53
James Ritman Univ. Giessen New Opportunities for Hadron Physics with the Planned PANDA Detector • Overview of the PANDA Physics Program • The PANDA Detector • Selected Simulation Results – Charmonium: EM decays – Charmonium: Open charm decays – Charmonium in nuclear matter

James Ritman Univ. Giessen New Opportunities for Hadron Physics with the Planned PANDA Detector Overview of the PANDA Physics Program The PANDA Detector

Embed Size (px)

Citation preview

Page 1: James Ritman Univ. Giessen New Opportunities for Hadron Physics with the Planned PANDA Detector Overview of the PANDA Physics Program The PANDA Detector

James Ritman Univ. Giessen

New Opportunities for Hadron Physics with the Planned PANDA Detector

• Overview of the PANDA Physics Program

• The PANDA Detector

• Selected Simulation Results– Charmonium: EM decays– Charmonium: Open charm decays– Charmonium in nuclear matter

Page 2: James Ritman Univ. Giessen New Opportunities for Hadron Physics with the Planned PANDA Detector Overview of the PANDA Physics Program The PANDA Detector

James Ritman Univ. Giessen

What Do We Want To Know?

• Are there other forms of hadrons?e.g. Hybrids qqg or Glueballs gg

• Why are hadrons so much heavier than their constituents?

p-A interactions

• Why don‘t we observe isolated quarks?Q-Q potential in the charmonium system

Page 3: James Ritman Univ. Giessen New Opportunities for Hadron Physics with the Planned PANDA Detector Overview of the PANDA Physics Program The PANDA Detector

James Ritman Univ. Giessen

Why Don’t We See Isolated Quarks?

Page 4: James Ritman Univ. Giessen New Opportunities for Hadron Physics with the Planned PANDA Detector Overview of the PANDA Physics Program The PANDA Detector

James Ritman Univ. Giessen

Charmonium – the Positronium of QCD

3D2

2900

3100

3300

3500

3700

3900

4100

c(3590)

c(2980)

hc(3525)

(3097)

(3686)

(3770)

(4040)

0(3415)

1(3510) 2(3556)

3D1

3D3

1D2

3P2(~ 3940)

3P1(~ 3880)

3P0(~ 3800)

(~ 3800)

1 fm

C C

~ 600 meV -1000

-3000

-5000

-700011S

0

13S1

21S0 23S

121P

1 23P2

23P1

23P0

031S

0 31D

2 33D2

33D1

33D2

Ionisationsenergie33S

1

e+ e-0.1 nm

Binding energy [meV]

Mass [MeV]

DDThreshold

8·10-4 eV

10-4 eV

• Positronium • Charmonium

Page 5: James Ritman Univ. Giessen New Opportunities for Hadron Physics with the Planned PANDA Detector Overview of the PANDA Physics Program The PANDA Detector

James Ritman Univ. Giessen

Why Antiprotons?

• e+e- annihilation via virtual photon: only states with Jpc = 1--

• In pp annihilation all mesons can be formed

• Resolution of the mass and width is only limited by the beam momentum resolution

Measured rate

Beam

Resonance cross

section

CM Energy

Page 6: James Ritman Univ. Giessen New Opportunities for Hadron Physics with the Planned PANDA Detector Overview of the PANDA Physics Program The PANDA Detector

James Ritman Univ. Giessen

High Resolution

• Crystal Ball: typical resolution ~ 10 MeV

• Fermilab: 240 keV

p/p < 10-4 needed

Page 7: James Ritman Univ. Giessen New Opportunities for Hadron Physics with the Planned PANDA Detector Overview of the PANDA Physics Program The PANDA Detector

James Ritman Univ. Giessen

Open Questions c (11S0) (Simu results)

experimental error on M > 1 MeV hard to understand in simple quark models

c’ (21S0)

Crystal Ball result way offstudy of hadronic decays

hc(1P1)

Spin dependence of QQ potentialCompare to triplet P-StatesLQCD NRQCD

9

)(5)(3)( 210 MMMM cog

Page 8: James Ritman Univ. Giessen New Opportunities for Hadron Physics with the Planned PANDA Detector Overview of the PANDA Physics Program The PANDA Detector

James Ritman Univ. Giessen

Open Questions States above the DD threshold

Higher vector states not confirmed (3S), (4S) Expected location of 1st radial excitation of P wave statesExpected location of narrow D wave states Only (3770) seenSensitive to long range Spin-dependent potential

(Simu results)

Page 9: James Ritman Univ. Giessen New Opportunities for Hadron Physics with the Planned PANDA Detector Overview of the PANDA Physics Program The PANDA Detector

James Ritman Univ. Giessen

Why Are Hadrons So Heavy?

