil = f (θ) θ2: run out temperature of oil θ1: run in temperature of oil (θ2-θ1) should be 10 20 K≈ ÷ For regular lubrication conditions in a oil film bearing a certain necessary oil flow is required in the bearing:

0 2Lu

Q h bϕ≈ ⋅ ⋅ ⋅

ψ: oil flow rate factor ≈ 1,5 h0: min. oil film thickness b: bearing width u: sliding speed Acc. to DIN31652 the calculation is as follows: QL=Q1+Q2

Where:

ε

ϕ ω

− ⋅ •

= ⋅ ⋅ ⋅

⎡ ⎤⎛ ⎞ ⎛ ⎞= ⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

3

31 1

11

0.2234

b b

d d

Q d q

q

q1: related oil flow due to internal bearing pressure Q2 is: ( )3 3

2 2/EQ d P qψ η= ⋅ ⋅ ⋅ (see slide 15)

Page 24: Journal bearings/Sliding bearings - uni-due.de SS 2005 Prof. Dr.- Ing. P. J. Mauk Universität Duisburg-Essen Institut für Angewandte Materialtechnik LEC-DT3-Journal_Bearings.doc

IAM-DT-3: SS 2005 Prof. Dr.- Ing. P. J. Mauk Universität Duisburg-Essen Institut für Angewandte Materialtechnik

LEC-DT3-Journal_Bearings.doc Seite 24 von 25

The related oil flow q1 due to intrinsic pressure in the gap a relation of related

eccentricity ε and related bearing ratio B/D acc. to DIN 31652

Where Pe is the entry oil pressure from lubrication system and for q2 see (slide 16) With the oil flow rate the bearing temperature is controlled, if the temperature is too high bearing conditions must be changed!!

Page 25: Journal bearings/Sliding bearings - uni-due.de SS 2005 Prof. Dr.- Ing. P. J. Mauk Universität Duisburg-Essen Institut für Angewandte Materialtechnik LEC-DT3-Journal_Bearings.doc

IAM-DT-3: SS 2005 Prof. Dr.- Ing. P. J. Mauk Universität Duisburg-Essen Institut für Angewandte Materialtechnik

LEC-DT3-Journal_Bearings.doc Seite 25 von 25

The related oil rate q2 depending on the series of the lubricant entries

(Slide 16)