J. Vovelle and S. Martin- Large-Time Behavior of Entropy Solutions to Scalar Conservation Laws on Bounded Domain

  • Upload
    23213m

  • View
    219

  • Download
    0

Embed Size (px)

Citation preview

  • 8/3/2019 J. Vovelle and S. Martin- Large-Time Behavior of Entropy Solutions to Scalar Conservation Laws on Bounded Domain

    1/21

    123

    Theory, Numerics, Applications

    Sylvie Benzoni-Gavage Denis SerreEditors

    Hyperbolic Problems:

    Proceedings of the Eleventh International Conference

    on Hyperbolic Problems held in Ecole Normale

    Suprieure, Lyon, July 1721, 2006

  • 8/3/2019 J. Vovelle and S. Martin- Large-Time Behavior of Entropy Solutions to Scalar Conservation Laws on Bounded Domain

    2/21

    Sylvie Benzoni-GavageInstitut Camille JordanUMR CNRS 5208Universit Claude Bernard Lyon 143, Bd du 11 novembre 191869622 Villeurbanne cedex, [email protected]

    Denis SerreUMPA, UMR CNRS 5669Ecole Normale Suprieure de Lyon46, alle dltalie69364 Lyon cedex 07, [email protected]

    ISBN 978-3-540-75711-5 e-ISBN 978-3-540-75712-2

    Library of Congress Control Number: 2007 937 290

    Mathematics Subject Classification (2000): 35L40, 35L60, 35L65, 35L67, 35Q35, 35Q72, 35Q75,

    65M06, 65M50, 83C55

    c 2008 Springer-Verlag Berlin Heidelberg

    This work is subject to copyright. All rights are reserved, whether the whole or part of the material isconcerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publicationor parts thereof is permitted only under the provisions of the German Copyright Law of September 9,1965, in its current version, and permission for use must always be obtained from Springer. Violations areliable to prosecution under the German Copyright Law.

    The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,even in the absence of a specific statement, that such names are exempt from the relevant protective lawsand regulations and therefore free for general use.

    Cover Design: WMXDesign GmbH, Heidelberg

    Printed on acid-free paper

    9 8 7 6 5 4 3 2 1

    springer.com

  • 8/3/2019 J. Vovelle and S. Martin- Large-Time Behavior of Entropy Solutions to Scalar Conservation Laws on Bounded Domain

    3/21

    Large-Time Behavior of Entropy Solutions to

    Scalar Conservation Laws on Bounded Domain

    J. Vovelle and S. Martin

    Summary. We study the large-time behavior of entropy solutions to scalar conser-vation laws on a one-dimensional bounded domain. We show that, if the boundarydata are stabilizing (in the sense that they allow for the existence of a station-ary solution), then the entropy solution converges to a stationary solution to theproblem.

    1 Introduction

    Let A Liploc(R). Let u(t) be the entropy solution to the following CauchyDirichlet problem

    ut + (A(u))x = 0, t > 0, 0 < x < 1, (1)

    u(x, 0) = u0(x), 0 < x < 1 (2)

    u(0, t) = u1(t), u(1, t) = u2(t), t > 0. (3)

    We investigate the asymptotic behavior [t +] of u(t). The data u0 andu are supposed to be measurable and bounded a.e.

    1.1 Large-Time Behavior of the Entropy Solutionto the Cauchy Problem

    The behavior as [t +] ofu(t), the entropy solution to the Cauchy problem

    ut + (A(u))x = 0, x R, t > 0 (4)

    u(x, 0) = u0(x), x R, (5)

    has been extensively analyzed since the first works of Lax ([Lax57], and wealso refer to Ilin and Oleinik [IO60], DiPerna [DiP75], Liu and Pierre [LP84],DaFermos [Daf85], and Kim [Kim03]). In particular, if the flux A is strictly

  • 8/3/2019 J. Vovelle and S. Martin- Large-Time Behavior of Entropy Solutions to Scalar Conservation Laws on Bounded Domain

    4/21

    1070 J. Vovelle and S. Martin

    convex and if u0 L1 L(R), the entropy solution converges to a so-calledN-wave with specific rates in L1(R) and L(R).