Page 10: James Ritman Univ. Giessen New Opportunities for Hadron Physics with the Planned PANDA Detector Overview of the PANDA Physics Program The PANDA Detector

Hadron Masses

Protons = (uud) ?2Mu + Md ~ 15 MeV/c2

Mp = 938 MeV/c2

(P.Kienle)

no low mass hadrons (except , K, )

spontaneously broken chiral symmetry

0qq

Page 11: James Ritman Univ. Giessen New Opportunities for Hadron Physics with the Planned PANDA Detector Overview of the PANDA Physics Program The PANDA Detector

James Ritman Univ. Giessen

Hadron Production in the Nuclear Medium

c d_

d du

c_ d

repulsive

attractive

D-

D+d du

d du

d du

d du

d du

Quark atom

Mass of particles may change in dense matter( ) : 40

( ) : 200

s u

c d

K su m m

D cd m m

Page 12: James Ritman Univ. Giessen New Opportunities for Hadron Physics with the Planned PANDA Detector Overview of the PANDA Physics Program The PANDA Detector

J/ Absorption in Nuclei

J/ absorption cross section in nuclear matter p + A J/ + (A-1)

(Simu results)

Page 13: James Ritman Univ. Giessen New Opportunities for Hadron Physics with the Planned PANDA Detector Overview of the PANDA Physics Program The PANDA Detector

James Ritman Univ. Giessen

Comparison of p-A Reactions to A-A

Much lower momentum for heavy producedparticles (2 GeV for “free”)

(Effects are smaller at high momentum)

Well defined nuclear environment (T and )

Page 14: James Ritman Univ. Giessen New Opportunities for Hadron Physics with the Planned PANDA Detector Overview of the PANDA Physics Program The PANDA Detector

James Ritman Univ. Giessen

The Experimental Facility

Page 15: James Ritman Univ. Giessen New Opportunities for Hadron Physics with the Planned PANDA Detector Overview of the PANDA Physics Program The PANDA Detector

HESR

Page 16: James Ritman Univ. Giessen New Opportunities for Hadron Physics with the Planned PANDA Detector Overview of the PANDA Physics Program The PANDA Detector

James Ritman Univ. Giessen

HESR: High Energy Storage Ring

Beam Momentum 1.5 - 15 GeV/c

High Intensity Mode:Luminosity 2x1032 cm-2s-1 (2x107Hz)p/p (st. cooling) ~10-4

High Resolution Mode:Luminosity 2x1031 cm-2s-1 p/p (e- cooling) ~10-5

Page 17: James Ritman Univ. Giessen New Opportunities for Hadron Physics with the Planned PANDA Detector Overview of the PANDA Physics Program The PANDA Detector

James Ritman Univ. Giessen

Page 18: James Ritman Univ. Giessen New Opportunities for Hadron Physics with the Planned PANDA Detector Overview of the PANDA Physics Program The PANDA Detector

James Ritman Univ. Giessen

Page 19: James Ritman Univ. Giessen New Opportunities for Hadron Physics with the Planned PANDA Detector Overview of the PANDA Physics Program The PANDA Detector

Central Tracking Detectors• Straw-Tubes• Mini-Drift-Chambers

• MVD: (Si) 5 layers

• ~ 9 Mio pixelsAndrei Sokolov HK39.5

Thursday 15:00

Page 20: James Ritman Univ. Giessen New Opportunities for Hadron Physics with the Planned PANDA Detector Overview of the PANDA Physics Program The PANDA Detector

James Ritman Univ. Giessen

PID

(DIRC@BaBar)

• ToF • Muon Detectors • DIRC

Page 21: James Ritman Univ. Giessen New Opportunities for Hadron Physics with the Planned PANDA Detector Overview of the PANDA Physics Program The PANDA Detector

James Ritman Univ. Giessen

Open Charm

pp DD

DK

„no backgroundevents added“

Mass Resolution

~ 10 MeV/c2

Page 22: James Ritman Univ. Giessen New Opportunities for Hadron Physics with the Planned PANDA Detector Overview of the PANDA Physics Program The PANDA Detector

