21
2015-10-07 1 JET contribution to the research on long pulse operation E. Joffrin and JET contributors Acknowledgements E. Joffrin | IAEA Technical meeting on steady state Operation | Nara, Japan 25/05/2015| Page 2 S. Brezinsek 2), C. Challis 3), C. Giroud 3), J. Hobirk 4), A. Huber 2), K. Krieger 4), A. Jarvinen 5), E. Lerche 6), T. Loarer 1), J. Mailloux 3), G. Matthews 3), I. Nunes 7), L. Piron 3), M. Rubel 8), K. Schmid 8), H. Weisen 9), S. Wiesen 8), M. Wischmeier 4) and JET Contributors * EUROfusion consortium, JET, Culham Science Centre, Abingdon, OX14 3DB, UK 1) IRFM, CEA, F13108 SantPaullezDurance, France. 2)Institut fuer Energie un Klimaforschung – Plasmaphysik, FZJ, 52425 Juelich Germany 3) CCFE, Culham Science Centre, Abingdon, Oxon, OX14 3DB, UK 4) MaxPlanckInstitut für Plasmaphysik, 85748, Garching Germany. 5) Tekes, VTT, PO Box 1000, 02044 VTT, Finland. 6) ERM/KRM, Bruxelles, Belgium 7) Instituto de plasmas e fusao nuclear, IST, Unisersidade Lisboa, Portugal 8) Royal Institute of Technology (KTH), VR, 100 44 Stockholm, Sweden 9)CRPP, Ecole polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland. *See the Appendix of F. Romanelli et al., Proceedings of the 25th IAEA Fusion Energy Conference 2014, Saint Petersburg, Russia.

JET contribution to the research on long pulse operation

  • Upload
    others

  • View
    6

  • Download
    0

Embed Size (px)

Citation preview

Page 1: JET contribution to the research on long pulse operation

2015-10-07

1

JET contribution to the research on long pulse operation

E. Joffrin and JET contributors

Acknowledgements

E. Joffrin | IAEA Technical meeting on steady state Operation | Nara, Japan 25/05/2015| Page 2

S. Brezinsek 2), C. Challis 3), C. Giroud 3), J. Hobirk 4), A. Huber 2), K. Krieger4), A. Jarvinen 5), E. Lerche 6), T. Loarer 1), J. Mailloux 3), G. Matthews 3), I.Nunes 7), L. Piron 3), M. Rubel 8), K. Schmid 8), H. Weisen 9), S. Wiesen 8), M.Wischmeier 4) and JET Contributors*

EUROfusion consortium, JET, Culham Science Centre, Abingdon, OX14 3DB, UK

1) IRFM, CEA, F‐13108 Sant‐Paul‐lez‐Durance, France.2)Institut fuer Energie un Klimaforschung – Plasmaphysik, FZJ, 52425 Juelich Germany3) CCFE, Culham Science Centre, Abingdon, Oxon, OX14 3DB, UK4) Max‐Planck‐Institut für Plasmaphysik, 85748, Garching Germany.5) Tekes, VTT, PO Box 1000, 02044 VTT, Finland. 6) ERM/KRM, Bruxelles, Belgium7) Instituto de plasmas e fusao nuclear, IST, Unisersidade Lisboa, Portugal8) Royal Institute of Technology (KTH), VR, 100 44 Stockholm, Sweden9)CRPP, Ecole polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland. 

*See the Appendix of F. Romanelli et al., Proceedings of the 25th IAEA Fusion Energy Conference 2014, Saint Petersburg, Russia.

Page 2: JET contribution to the research on long pulse operation

2015-10-07

2

E. Joffrin | IAEA Technical meeting on steady state Operation | Nara, Japan 25/05/2015| Page 3

MHD

« Long pulse operation » ?

E. conf

Cur. Diff.

