29
HYDROGEOLOGIE ECOULEMENT EN MILIEU HETEROGENE J. Erhel – INRIA / RENNES J-R. de Dreuzy – CAREN / RENNES P. Davy – CAREN / RENNES Chaire UNESCO - Calcul numérique intensif TUNIS - Mars 2004

HYDROGEOLOGIE ECOULEMENT EN MILIEU HETEROGENE J. Erhel – INRIA / RENNES J-R. de Dreuzy – CAREN / RENNES P. Davy – CAREN / RENNES Chaire UNESCO - Calcul

Embed Size (px)

Citation preview

Page 1: HYDROGEOLOGIE ECOULEMENT EN MILIEU HETEROGENE J. Erhel – INRIA / RENNES J-R. de Dreuzy – CAREN / RENNES P. Davy – CAREN / RENNES Chaire UNESCO - Calcul

HYDROGEOLOGIE

ECOULEMENT EN MILIEU HETEROGENE

J. Erhel – INRIA / RENNES

J-R. de Dreuzy – CAREN / RENNES

P. Davy – CAREN / RENNES

Chaire UNESCO - Calcul numérique intensif

TUNIS - Mars 2004

Page 2: HYDROGEOLOGIE ECOULEMENT EN MILIEU HETEROGENE J. Erhel – INRIA / RENNES J-R. de Dreuzy – CAREN / RENNES P. Davy – CAREN / RENNES Chaire UNESCO - Calcul

Well test interpretation in heterogeneous mediaJ-R De Dreuzy(1), P. Davy(1), J. Erhel(2)

(1)UMR 6118 CNRS, Université de Rennes 1, France(2)IRISA/INRIA Rennes

How does heterogeneity influence transient flow?

Approach

- Evaluation of the classical flow equation on a field experiment (Ploemeur).

- Which heterogeneous media follow the same flow equation ?

- Numerical simulation of transient flow in heterogeneous media

What is the relevant diffusion equation (Theis, Barker, …) ?

Page 3: HYDROGEOLOGIE ECOULEMENT EN MILIEU HETEROGENE J. Erhel – INRIA / RENNES J-R. de Dreuzy – CAREN / RENNES P. Davy – CAREN / RENNES Chaire UNESCO - Calcul

A field example of heterogeneous medium

Ploemeur (Brittany): Aquifer in a highly fractured zone

on the contact between granite and micaschiste

Granite

Micaschiste

Page 4: HYDROGEOLOGIE ECOULEMENT EN MILIEU HETEROGENE J. Erhel – INRIA / RENNES J-R. de Dreuzy – CAREN / RENNES P. Davy – CAREN / RENNES Chaire UNESCO - Calcul

Well tests in Ploemeur

Barker

Theis

Page 5: HYDROGEOLOGIE ECOULEMENT EN MILIEU HETEROGENE J. Erhel – INRIA / RENNES J-R. de Dreuzy – CAREN / RENNES P. Davy – CAREN / RENNES Chaire UNESCO - Calcul

Generalized flow models

Model Dimension exponent

Anomalous diffusion exp

Radius of diffusion

Drawdown at the well

Theis

Barker (1988)

Acuna and Yortsos (1995)

D=2

1<D<3

1<D<3

dw=2

dw=2

dw>2

R2~t

R2~t

R2~t2/dw

ho ~ t-1

ho ~ t-D/2

ho ~ t-D/dw

)( 11 r

hKr

rr

T

t

hS dwD

D

Generalized diffusivity equation

ww

w

dd

D

d

ttRtth

R

rthtrs

2

20

0

~ and ~

exp).(),(

Generalized drawdown solution

Drawdown at the well Radius of diffusion

Page 6: HYDROGEOLOGIE ECOULEMENT EN MILIEU HETEROGENE J. Erhel – INRIA / RENNES J-R. de Dreuzy – CAREN / RENNES P. Davy – CAREN / RENNES Chaire UNESCO - Calcul

Relevant models and exponents at Ploemeur

normal fault zone

contact zone

Anomalous diffusion exponent

dw= 2.8

Dimension exponent

D=2.2

Dimension exponent

D=1.6

It appears possible to define a mean equivalent flow model

at least for one of the major fault zone

The relevant model implies: - a fractional flow dimension

- an anomalous diffusion

Page 7: HYDROGEOLOGIE ECOULEMENT EN MILIEU HETEROGENE J. Erhel – INRIA / RENNES J-R. de Dreuzy – CAREN / RENNES P. Davy – CAREN / RENNES Chaire UNESCO - Calcul

Influence of the heterogeneity on the flow equationValidity of the generalized flow equation?