James Ritman Univ. Giessen

Vertex Distributions GEANT4

D meson signal DPM background

Transverse

signal DPM background

Scale up by x10!0.15 < Vz < 5 mm

Longitudinal

Page 23: James Ritman Univ. Giessen New Opportunities for Hadron Physics with the Planned PANDA Detector Overview of the PANDA Physics Program The PANDA Detector

James Ritman Univ. Giessen

DD Missing Mass

signal DPM background

N.B. different x scale| Mmiss 2|< 0.001 GeV2 (tight cut)

Page 24: James Ritman Univ. Giessen New Opportunities for Hadron Physics with the Planned PANDA Detector Overview of the PANDA Physics Program The PANDA Detector

James Ritman Univ. Giessen

Open Charm

As an example of the Pbar P (3770) DD AnalysisPlot MDD – MD – MD + 2x1869MeV

raw S/B ~ 10-7

Page 25: James Ritman Univ. Giessen New Opportunities for Hadron Physics with the Planned PANDA Detector Overview of the PANDA Physics Program The PANDA Detector

James Ritman Univ. Giessen

Detection of Rare Neutral ChannelsAs an example: cBackground:

c 1:50:500

Comparison with E835(PLB 566,45)

PANDA

Page 26: James Ritman Univ. Giessen New Opportunities for Hadron Physics with the Planned PANDA Detector Overview of the PANDA Physics Program The PANDA Detector

James Ritman Univ. Giessen

Dimuon Spectrum in p+Cu• Beam momentum “on resonance” • Full background simulations

(result scaled up)• Muons from J/ have high Pt• J/ has low Pt (coplanar)

J/

Page 27: James Ritman Univ. Giessen New Opportunities for Hadron Physics with the Planned PANDA Detector Overview of the PANDA Physics Program The PANDA Detector

James Ritman Univ. Giessen

Summary

• GSI will explore the intensity frontier

• High luminosity cooled p from 1-15 GeV/c

• Wide physics program including

• Charmonium spectroscopy

• pbar-A reactions

• Search for glueballs and charm hybrids

Page 28: James Ritman Univ. Giessen New Opportunities for Hadron Physics with the Planned PANDA Detector Overview of the PANDA Physics Program The PANDA Detector

James Ritman Univ. Giessen

Page 29: James Ritman Univ. Giessen New Opportunities for Hadron Physics with the Planned PANDA Detector Overview of the PANDA Physics Program The PANDA Detector

James Ritman Univ. Giessen

In part supported by:GSIBMBF 06GI144DFG

Page 30: James Ritman Univ. Giessen New Opportunities for Hadron Physics with the Planned PANDA Detector Overview of the PANDA Physics Program The PANDA Detector

James Ritman Univ. Giessen

Target• A fiber/wire target will be needed for D physics,• A pellet target is conceived:

1016 atoms/cm2 for D=20-40m

1 mm

Page 31: James Ritman Univ. Giessen New Opportunities for Hadron Physics with the Planned PANDA Detector Overview of the PANDA Physics Program The PANDA Detector

James Ritman Univ. Giessen

Electromagnetic CalorimeterDetector material PbWO4

Photo sensors Avalanche Photo Diodes

Crystal size 35 x 35 x 150 mm3 (i.e. 1.5 x 1.5 RM2 x 17 X0)

Energy resolution 1.54 % / E[GeV] + 0.3 %

Time resolution 130 ps (N.B. with PMT!)

Total number of crystals 7150

Page 32: James Ritman Univ. Giessen New Opportunities for Hadron Physics with the Planned PANDA Detector Overview of the PANDA Physics Program The PANDA Detector

James Ritman Univ. Giessen

Tracking Resolution

J/ K+K- (J) = 35 MeV/c2

() = 3.8 MeV/c2

Example reaction: pp J/ (s = 4.4 GeV/c2)

Single track resolution

Invariant mass resolution

Page 33: James Ritman Univ. Giessen New Opportunities for Hadron Physics with the Planned PANDA Detector Overview of the PANDA Physics Program The PANDA Detector

James Ritman Univ. Giessen

Staged Construction

Page 34: James Ritman Univ. Giessen New Opportunities for Hadron Physics with the Planned PANDA Detector Overview of the PANDA Physics Program The PANDA Detector