Part + Imp

Retention

Erosion/deposition

10-3 10-2 10-1 1 101 102 103 104 105

Heat loads

[s]

Tokamaks operating long pulses have to overcome and control several plasma‐core and plasma‐wall interaction time scales 

ITER pulses400s – 3000s

JET10s

E. Joffrin | IAEA Technical meeting on steady state Operation | Nara, Japan 25/05/2015| Page 4

Since the installation of the metallic wall (2011) JET has carried out a series of experiments relevant for « long pulses» and ITER operation.

1. Erosion of  Be/W material and redeposition. 

2. Fuel retention in metallic environment

3. Particle/impurity transport 

4. Thermal load management on metallic components 

5. Current profile access to high N scenario 6. High  stability in metallic wall

Outline

Decre

asingtim

e scale

Page 3: JET contribution to the research on long pulse operation

2015-10-07

3

5

ILW = 2880 installable items, 15828 tiles (~2 tonnes Be, ~2 tonnes W)

JET ITER-like wall arrangement (Be/W)

Note: JET is not designed for « long pulse » operation Inertial PFC components Limited external non‐inductive current capabilities

E. Joffrin | IAEA Technical meeting on steady state Operation | Nara, Japan 25/05/2015| Page 6

Carbon content in JET plasma discharges has been reduced by~x10

Zeff is lower (~1.2) instead of 2‐2.3 in JET‐C 

longer resistive time

Lower dilution

Brezinsek, NF, 2014

Page 4: JET contribution to the research on long pulse operation

2015-10-07

4

E. Joffrin | IAEA Technical meeting on steady state Operation | Nara, Japan 25/05/2015| Page 7

1. Erosion of  Be/W material and redeposition. 

2. Fuel retention in metallic environment

E. Joffrin | IAEA Technical meeting on steady state Operation | Nara, Japan 25/05/2015| Page 8

Flaking & dust in JET‐ILW strongly reduced

110.1 g

22.3 g51.4 g

0.4 g

CB

8

7

64

3

1

Carbon Wall 2008‐2009

Total (inner) = 132.4g  Total (outer) = 51.8g

~0.7 g ~ 0.3 g

ILW 2011‐2012

Total: < 1 g

> 20 m

0.3 m

JET‐C

JET‐ILW

D. Ivanova et al., 2014

Test mirrors: Inner divertor

Very thick deposits seen in JET‐C did not occur with ILW (2011‐2012) Flakes building up can lead eventually to operational difficulties when they detach see long pulse device recent experience: LHD & Tore supra

Page 5: JET contribution to the research on long pulse operation

2015-10-07

5

E. Joffrin | IAEA Technical meeting on steady state Operation | Nara, Japan 25/05/2015| Page 9

S. Brezinsek NF 2013 K. Schmid PSI 2014

Retention is mostly independent from the scenario used In a C‐wall only ~10 ITER 3000s pulses could be run before reaching 700g T limit In W/Be wall  ~250 pulses could be made. 

Fuel retention reduced by more x 10

From global gas balance: injected‐pumped  D2 = retained D atoms

Fuel retention from gas balance & post mortem

Total D retention vs gas input

JET‐C 2001‐2004:         66 g,      3.7%            [ J. Nucl. Mat.390, 631]

JET‐C 2007‐2009:       ~50 g,      2.1%            [Phys.Scripta T159, 014052]

JET‐ILW 2010‐2012:   ≤1.3 g,   ≤ 0.3%     

D retention rates

JET‐C 2007‐2009:

total 50 g    0.9×1020 D/s (Gas balance ~ 10‐20×1020 D/s) 

main chamber    1.8 g      1.31019 D/s   (limiter time 12h)

divertor 48 g      1.2 1020 D/s   (divertor time 33h)

JET‐ILW 2010‐2012:

total 1.3 g    0.6×1019 D/s (Gas balance ~ 2‐20×1019 D/s) 

main chamber    0.3 g      4.9 1018 D/s   (limiter time 6h)

divertor 1.0 g      6.2 1018 D/s   (divertor time 13h)

20

2.6

Would still lead to ~3g fuel long term retention in ITER 3000s “long pulses” (remaining retention by co‐deposition & implantation processes)

E. Joffrin | IAEA Technical meeting on steady state Operation | Nara, Japan 25/05/2015| Page 10

Page 6: JET contribution to the research on long pulse operation

2015-10-07

6

E. Joffrin | IAEA Technical meeting on steady state Operation | Nara, Japan 25/05/2015| Page 11

• In JET W PFCs inertially cooled changing temperature during plasmasequence.