Sierpinski Gasket

]4,0[)(log K

D=D0=1.58

dw=2.3

D0=2

1<D2<2

D, dw?

D0=2

D, dw ?

Heterogeneous logK fields with

Fractal fields

Multifractal fields

1<D0<2

D, dw?

Page 8: HYDROGEOLOGIE ECOULEMENT EN MILIEU HETEROGENE J. Erhel – INRIA / RENNES J-R. de Dreuzy – CAREN / RENNES P. Davy – CAREN / RENNES Chaire UNESCO - Calcul

Fractal correlation pattern : Generation

D2=1.8 D2=1.2D2=1.5

Dimension D2

nested generation

probability field

0,01 0,1 11E-4

1E-3

0,01

0,1

1

r/lmin

C(r)

r/L

0

1

2

pent

e lo

cale

C(r)~rD2

Correlation function

Page 9: HYDROGEOLOGIE ECOULEMENT EN MILIEU HETEROGENE J. Erhel – INRIA / RENNES J-R. de Dreuzy – CAREN / RENNES P. Davy – CAREN / RENNES Chaire UNESCO - Calcul

Transient flow model

Darcy Law

Mass conservation law

Porous media

h/t + .u = f

u = -k h

Boundary conditions

Page 10: HYDROGEOLOGIE ECOULEMENT EN MILIEU HETEROGENE J. Erhel – INRIA / RENNES J-R. de Dreuzy – CAREN / RENNES P. Davy – CAREN / RENNES Chaire UNESCO - Calcul

Numerical simulation

space and time discretisations : stiff system of ODEs

scale effects : large grid sizestochastic modelling : many simulations

Need for high performanceschemes and software

Page 11: HYDROGEOLOGIE ECOULEMENT EN MILIEU HETEROGENE J. Erhel – INRIA / RENNES J-R. de Dreuzy – CAREN / RENNES P. Davy – CAREN / RENNES Chaire UNESCO - Calcul

Finite Volume Method

mass is conserved locally

it can be simply extended to unstructured 2D and 3D grids

the linear system to solve is positive definite

the scheme is monotone

number of degrees of freedom = number of nodes

velocity is not accuratefull tensors of permeability are not easily handledlarge sparse ill-conditioned linear system at each time stepthe ODE system is stiff

BUT

Page 12: HYDROGEOLOGIE ECOULEMENT EN MILIEU HETEROGENE J. Erhel – INRIA / RENNES J-R. de Dreuzy – CAREN / RENNES P. Davy – CAREN / RENNES Chaire UNESCO - Calcul

Mixed Finite Element Method

mass is conserved locally

it can be simply extended to unstructured 2D and 3D grids

the linear system to solve is positive definite

pressure and velocity are approximated simultaneously

full tensors of permeability are easily handled

the scheme is non monotonenumber of degrees of freedom = number of faces + number of nodeslarge sparse ill-conditioned linear system at each time stepthe system is stiff

BUT

Page 13: HYDROGEOLOGIE ECOULEMENT EN MILIEU HETEROGENE J. Erhel – INRIA / RENNES J-R. de Dreuzy – CAREN / RENNES P. Davy – CAREN / RENNES Chaire UNESCO - Calcul

Mass conservation law :

S dP/dt + D P - R T = F

Darcy law :

- RT P + M T = V

M large sparse ill-conditioned matrixR large sparse rectangular matrixS and D diagonal matrices

Mixed Hybrid Finite Element Method

Page 14: HYDROGEOLOGIE ECOULEMENT EN MILIEU HETEROGENE J. Erhel – INRIA / RENNES J-R. de Dreuzy – CAREN / RENNES P. Davy – CAREN / RENNES Chaire UNESCO - Calcul

Simplified scheme using mass lumping

Elimination of T : S dP/dt + (D - R M-1 RT) P = F + R M-1 V

Exact solution : P = exp(-t (D - R M-1 RT) ) P0 + P1

Sufficient conditions for positivity :(R M-1 RT)

KK ’ 0, MEE ’ 0 and RKE 0

Mass lumping : diagonal elementary matrices

the scheme is monotone

the matrix M is diagonal, easy to invert

the system of ODE is of size N

Page 15: HYDROGEOLOGIE ECOULEMENT EN MILIEU HETEROGENE J. Erhel – INRIA / RENNES J-R. de Dreuzy – CAREN / RENNES P. Davy – CAREN / RENNES Chaire UNESCO - Calcul