James Ritman Univ. Giessen

Pbar-Nucleus InteractionsThe interaction of charmed mesonswith the baryonic environment strongly effects production rates near threshold

Page 35: James Ritman Univ. Giessen New Opportunities for Hadron Physics with the Planned PANDA Detector Overview of the PANDA Physics Program The PANDA Detector

Strange Baryons in Nuclear FieldsHypernuclei open a 3rd dimension (strangeness) in the nuclear chart

-

3 GeV/c

K+KTrigger

_

secondary target

p

• Double-hypernuclei: very little data

• Baryon-baryon interactions: -N only short ranged (no 1 exchange due to isospin) impossible in scattering reactions

-(dss) p(uud) (uds) (uds)

Page 36: James Ritman Univ. Giessen New Opportunities for Hadron Physics with the Planned PANDA Detector Overview of the PANDA Physics Program The PANDA Detector

James Ritman Univ. Giessen

Probe large separations with highly excited qq states_

Charmonium Spectroscopy

Page 37: James Ritman Univ. Giessen New Opportunities for Hadron Physics with the Planned PANDA Detector Overview of the PANDA Physics Program The PANDA Detector

James Ritman Univ. Giessen

The GSI Future Project

• Heavy Ion Physics: hot and dense nuclear matter

• Nuclear Structure: paths of nucleo-synthesis

• Ion and laser induced Plasma: very high energy densities• Atomic physics: QED, strong EM fields, Ion-Matter interactions• Physics with Antiprotons properties of the strong force

Project approved Feb 2003

Page 38: James Ritman Univ. Giessen New Opportunities for Hadron Physics with the Planned PANDA Detector Overview of the PANDA Physics Program The PANDA Detector

James Ritman Univ. Giessen

Open Questions

• The c(11S0)

• The c(21S0)

• The hc(1P1)

• States above the DD threshold

Page 39: James Ritman Univ. Giessen New Opportunities for Hadron Physics with the Planned PANDA Detector Overview of the PANDA Physics Program The PANDA Detector

James Ritman Univ. Giessen

Proton Form Factors at large Q2

At high values of momentum transfer |Q2| the system should be describable by perturbative QCD. Due to dimensional scaling, the FF should vary as Q4.

222 lns

s

CG

p

M

q2>0

q2<0

The time like FF remains about a factor 2 above the space like. These differences should vanish in pQCD, thus the asymptotic behavior has not yet been reached at these large values of |q2|. (HESR up to s ~ 25 GeV2)

Page 40: James Ritman Univ. Giessen New Opportunities for Hadron Physics with the Planned PANDA Detector Overview of the PANDA Physics Program The PANDA Detector

James Ritman Univ. Giessen

Mixing With Mesonic States

Width: could be narrow (5-50 MeV) since

DD suppressed for some states

O+- DD,D*D*,DsDs (CP-Inv.)

(QQg) (Qq)L=0+(Qq)L=0 (Dynamic Selection Rule)

If DD forbidden, then the preferred decay is

(ccg) (cc) + X , e.g. 1-+

Ex

oti

c lig

ht

qq

Ex

oti

c cc

1 - - 1 - +

0 2 0 0 0 4 0 0 0M e V / c2

10 - 2

1

1 0 2

Page 41: James Ritman Univ. Giessen New Opportunities for Hadron Physics with the Planned PANDA Detector Overview of the PANDA Physics Program The PANDA Detector

Spontaneous Breaking of Chiral Symmetry

Although the QCD Lagrangian is symmetric, the ground state need not be. (e.g. Fe below TCurie )

Example:

Page 42: James Ritman Univ. Giessen New Opportunities for Hadron Physics with the Planned PANDA Detector Overview of the PANDA Physics Program The PANDA Detector

James Ritman Univ. Giessen

Exotic Hadrons

Page 43: James Ritman Univ. Giessen New Opportunities for Hadron Physics with the Planned PANDA Detector Overview of the PANDA Physics Program The PANDA Detector

James Ritman Univ. Giessen

Glueballs

gg

g

RG

GR

BGGRRB

C. Morningstar PRD60, 034509 (1999)Self interaction between gluons

Construction of color-neutral hadrons with gluons possible

exotic glueballs don‘t mix with mesons (qq)

0--, 0+-, 1-+, 2+-, 3-+,...