• In ITER PFC temperature actively cooled.

• The retention increases with decreasingtemperature (well known fact)

• The increase is ~50% when thetemperature decreases by x2

The retentition measured in JET‐ILWlooks applicable to devices with lower walltemperature (i.e. with actively cooled PFCs)

PFC temperature can change retention

(See WEST: D. Van Houtte Thursday morning)

E. Joffrin | IAEA Technical meeting on steady state Operation | Nara, Japan 25/05/2015| Page 12

Erosion from main wall decreased by a x5 with ILW compared to C Be transport to divertor smaller by x4‐8 than C in JET‐C Lower fuel content in Be co‐deposits in comparison with C co‐depositsWALLDYN modelling shows qualitatively the observed deposition pattern on top of tile 1

Eroded Be migrates to inner divertor areas

S. Brezinsek NF 2015

Page 7: JET contribution to the research on long pulse operation

2015-10-07

7

E. Joffrin | IAEA Technical meeting on steady state Operation | Nara, Japan 25/05/2015| Page 13

0

10

20

30

40

50

60

70

80

90

100

0 2 4 6 8 10 12 14 16 18Number of pulses

nT/(nT+nD) T to D JET-C (1997)

nH/(nH+nD) H to D JET-ILW (2013)nD/(nH+nD) D to H JET-ILW (2014)

Plasma isotopic ratio %

Fuel cannot be fully recovered by conditioning

Part of the retained fuel can berecovered using recovery techniquessuch as ion Cyclotron Wall Cleaning(ICWC)

~ 7x1022H recovered with ICWC (JET‐ILW)corresponding to the retention inaccessible area of the first wall.

Suggests limited access to co‐depositsthrough plasma isotopic exchange.

Recovery techniques may need beneeded inbetween long pulses, butcannot access all areas at present.

T. Loarer NF 2015

E. Joffrin | IAEA Technical meeting on steady state Operation | Nara, Japan 25/05/2015| Page 14

3. Particle/impurity transport

4. Thermal load management on metallic components 

Page 8: JET contribution to the research on long pulse operation

2015-10-07

8

Particle transport: W source / accumulation

W source (sputtering) due to:

ELMs

low Z impurities such as Be, Ne, N2

W accumulation control

Increase ELM frequency to flush W (gas puffing/NBI)

Increase core temperature to screen the W from the plasma core (ICRH)

W source control

Increase divertor radiation to reduce target temperature (gas puffing/impurity injection)

E. Joffrin | IAEA Technical meeting on steady state Operation | Nara, Japan 25/05/2015| Page 15

E. Joffrin, NF 2014 Core tungsten concentration should stay < 5 10‐5

W erosion in H‐mode dominated by ELMs

E. Joffrin | IAEA Technical meeting on steady state Operation | Nara, Japan 25/05/2015| Page 16

• Intra‐ELM sputtering dominates

• Sputtering induced by ion impact D, Be, O, N (seeding gases).

• Total W source between 2∙1018 and 3∙1019 /s have been observed for the outer divertor

• For the first time effect of prompt deposition observed in tungsten divertor spectroscopy

G. Van Rooij, IAEA 2012

Page 9: JET contribution to the research on long pulse operation

2015-10-07

9

ELM control essential for W transport control

Small fuelling pellets reliably trigger ELMs w/o strong impact on density

Isabel Nunes| DT readiness AHG| JET| 24/02/2015| Page 17

M. Lehnholm, IAEA 2012

ICRH can control core W accumulation

E Lerche – IAEA 2014

E. Joffrin | IAEA Technical meeting on steady state Operation | Nara, Japan 25/05/2015| Page 18

NBI‐only

NBI+ICRH

Te0

Wmhd

ne0

Core W control achieved withcentral H minority ICRH at2.5MA/2.7T H‐modes.