    A related problem is the question of the stability of the solution travelingwaves of (4) and (5) or, more generally, the question of the stability of solu-tion as profiles to conservation laws. Let us refer to the works of Kawashimaand Matsumura [KM85], Matsumura and Nishihara [MN94], Liu and Nishi-hira [LN97], Freistuhler and Serre [FS98], and Serre [Ser04]. We state inparticular the following results of Freistuhler and Serre.

    Theorem 1 (Freistuhler and Serre). Assume thatA is strictly convex. Letw be a (nontrivial) shock profile of (4). Then, for all u0 w + L

    1(R),

    u(t) w( + )L1

    (R) 0, =

    1

    w+ wR u0 w.

    Remark 1. It is a result of orbital stability; the value of is determined by theconservation of the mass. The result is false as soon as A is not convex.

    1.2 Large-Time Behavior of the Entropy Solutionto the CauchyDirichlet Problem

    The CauchyDirichlet problem is of course different from the Cauchy problemsince the boundary data can possibly act on the values of the solution at anytime and prevent any kind of convergence. There are much less references inthis topic: see Mascia and Terracina [MT99] (asymptotic behavior driven by

    a source term) and also the work of Freistuhler and Serre [FS01] related tostability of boundary layers in the viscous approximation of a first-order scalarconservation law. We consider a.e. bounded measurable data and, without lossof generality, we actually consider data (hence solutions) with values in [0, 1].Our result is the following one: let

    X0 := L(0, 1;[0, 1]), X := L(R+; [0, 1])

    2

    be endowed with the L1 norm. These are closed subspaces of L1(0, 1) andL1(R+)2, respectively (because the limit of a converging sequence in Lp isalso the limit of a a.e. converging subsequence), hence Banach spaces. Onthe space X0 X, we define the flow S(t) associated to the resolution of theCauchyDirichlet problem (1)(2)(3) (see Sect. 2). We then introduce the

    notion of stationary solution and stabilizing boundary data.

    Definition 1. A function w X0 is said to be a stationary solution to (1)(2)(3) if there exists (u1, u2) X such that w = S(t)(w, (u1, u2)): we saythat w is a stationary solution associated to the boundary data (u1, u2). Aset of boundary data (u1, u2) X is said to be stabilizing if there exists astationary solution associated to it.

  • 8/3/2019 J. Vovelle and S. Martin- Large-Time Behavior of Entropy Solutions to Scalar Conservation Laws on Bounded Domain

    5/21

    Large-Time Behavior of Entropy Solutions 1071

    Theorem 2. Suppose that A is a strictly convex function on [0, 1]. Let

    (u1, u2) X

    be a stabilizing set of boundary data. Then for all u0 X0, S(t)(u0, (u1, u2))converges to a stationary solution associated to (u1, u2) when t +.

    We refer to [MV06] for a similar result in case of an nonautonomousequation (A depending on the variable x).

    The proof of Theorem 2 uses the tools developed by Freistuhler and Serrefor the study of the stability of profiles to conservation laws, it also exploits theprinciple of comparison for sub- and supersolutions for the CauchyDirichletproblem (1)(2)(3).

    2 Sub-, Supersolutions, and Flow

    Definition 2. Let be an open subset of R. Let u0 X0, (u1, u2) X. Afunction u L((0, 1) R+) is an entropy subsolution to the problem (1)(2)(3) on if: for all k R, for all Cc ( R+), 0,

    10

    +0

    (u k)+t + sgn+(u k)(A(u) A(k))xdxdt

    +

    10

    (u0 k)+(x, 0)dx

    ++0

    sgn+(u1 k)(A1(u1) A1(k))(0, t)dtt

    +

    +0

    sgn+(u2 k)(A2(u2) A2(k))(1, t)dt 0, (6)

    with A1(u) :=u0 (A

    ())+d and A2(u) :=u0 (A

    ())d. A supersolution on is defined similarly, using the entropy(u k). In case u is both a sub- andsupersolution on [0, 1], we say that u is an entropy solution.