Additive Runge-Kutta scheme

S dP/dt + (D - R M-1 RT) P = F + R M-1 V

D 0 and R M-1 RT 0

Stiff part in D : implicit for D and explicit for R M-1 RT

No sparse linear system to solve

High performance compact scheme

Example : ARK of order 1 (Euler)

(S + dt D) P n+1 - R M-1 RT P n = dt (F n+1 + R M-1 V n+1)

Page 16: HYDROGEOLOGIE ECOULEMENT EN MILIEU HETEROGENE J. Erhel – INRIA / RENNES J-R. de Dreuzy – CAREN / RENNES P. Davy – CAREN / RENNES Chaire UNESCO - Calcul

Numerical experiments

Currently, finite volume scheme

for transient computations, use of LSODES package • BDF scheme and direct sparse linear solver• high memory requirements

for steady flow computations, use of UMFPACK solver

Page 17: HYDROGEOLOGIE ECOULEMENT EN MILIEU HETEROGENE J. Erhel – INRIA / RENNES J-R. de Dreuzy – CAREN / RENNES P. Davy – CAREN / RENNES Chaire UNESCO - Calcul

Steady flow in porous media : numerical results

Lognormal distributionwell test simulation

Page 18: HYDROGEOLOGIE ECOULEMENT EN MILIEU HETEROGENE J. Erhel – INRIA / RENNES J-R. de Dreuzy – CAREN / RENNES P. Davy – CAREN / RENNES Chaire UNESCO - Calcul

Steady flow in porous media : numerical results

Fractal with D = 1.5well test simulation

Page 19: HYDROGEOLOGIE ECOULEMENT EN MILIEU HETEROGENE J. Erhel – INRIA / RENNES J-R. de Dreuzy – CAREN / RENNES P. Davy – CAREN / RENNES Chaire UNESCO - Calcul

100 101 102 103

10-2

10-1

100

K

L

Equivalent permeability

Steady flow in porous media : physical interpretation

1,0 1,5 2,00,0

0,5

1,0

K(L)~L^[-(D-2)]=2-D

expo

nent

D: fractal dimension

Page 20: HYDROGEOLOGIE ECOULEMENT EN MILIEU HETEROGENE J. Erhel – INRIA / RENNES J-R. de Dreuzy – CAREN / RENNES P. Davy – CAREN / RENNES Chaire UNESCO - Calcul

Validation of the transient flow simulator

Percolation network Anomalous medium

0 25 50 750,00

0,25

0,50

-1,0

-0,5

0,0

1/dw=1/2.86=0.35

1/dw

L

-D/dw

-D/dw=-1.9/2.86=-0.66

K(r)~rx

-2 -1 0 1 20,0

0,5

1,0

1,5

2,0

dw(théorique)=1/(2-x)

1/d w

x

Page 21: HYDROGEOLOGIE ECOULEMENT EN MILIEU HETEROGENE J. Erhel – INRIA / RENNES J-R. de Dreuzy – CAREN / RENNES P. Davy – CAREN / RENNES Chaire UNESCO - Calcul

0 2 4 6-2

-1

0

0.61/dw=0.35 0.5

log

(R2 (t

))

log(t)

Transient flow simulation and determination of the exponents

Pattern generation

D=1.5Fit on h0(t)

Flow simulationFit on R2(t)

0 2 4 6-4

-3

-2

-1

0

-0.7-D/dw=-1 -0.7

log

(h0(t

))

log(t)

Page 22: HYDROGEOLOGIE ECOULEMENT EN MILIEU HETEROGENE J. Erhel – INRIA / RENNES J-R. de Dreuzy – CAREN / RENNES P. Davy – CAREN / RENNES Chaire UNESCO - Calcul

Distribution of exponents for multifractals D0=2 and D2=1.5

0,00 0,25 0,50 0,75 1,00 1,250,0

0,1

0,2

0,3

Mean value d

w=2

Normal diffusion

Anomalously fast diffusion

dw<2

Anomalously slow diffusion

dw>2

pdf

1/dw Exponent of R(t)

R2(t)~t^(2/dw)

-2,00 -1,75 -1,50 -1,25 -1,00 -0,75 -0,500,0

0,1

0,2 Mean value -D/d

w=-1

pdf

-D/dw Exponent of h

0(t)

h0(t)~t^(-D/dw)