Min ICRH for impurity screeningis scenario dependent

E. Lerche, IAEA 2014

Page 10: JET contribution to the research on long pulse operation

2015-10-07

10

E. Joffrin | IAEA Technical meeting on steady state Operation | Nara, Japan 25/05/2015| Page 19

Stationary conditions can be achieved with N2

C. Giroud, IAEA 2014

E. Joffrin | IAEA Technical meeting on steady state Operation | Nara, Japan 25/05/2015| Page 20

Near detached conditions achievable with N2

A. Jarvinen, IAEA 2014

current

Page 11: JET contribution to the research on long pulse operation

2015-10-07

11

E. Joffrin | IAEA Technical meeting on steady state Operation | Nara, Japan 25/05/2015| Page 21

Increasing N

Reduced W erosion obtained in near‐detached conditions

Full detachment not desirable impact on confinement & plasma control

Trade off between increasing impurityconcentration in the discharge anddecreasing Tdiv

G. Van Rooij, IAEA 2012

Detachment control is an essential partin extending the duration of the pulse forboth W sputtering control and heat loadmanagement.

E. Joffrin | IAEA Technical meeting on steady state Operation | Nara, Japan 25/05/2015| Page 22

Classical heat up alarm

Hot spot alarm

Monitoring temperature on PFCs in metallic walls essential tool for long pulse operation. 

Management of heat loads on PFCs is essential in long pulse discharges to ensure device first wall integrity. 

Response to alarms also an integrated part of the long pulse scenario design.  

A. Huber 2015

Page 12: JET contribution to the research on long pulse operation

2015-10-07

12

E. Joffrin | IAEA Technical meeting on steady state Operation | Nara, Japan 25/05/2015| Page 23

5.   Current profile access to high N scenario 6.   High  stability in metallic wall

E. Joffrin | IAEA Technical meeting on steady state Operation | Nara, Japan 25/05/2015| Page 24

• Duration of high performance phase limited by MHD

• Core radiation peaking correlated with tearing modes and 1/1 islands and impacts on  performance – new with ILW!

Further optimization requires simultaneous control: 

power to maintain N gas and regular ELMs

q profile to minimize MHD

Also n=3&4 modes

High N discharges developed in JET‐ILW 

C D Challis 2014

Hybrid scenario

Page 13: JET contribution to the research on long pulse operation

2015-10-07

13

E. Joffrin | IAEA Technical meeting on steady state Operation | Nara, Japan 25/05/2015| Page 25

IPB98(y,2)scaling

Global confinement increases with increasing P

C D Challis et al Nucl Fusion 55 (2015) 053031J. Garcia, IAEA 2014C. Maggi, IAEA 2014

Rapid increase in with power due to:

Increase with core temperature consistent with transport modelling including fast ion effects. (See J. Garcia oral this afternoon)

Increase of density peaking correlated with collisionality

Increase of pedestal pressure consistent with peeling‐balloningmodelling

(with low level gas injection) 

Power scan in type I ELMy H‐mode shows weaker confinement degradation with power than expected from IPB98(y,2) scaling

High p favorable for steady state operation:Higher bootstrap currentHigher pedestal pressure

E. Joffrin | IAEA Technical meeting on steady state Operation | Nara, Japan 25/05/2015| Page 26

Start‐up conditions (BD, Ipramp) are quitereproducible. High clearanceshape chosen for thisexperiment

Confinement appears lowerat high qmin;

MHD behaviour consistentwith qmin>2 for early times(i.e. 3/1) and qmin~1 for latertime (i.e. 2/1).