    Theorem 3. The entropy solution u of the CauchyDirichlet problem (1)(2)(3) is continuous in time with values in L1(0, 1) and thus defines a flowS(t) which has the following properties: it is monotone:

    (u0, (u1, u2)) (v0, (v1, v2))

    impliesS(t)(u0, (u1, u2)) S(t)(v0, (v1, v2))

    for allt > 0; it is L1 nonexpansive:

    S(t)(u0, (u1, u2)) S(t)(v0, (v))L1(0,1) u0 v0L1(0,1)

    + Lu1 v1L1(0,t) + Lu2 v2L1(0,t), (7)

  • 8/3/2019 J. Vovelle and S. Martin- Large-Time Behavior of Entropy Solutions to Scalar Conservation Laws on Bounded Domain

    6/21

    1072 J. Vovelle and S. Martin

    where L := AL; it preserves the space BV: if

    u0BV(0,1), u1BV(R+), u2BV(R+) C,

    thenS(t)(u0, (u1, u2))BV(0,1) C

    . (8)

    The property of monotony and (7) can be deduced from the followingresult of comparison (and more generally we refer to [BLN79, Ott93, Ott96]for the proof of Theorem 3).

    Proposition 1. Let be an open subset of R. Let u, v L((0, 1) R+) be,respectively, an entropy sub- and supersolution to the problem (1)(2)(3) on. Then, for all C

    c( R

    +), 0,

    10

    +0

    (u v)+t + sgn+(u v)(A(u) A(v))xdxdt

    +

    10

    (u0 v0)+(x, 0)dx

    +

    +0

    sgn+(u1 v1)(A1(u1) A1(v1))(0, t)dt

    +

    +0

    sgn+(u2 v2)(A2(u2) A2(v2))(1, t)dt 0, (9)

    We will use Proposition 1 to derive Lyapunov functionals for the evolu-

    tion along the flow S, but first we have to analyze the stationary solutionsassociated to given stabilizing boundary data.

    3 Stationary Solution

    Let (u1, u2) X be stabilizing boundary data. Let (u1, u2) be the set ofstationary solutions associated to (u1, u2). The set (u1, u2) is nonempty byhypothesis: let w (u1, u2). The weak form of the equation shows that theflux q := A(w) is constant. Since A is strictly convex on [0, 1], the equationq = A(w) admits at most two constant solutions, say . By use of theentropy conditions in their weak form, we show that

    (u1, u2)

    wz := 1(z,1] + 1[0,z), z [0, 1]

    (to sum up, the proof of this result uses Proposition 1 on = (0, 1) andamounts to compare an element of(u1, u2) with specific stationary solutionswith flux q = q). Then, by analysis of the boundary conditions, we prove thefollowing result.

    In the following, and to give self-consistent proofs in this short chapter(see Sect. 4), we will assume:

  • 8/3/2019 J. Vovelle and S. Martin- Large-Time Behavior of Entropy Solutions to Scalar Conservation Laws on Bounded Domain

    7/21

    Large-Time Behavior of Entropy Solutions 1073

    there is a nontrivial stationary shock in (u1, u2). (10)

    This amounts to suppose < and that there is z (0, 1) such that wz (u1, u2). Notice that, although we do this hypothesis, Theorem 2 is true inits generality. Under hypothesis (10), the result of Theorem 2 is to be relatedto the result of Theorem 1. Indeed, in that case, we have

    (u1, u2) =

    wz := 1(z,1] + 1[0,z), z [0, 1]

    ,

    i.e., every stationary solution is a shift of wz .

    4 Convergence in Large Time

    We give the proof of Theorem 2 under hypothesis (10). Let (u1, u2) X befixed stabilizing boundary data. We use the notations of Sect. 3. For u0 X0,we also denote (S(t)u0) the trajectory (S(t)(u0, (u1, u2)) since the boundarydata are fixed.

    Lemma 1. Let u0 X0. The trajectory (S(t)u0) is relatively compact inL1(0, 1).

    The relative compactness of the bounded sets of BV(0, 1) in L1(0, 1) andthe property (8) show that the result in case u0 has, additionally, a boundedvariation on (0, 1). We then deduce the lemma from the fact that S(t) is L1

    nonexpansive. Indeed, if > 0, then there exists u0 X0 BV(0, 1) such thatu0 u0L1(0,1) < /2. We then have S(t)u0 S(t)u0L1(0,1) < /2 for allt > 0. Since {S(t)u0} is relatively compact in X0, there is a finite number ofballs of radii /2 covering it. We deduce that {S(t)u0} is covered by a finitenumber of balls of radii . Since is arbitrary and X0 is a Banach space,{S(t)u0} is relatively compact in X0.