Mean exponents : dw=2, D=D0=2

Page 23: HYDROGEOLOGIE ECOULEMENT EN MILIEU HETEROGENE J. Erhel – INRIA / RENNES J-R. de Dreuzy – CAREN / RENNES P. Davy – CAREN / RENNES Chaire UNESCO - Calcul

Exponent mean and stds for multifractals

1,00 1,25 1,50 1,75 2,00-1,6

-1,4

-1,2

-1,0

-0,8

-0,6

Normal Transport

-D/d

w

D2

Conclusions <D>=D0 (support dimension)

<dw>=2 (normal transport)

Large variability around the mean D=[1.5,2.5] and dw=[1.5,3]

1,00 1,25 1,50 1,75 2,000,00

0,25

0,50

0,75

1,00

Normal Transport1/d w

D2

Page 24: HYDROGEOLOGIE ECOULEMENT EN MILIEU HETEROGENE J. Erhel – INRIA / RENNES J-R. de Dreuzy – CAREN / RENNES P. Davy – CAREN / RENNES Chaire UNESCO - Calcul

Why is the mean transport normal in multi-fractal media?

Porous medium Flow

1,0 1,5 2,00,0

0,5

1,0 K(L)~L^(-)~(2-D

2)

D2

=2-D2

dw= 2-D2+D?

dw=2

With D?=D2

Einstein Relation in 2D : dw=D?+

Page 25: HYDROGEOLOGIE ECOULEMENT EN MILIEU HETEROGENE J. Erhel – INRIA / RENNES J-R. de Dreuzy – CAREN / RENNES P. Davy – CAREN / RENNES Chaire UNESCO - Calcul

Comparison between fractal and multi-fractal media

Multifractal Fractal

Support dimension D0=2 D0=[1,2]

Correlation dimension D2=[1,2] D2=D0

Permeability exponent =2-D2 ?

Diffusion exponent dw=2 ([1.5,3]) ?

Hydraulic Dimension D=D0 ([1.5,2.5]) ?

Page 26: HYDROGEOLOGIE ECOULEMENT EN MILIEU HETEROGENE J. Erhel – INRIA / RENNES J-R. de Dreuzy – CAREN / RENNES P. Davy – CAREN / RENNES Chaire UNESCO - Calcul

Characteristic exponents for fractal media

1,50 1,75 2,00

-1,00

-0,75

-0,50

-D0/d

w

Percolation Network

Sierpinski gasket-D

/dw

D0

1,50 1,75 2,000,250

0,375

0,500

Percolation Network

Normal transport

Sierpinski gasket1/d

w

D0

Page 27: HYDROGEOLOGIE ECOULEMENT EN MILIEU HETEROGENE J. Erhel – INRIA / RENNES J-R. de Dreuzy – CAREN / RENNES P. Davy – CAREN / RENNES Chaire UNESCO - Calcul

Comparison between fractal and multi-fractal media

Multifractal Fractal

Support dimension D0=2 D0=[1,2]

Correlation dimension D2=[1,2] D2=D0

Permeability exponent =2-D2 =dw-D0

Diffusion exponent dw=2 ([1.5,3]) dw=2.3 0.2

Hydraulic Dimension D=D0 ([1.5,2.5]) D=D0 0.1

Page 28: HYDROGEOLOGIE ECOULEMENT EN MILIEU HETEROGENE J. Erhel – INRIA / RENNES J-R. de Dreuzy – CAREN / RENNES P. Davy – CAREN / RENNES Chaire UNESCO - Calcul

Heterogeneous logK fields

0 1 2 3 4

-1,6

-1,4

-1,2

-1,0

-0,8

-0,6

Normal Transport

-D/d

w

0 1 2 3 4

0,00

0,25

0,50

0,75

1,00

Normal Transport1/d

w

1. Large exponent variability

2. dw=2 normal transport

3. <D>=[2,2.3]

Page 29: HYDROGEOLOGIE ECOULEMENT EN MILIEU HETEROGENE J. Erhel – INRIA / RENNES J-R. de Dreuzy – CAREN / RENNES P. Davy – CAREN / RENNES Chaire UNESCO - Calcul

Conclusions

The relation of Einstein is verified

The average transport is normal <dw>~2

The average hydraulic dimension is the fractal dimensionand more precisely the support dimension D0.

Individual media have a large variabilitydw=[1.5,3]D=[1.5,2.5]

Average anomalous diffusion is to be searched in medium having a highly heterogeneous structure like percolation network at threshold (dw=2.86)