1.5MA/2.4T: different heating time (tHEAT)  different q target

AT‐scenario explored in JET‐ILW

J. Mailloux / E. Joffrin

Page 14: JET contribution to the research on long pulse operation

2015-10-07

14

E. Joffrin | IAEA Technical meeting on steady state Operation | Nara, Japan 25/05/2015| Page 27

0,5

1

1,5

2

2,5

3

1 2 3 4 5

qmin

tHEAT (s)

Higher initial q: higher density target

Access to high qmin scenario in JET‐ILW appears feasible

87357q0 ~ [email protected] ~ 0.35

86827q0 ~ [email protected] ~ 0.28

86980q0 ~ [email protected] ~  0.33

jNB jBS

jTOTjOHM

T = sqrt(N)

A/cm

2A/cm

2A/cm

2

J. Mailloux / E. Joffrin

(From TRANSP, D. King)

E. Joffrin | IAEA Technical meeting on steady state Operation | Nara, Japan 25/05/2015| Page 28

MHD spectroscopy used for the first time with the ITER‐like wall

Times (s)

NBI (MW)

EFCC (A)

N

n=1 ; n=2

MHD spectroscopy used for the first time in JET‐ILW high scenario.

Preliminary data suggest a somewhat lower no‐wall limit compared to previous experiment inthe JET‐C

Assessment of the limit on‐going bothexperimentally and with non‐linear MHD stabilitycalculations.

L. Piron / M. GryaznevitchEFIT +MSE

Page 15: JET contribution to the research on long pulse operation

2015-10-07

15

Summary

E. Joffrin | IAEA Technical meeting on steady state Operation | Nara, Japan 25/05/2015| Page 29

JET has contributed to long pulse operation in several key areas:

The metallic (Be/W) has demonstrated important benefit for long pulse operation A strong reduction of erosion and flaking  reduces the risks of flake detachment A reduced fuel retention  pave the way to repetitive long pulse operation 

The metallic (Be/W) is raising additional challenges to long pulse operation The control of core W accumulation (with e‐ heating) The minimization of sputtered W sources from the divertor and by ELMs Operation and control of detachment with seeding gases.  The control of transient heat loads on metallic PFCs.

High  and AT‐scenario has been explored for the first time in an ITER‐like wall.  Strong link between MHD reconnection event and high Z impurity transport  High p operation benefits from a weaker confinement degradation with power.  Current profile access with qmin from 1 to 2 appears feasible No‐wall stability limit has been investigated for the first time with RFA. 

E. Joffrin | IAEA Technical meeting on steady state Operation | Nara, Japan 25/05/2015| Page 30

Hybrid: 2.5MA/2.9T (q95=3.7) . MHD  radiation peaking  Control of divertor temperature with seeding gases.  

Baseline: 3.5MA/3.3T (q95=3)  Control of the divertortemperature with seeding gases / detachment. Minimisation of sputtered W source by ELMs

Ip (MA)

NBI/ICRH (107W)

Line average density (1020 m‐3)

Wdia (107W)

Neutron rate (1016/s)

fGW

#86614

#87412

JET scenarios have still to overcome key challenges to extend their duration

Nunes, IAEA 2014

7                    8                    9                  10                  11                 12

Times (s)

These scenarios will be thereference scenario for thefuture JET DT‐phase.

Page 16: JET contribution to the research on long pulse operation

2015-10-07

16

E. Joffrin | IAEA Technical meeting on steady state Operation | Nara, Japan 25/05/2015| Page 31

E. Joffrin | IAEA Technical meeting on steady state Operation | Nara, Japan 25/05/2015| Page 32

Page 17: JET contribution to the research on long pulse operation

2015-10-07

17

2015/2016 programme

Isabel Nunes | US PMI workshop | JET| 04/05/2015| Page 33

19th October 2015 to 4th April 2016 (198 sessions ~10 pulses each)

N seeding impacts on pedestal confinement

Isabel Nunes | US PMI workshop | JET| 04/05/2015| Page 34

With N

Radiation reduces target temperature

Higher Tped

Pedestal pressure loss partially recovered

With Ne

Radiation reduces target temperature

Beneficial effect on pedestal not observed

C Giroud – IAEA 2014

Page 18: JET contribution to the research on long pulse operation

2015-10-07

18

Major challenges to achieve DT goals(DT experiments planned for 2017)

