43
Jean-Raynald de Dreuzy Géosciences Rennes, CNRS, FRANCE

Jean-Raynald de Dreuzy Géosciences Rennes, CNRS, FRANCE

Embed Size (px)

Citation preview

Page 1: Jean-Raynald de Dreuzy Géosciences Rennes, CNRS, FRANCE

Jean-Raynald de DreuzyGéosciences Rennes, CNRS, FRANCE

Page 2: Jean-Raynald de Dreuzy Géosciences Rennes, CNRS, FRANCE

A decision-based framework An elementary example Data interpolation Inverse Problem Conclusion: back to the objectives

2

Page 3: Jean-Raynald de Dreuzy Géosciences Rennes, CNRS, FRANCE

3Freeze, R. A., et al. (1990), Hydrogeological Decision-Analysis .1. a Framework, Ground Water, 28(5), 738-766.

Page 4: Jean-Raynald de Dreuzy Géosciences Rennes, CNRS, FRANCE

SM = C – L SM: safety margin C: capacity (SC) L: load (SL)

Probability of failure

4

Page 5: Jean-Raynald de Dreuzy Géosciences Rennes, CNRS, FRANCE

5Freeze, R. A., et al. (1990), Hydrogeological Decision-Analysis .1. a Framework, Ground Water, 28(5), 738-766.

Objective function of alternative j: j Benefits of alternative j: Bj Costs of alternative j: Cj Risk of alternative j: Rj Probability of failure: Pf Cost associated with failure: Cf Utility function (risk aversion):

Page 6: Jean-Raynald de Dreuzy Géosciences Rennes, CNRS, FRANCE

6Freeze, R. A., et al. (1990), Hydrogeological Decision-Analysis .1. a Framework, Ground Water, 28(5), 738-766.

Page 7: Jean-Raynald de Dreuzy Géosciences Rennes, CNRS, FRANCE

7

Page 8: Jean-Raynald de Dreuzy Géosciences Rennes, CNRS, FRANCE

8

Page 9: Jean-Raynald de Dreuzy Géosciences Rennes, CNRS, FRANCE

PhD. Etienne Bresciani (2008-2010)

9

Ris

k ass

ess

ment

for

Hig

h L

evel R

ad

ioact

ive W

ast

e s

tora

ge

ran g e o f scén a rio s (~ 1 0 .0 0 0 )

P erm eab ility

Im p erv io u s m ed ia P erm eab le m ed iam /cen tu ry m /y ea r m /d ay

L eakag e riskN a tu ra l m ed ium (un kn ow n )

C lay

G ran ite

P erm eab ility

Im p erv io u s m ed ia P erm eab le m ed iam /cen tu ry m /y ea r m /d ay

L eakag e riskN a tu ra l m ed ium (un kn ow n )

G ran ite

Page 10: Jean-Raynald de Dreuzy Géosciences Rennes, CNRS, FRANCE

A decision-based framework An elementary example Data interpolation Inverse Problem Conclusion: back to the objectives

10

Page 11: Jean-Raynald de Dreuzy Géosciences Rennes, CNRS, FRANCE

11

Binary distribution of permeabilities Ka=10m/hr, Kb=2.4 m/dayL=1km, Porosity=20%, head gradient=0.01

Localization of Ka and Kb?

Page 12: Jean-Raynald de Dreuzy Géosciences Rennes, CNRS, FRANCE

Extremal values Kmin=Kb Kmax=Ka

A random case K~2.6 m/hr Advection times

12

Valeur de t Probabilité p(t)7.106 s=83 jours

=0.23 ans

97 %

11.6 ans 2%7.108 s=23 ans 1%

anst 88.0 anst 8.2

Page 13: Jean-Raynald de Dreuzy Géosciences Rennes, CNRS, FRANCE

13ba KKK *Reality

is a sin

gle realiza

tion

Page 14: Jean-Raynald de Dreuzy Géosciences Rennes, CNRS, FRANCE

14

Reality is

a single re

alizatio

n

Page 15: Jean-Raynald de Dreuzy Géosciences Rennes, CNRS, FRANCE

15

Conditioning by <<t>R>NR <t>R]NR

Absence 5,2 4,3KA 5,7 4,2KB 2,4 4,3KD 6,2 4,3KA, KB 4,9 4,1KA, KC 4,8 4,1KB, KC 4,5 4KB, KD 5,7 4,3KA, KB, KD 4,3 3,9KA, KB, KC, KD 4,5 3,8