Page 44: James Ritman Univ. Giessen New Opportunities for Hadron Physics with the Planned PANDA Detector Overview of the PANDA Physics Program The PANDA Detector

James Ritman Univ. Giessen

RBRB

Prediction in QCD:

Collective gluon excitation

(Gluons contribute to quantum numbers)

Ground state: JPC = 1-+ (spin exotic)

Charm Hybrids ccg

distance between quarks

Page 45: James Ritman Univ. Giessen New Opportunities for Hadron Physics with the Planned PANDA Detector Overview of the PANDA Physics Program The PANDA Detector

James Ritman Univ. Giessen

Partial Wave Analysis

Partial wave analysis as important tool

Example of 1-+ (CB@LEAR)pd X(1-+)++p, X

Strength ~ qq States !

Signal in production but not in formation is interesting !

Page 46: James Ritman Univ. Giessen New Opportunities for Hadron Physics with the Planned PANDA Detector Overview of the PANDA Physics Program The PANDA Detector

James Ritman Univ. Giessen

Quark Condensate

The QCD vacuum is not empty 0qq

Hadron masses are generated by the strong interaction with <qq> (also with gluon condensate)

The density of the quark condensate will change as a function of temperature and density in nuclei.

This should lead to modifications of the hadron’s spectral properties.

Page 47: James Ritman Univ. Giessen New Opportunities for Hadron Physics with the Planned PANDA Detector Overview of the PANDA Physics Program The PANDA Detector

Hadrons in the Nuclear Medium

Spectral functions

W.Peters et al., Nucl. Phys. A632, 109 (1998).S.Klimt et al., Nucl. Phys. A515, 429 (1990).

<qq>

Reduction of <qq>

Page 48: James Ritman Univ. Giessen New Opportunities for Hadron Physics with the Planned PANDA Detector Overview of the PANDA Physics Program The PANDA Detector

James Ritman Univ. Giessen

Deeply Bound Pionic Atoms

Pionic capture is possible with the appropriate choice of kinematics:

d+n 3He + -

These results indicate a mass shift of ~25 MeV for pions at normal nuclear matter density.

Page 49: James Ritman Univ. Giessen New Opportunities for Hadron Physics with the Planned PANDA Detector Overview of the PANDA Physics Program The PANDA Detector

James Ritman Univ. Giessen

J.Schaffner-Bielich et al., Nucl. Phys. A (1997) 325.

Kaons in Nuclear Matter

Kaon and anti-kaon masses should no longer be degenerate in nuclear matter.

Expected signal: increased K- production compared to K+.

Page 50: James Ritman Univ. Giessen New Opportunities for Hadron Physics with the Planned PANDA Detector Overview of the PANDA Physics Program The PANDA Detector

James Ritman Univ. Giessen

Measured K- Cross Section

[1] A.Sibirtsev et al., Z.Phys. A358 (1997) 101.[2] F.Laue et al., Phys.Rev. Lett. 82 (1999) 1640.[3] C.Quentmeier et al., Phys Lett B 515 (2001) 276.

KaoS

dramatic enhancement of the K- production probability

Comparison of proton-proton data with heavy ion data[2]:

Page 51: James Ritman Univ. Giessen New Opportunities for Hadron Physics with the Planned PANDA Detector Overview of the PANDA Physics Program The PANDA Detector

James Ritman Univ. Giessen

Open Charm in Nuclei

The interaction of charmed mesons with the baryonic environment strongly effects production rates near threshold

Page 52: James Ritman Univ. Giessen New Opportunities for Hadron Physics with the Planned PANDA Detector Overview of the PANDA Physics Program The PANDA Detector

James Ritman Univ. Giessen

cc Production in Nuclear Matter

The mass of charmonium states is not expected to change much.

However, a drop of the DD mass leads to a widening of the ccstates.

’ will have too high momentum, most decay outside. but wider tails

Page 53: James Ritman Univ. Giessen New Opportunities for Hadron Physics with the Planned PANDA Detector Overview of the PANDA Physics Program The PANDA Detector

James Ritman Univ. Giessen

Charmonium in NucleiDue to the increased width, the dileptons from charmonium states below the free DD threshold are strongly suppressed.

Golubeva et al. Eur.Phys.J. A17 (2003) 275-284