Global Confinement

Gas puffing (control W accumulation) low pedestal temperatures low core temperatures through stiffness

Stronger pumping (density control) increases Teped, Te,corerecovery of confinement

High N (high PIN) recovery of confinement

Performance (Pfus)

Density too high Core temperature too low

Impurity seeding reduction of performance by dilution

Pulse length

Impurity accumulation (W source due to sputtering) gas puffing, ICRH and impurity seeding (Ne)

Target temperature limit strike point sweeping, impurity seeding

MHD (hybrid) q profile optimisation

Isabel Nunes| DT readiness AHG| JET| 24/02/2015| Page 35

Controlling power to divertor: impurity injection

Effect of impurities on core/edge confinement

Injection of Ne increases both core, pedestal and divertor radiation 

Ne could be more effective in the divertor for hotter pedestals

Reduced plasma performance by dilution

Initial experiments with Ne show no further confinement degradation

Extrapolations of effect of Ne seeding on cW and heat loads at 4.5MA ongoing

2.5MA

E. Joffrin | IAEA Technical meeting on steady state Operation | Nara, Japan 25/05/2015| Page 36

Page 19: JET contribution to the research on long pulse operation

2015-10-07

19

Divertor heat load control

JET has restrictive operation limits for bulk W and W coated CFC tiles pulse length at high power at high plasma current

Extrinsic impurities N2 not compatible with DT

operation Tritium plant at JET Ne: Small reduction of target

surface temperature

#87404 #87215 #87218

Strike point sweeping at 4Hz 4cm sweeping strong reduction

of surface target temperature

2.5MA/2.35T

E. Joffrin | IAEA Technical meeting on steady state Operation | Nara, Japan 25/05/2015| Page 38

86584, 86582, 86538, 2.5MA/2.7T

PNBI (MW)

Fuelling rate (x1022e/s)

PRAD bulk (MW)

80Hz

Times (s)

Page 20: JET contribution to the research on long pulse operation

2015-10-07

20

E. Joffrin | IAEA Technical meeting on steady state Operation | Nara, Japan 25/05/2015| Page 39

Deposition strongly reduced in JET-ILW

coloured fringes with thin deposits

JET‐ILW 2011‐2012JET‐C 2007‐2009Divertor Tile 4)

thick deposit 60 m

very thin deposit

Test mirrors: Inner divertor

A. Widdowson et al.

Very thick deposits seen in JET‐C didnot occur with ILW (2011‐2012)

Flakes can lead to an increaseddisruptivity in carbon wall long pulsedevice: see LHD & Tore supraexperience

E. Joffrin | IAEA Technical meeting on steady state Operation | Nara, Japan 25/05/2015| Page 40

Page 21: JET contribution to the research on long pulse operation

2015-10-07

21

E. Joffrin | IAEA Technical meeting on steady state Operation | Nara, Japan 25/05/2015| Page 41

• As a consequence: even more difficult to obtain plasmas with high q0 – could not obtain q0>2 on 21

st Aug sessions• A small amount of PLHCD lead to higher 

q0, but will need higher PLHCD for stronger effect – but not available in next campaign

• Increasing IP ramp rate also lead to small rise in q0, may be we can push this further?

• Not tried yet in these plasmas: ICRF heating (but tried in B13‐09)

• What will help in next campaign: evidence that at higher BT higher qmin obtained (Ex‐2.1.7)

• M13‐34: preheat gas & ne increased further in order to meet the permit for protection against shine‐through with the high voltage PINIs

• preheat ne for ILW AT plasmas in C33 is ~5x10^19m‐3, twice that for C‐wall optimised shear shots

• Importantly: ne will have to be increased further in order to use the highest voltage pinis (6.9x10^19m‐3 for 125KV tangential beam) needed for a DT experiment

14th July25th July21st Aug

higher neand/or neutrals reduces q0

Effect of LHCD (only <1.5MW tried)

M13‐34 shots at 2.4T