Page 16: Jean-Raynald de Dreuzy Géosciences Rennes, CNRS, FRANCE

16

Conditioning by NR <<t>R>NR <t>R]NR

Absence 2 105 5,2 4,3[hA] 2.5 104 4,3 4,3[hB] 2 104 2,8 3,4[hD] 1602 4,4 4,4[hA], [hB] 700 2,7 3,3[hA], [hC] 1100 2,9 3,8[hB], [hC] 200 1,4 1,7[hB], [hD] 172 1,7 1,9[hA], [hB], [hC] 400 1,6 1,8[hA], [hB], [hD] 36 1,3 0,2[hA], [hB], [hC], [hD] 17 1,4 0,1

Page 17: Jean-Raynald de Dreuzy Géosciences Rennes, CNRS, FRANCE

17

grid flow

Ka

Page 18: Jean-Raynald de Dreuzy Géosciences Rennes, CNRS, FRANCE

A decision-based framework An elementary example Data interpolation Inverse Problem Conclusion: back to the objectives

18

Page 19: Jean-Raynald de Dreuzy Géosciences Rennes, CNRS, FRANCE

Accounting for correlation Inverse of distance interpolation Geostatistics

Kriging Simulation

Field examples

19

Page 20: Jean-Raynald de Dreuzy Géosciences Rennes, CNRS, FRANCE

20

Page 21: Jean-Raynald de Dreuzy Géosciences Rennes, CNRS, FRANCE

21

SGSIM seq_fill.mpeg

Page 22: Jean-Raynald de Dreuzy Géosciences Rennes, CNRS, FRANCE

A decision-based framework An elementary example Data interpolation Inverse Problem Conclusion: back to the objectives

22

Page 23: Jean-Raynald de Dreuzy Géosciences Rennes, CNRS, FRANCE

18/05/2008GW Flow & Transport

23Carrera, J., A. Alcolea, A. Medina, J. Hidalgo, and L. J. Slooten (2005), Inverse problem in hydrogeology, Hydrogeology Journal, 13, 206-222.

Page 24: Jean-Raynald de Dreuzy Géosciences Rennes, CNRS, FRANCE

24

conditionsinitial

conditionsboudarybc

Qt

hS

y

hT

yx

hT

x

:

T: transmissivityS: storage coefficient

Q: source termsbc: boudary conditions

h: head

direct problem

inverse problem

Trial and error approach: manually change T, S, Q in order to reach a good fit with h

Inverse problem: automatic algorithm

Page 25: Jean-Raynald de Dreuzy Géosciences Rennes, CNRS, FRANCE

25

conditionsboudarybc

y

hT

yx

hT

x

:

0

T: transmissivitybc: boudary conditions

h(xi)T(xi)

i:1…nbc?

direct problem

inverse problem

Ill-posed problemUnder-constrainted (more unknowns than data)

Page 26: Jean-Raynald de Dreuzy Géosciences Rennes, CNRS, FRANCE

Model uncertainty: structure of the medium (geology, geophysics) not known accurately (soft data)

Heterogeneity: T varies over orders of magnitude Low sensitivity: data (h) may contain little

information on parameters (T) Scale dependence: parameters measured in the

field are often taken at a scale different from the mesh scale

Time dependence: data (h) depend on time Different parameters (unrelated): beyond T,

porosity, storativity, dispersivity Different data: simultaneous integration of

hydraulic, geophysical, geochemical (hard data)

26

Page 27: Jean-Raynald de Dreuzy Géosciences Rennes, CNRS, FRANCE

Interpolation of heads Determination of flow tubes

Each tube contains a known permeability value Determination of head everywhere by:

Drawbacks Instable (small h0 errors induce large T0 errors) Strong unrealistic transmissivity gaps between

flow tubes Independence between transmissivity obtained

between flow tubes

27

h

hdh

h

h

T

T0

2

2

0

ln

Page 28: Jean-Raynald de Dreuzy Géosciences Rennes, CNRS, FRANCE

Principle: express permeability as a linear function of known permeability and head values

28

n

i

m

jjjiii YhxY

1 10

ˆ

The Co-kriging equation uses the measured values of Φ =h-H, of Y, and the strcutures (covaraince, variogram, cross-variogram of Y, Φ and Y- Φ) which are known (Y) or calculated analytically from the stochastic PDE.

The inverse problem is thus solved without having to run the direct problem and to define an objective function.

Sometimes the covariance of Y is assumed known with an unknown coefficient which is optimized by cross-validation at points of known Y

Page 29: Jean-Raynald de Dreuzy Géosciences Rennes, CNRS, FRANCE

18/05/2008GW Flow & Transport

29[Kitanidis,1997]

Advantages No direct problem Almost analytical Additional knowledge on uncertainties

Drawbacks Limited to low heterogeneitiesRequires lots of data

Page 30: Jean-Raynald de Dreuzy Géosciences Rennes, CNRS, FRANCE

Objective function Minimize head mismatch between model

and data

30

2

1

h

obsn

i i

im

iobs

objhh

pF

[Carrera, 2005]

Page 31: Jean-Raynald de Dreuzy Géosciences Rennes, CNRS, FRANCE

Unstable parameters from data Restricts instability of the objective funtion Solution: regularization

More parameters than data (under-constrained) Reduce parameter number drastically

Reduce parameter space Acceptable number of parameters

gradient algorithms requiring convex functions: <5-7 parameters

Monté-Carlo algorithms: <15-20 parameters Solution: parameterization

31

Page 32: Jean-Raynald de Dreuzy Géosciences Rennes, CNRS, FRANCE

18/05/2008GW Flow & Transport

32

Page 33: Jean-Raynald de Dreuzy Géosciences Rennes, CNRS, FRANCE

33

Addition of a permeability term

2

1

2

1

K

obs

h

obs n

i i

im

iobs

n

i i

im

iobs

objKKhh

pF

plausibility

Which proportion between goodness of fit plausibility?

Page 34: Jean-Raynald de Dreuzy Géosciences Rennes, CNRS, FRANCE

34

B-1B-2

B-3

O-1

O-2

O-3O-4O-5

O-6

O-7

O-8O-9

O-10

0.5 -0.46 -1.4 -2.4 -3.3 -4.3 -5.3 -6.2 -7.2 -8.1 -9.1

“True” medium

[Carrera, Cargèse, 2005]

Page 35: Jean-Raynald de Dreuzy Géosciences Rennes, CNRS, FRANCE

35

p2

p1 p2

p1

t* 1p pF *p- p V p- p

t 1 *h hF *h- h V h- h

p2

p1

phF F F

Reduces uncertainty

Smooths long narrow valleys

Facilitates convergence

Reduces instability and non-uniqueness

Long narrow valleys

Hard convergence and instability

[Carrera, Cargese, 2005]

Page 36: Jean-Raynald de Dreuzy Géosciences Rennes, CNRS, FRANCE

36

Relevant parameterization depends on data quantity on geology on optimization algorithm

[de Marsily, Cargèse, 2005]

Page 37: Jean-Raynald de Dreuzy Géosciences Rennes, CNRS, FRANCE

Zimmerman, Marsily, Carrera et al, 1998 for stochastic simulations, 4 test problems 3 based on co-kriging Carrera-Neuman, Bayesian, zoning Lavenue-Marsily, pilot points Gomez-Hernandez, Sequantial non

Gaussian Fractal ad-hoc method

37

Page 38: Jean-Raynald de Dreuzy Géosciences Rennes, CNRS, FRANCE

If test problem is a geostatistical field, and variance of Y not too large, (variance of Log10T less than 1.5 to 2) all methods perform well Importance of good selection of variogram Co-kriging methods that fit the variogram by

cross-validation on both Y and h’ data perform better

For non-stationary “complex” fields The linearized techniques start to break down Improvement is possible, e.g. through zoning Non-linear methods, and with a careful fitting of

the variogram, perform better The experience and skill of the modeller makes

a big difference…38

Page 39: Jean-Raynald de Dreuzy Géosciences Rennes, CNRS, FRANCE

18/05/2008GW Flow & Transport

39

K: 6 teintes de gris couvrant chacune un ordre de grandeur entre 10-7 et 10-2. cas 1: champ gaussien de log transmissivité (log10(T)) moyenne et variance de -5.5 et 1.5 respectivement et de longueur de corrélation 2800 m. cas 2 moyenne et variance plus importantes de -1.26 et 2.39. cas 3 comprend un milieu hétérogéne de log transmissivité et variance -5.5 et 0.8 et des chenaux de log transmissivité -2.5. cas 4 comprend de larges chenaux de forte transmissivité avec une distribution de log transmissivité de moyenne et variance -5.3 et 1.9.

Page 40: Jean-Raynald de Dreuzy Géosciences Rennes, CNRS, FRANCE

18/05/2008GW Flow & Transport

40

Page 41: Jean-Raynald de Dreuzy Géosciences Rennes, CNRS, FRANCE

A decision-based framework An elementary example Data interpolation Inverse Problem Conclusion: back to the objectives

41

Page 42: Jean-Raynald de Dreuzy Géosciences Rennes, CNRS, FRANCE

Gary Larson, The far side gallery 42

Page 43: Jean-Raynald de Dreuzy Géosciences Rennes, CNRS, FRANCE

43

Example of protection zone delineation

Pochon, A., et al. (2008), Groundwater protection in fractured media: a vulnerability-based approach for delineating protection zones in Switzerland, Hydrogeology Journal, 16(7), 1267-1281.