    A corollary of Lemma 1 is the fact that each limit set

    (u0) :=t>0

    {S()(u0); t}

    is not empty. In a second step, we show that (u0) (u1, u2). To thispurpose, we first prove Lemma 2.

    Lemma 2. Set

    (X0) :=

    u0X0

    (u0) and X1 := {w X0, w a.e.}.

    Then (X0) is a subset of X1 and X1 is invariant by the flow.

  • 8/3/2019 J. Vovelle and S. Martin- Large-Time Behavior of Entropy Solutions to Scalar Conservation Laws on Bounded Domain

    8/21

    1074 J. Vovelle and S. Martin

    That X1 is invariant by the flow follows from the result of comparison ofProposition 1 between S(t)u0 and the constant solutions and . To showthe inclusion (X0) X1, we also use comparison between S(t)u0 and theconstant solution (or ): for every Cc (R (0, +)), 0,10

    +0

    (S(t)u0 )+t + sgn+(S(t)u0 )(A(S(t)u0) A())xdxdt 0.

    (11)Since < and , , are both constant solutions of the equation A(w) = qand A is convex, we have := A() > 0 and

    sgn+(S(t)u0 )(A(S(t)u0) A()) (S(t)u0 )+.

    Setting (x, t) := ex(t), Cc

    ((0, +), 0 in (11), we derive theinequality

    , (t) :=

    10

    (S(t)u0 )+exdx

    in D(0, +), from which follows the exponential decrease of . Similarly, weshow that

    t

    10

    (S(t)u0 )exdx

    decreases exponentially fast to 0. These two results show that (X0) X1.The next step of the proof is to use the set of solutions {wz, z [0, 1]} to

    derive Lyapunov functionals. Indeed, the result of comparison of Proposition 1(used with = R and independent on x) shows that, for any z [0, 1],

    the map u (wz u)+L1(R)

    is nonincreasing along the trajectories. As a consequence of the LaSalleprinciple, we have, for any a (u0),

    (wz S(t)a)+L1(R) = cst = (wz a)

    +L1(R).

    But by Lemma 2, we have

    (wz S(t)a)+L1(R) =

    z0

    ( S(t)a)dx

    and we deduce

    z

    0 ( S(t)a)dx =

    z

    0 ( a)dx, z (0, 1),

    i.e.,z0 (S(t)aa)dx = 0 for all z (0, 1). This shows that S(t)a = a and that a

    is a stationary solution. We then conclude to the convergence of the trajectory.First, there is at most one element in (u0) for if a (u0), the trajectorycan only get closer and closer to a because a is a stationary solution and S(t)is nonexpansive. Second, (u0) is nonempty by compactness, it is thereforereduced to one element and (S(t)u0) converges to this element a (u1, u2).

  • 8/3/2019 J. Vovelle and S. Martin- Large-Time Behavior of Entropy Solutions to Scalar Conservation Laws on Bounded Domain

    9/21

    Large-Time Behavior of Entropy Solutions 1075

    References

    [BLN79] C. Bardos, A.Y. LeRoux, and J.-C. Nedelec, First order quasilinear equa-tions with boundary conditions, Comm. Partial Differential Equations 4(1979), no. 9, 10171034.

    [Bre83] Y. Brenier, Resolution dequa tions devolution quasilineaires en dimensionN despace a laide dequations lineaires en dimensionN+1, J. DifferentialEquations 50 (1983), no. 3, 375390.

    [Daf85] C. M. Dafermos, Regularity and large time behaviour of solutions of aconservation law without convexity, Proc. Roy. Soc. Edinburgh Sect. A 99(1985), no. 3-4, 201239.

    [DiP75] R.J. DiPerna, Decay and asymptotic behavior of solutions to nonlin-ear hyperbolic systems of conservation laws, Indiana Univ. Math. J. 24

    (1974/75), no. 11, 10471071.[FS98] H. Freistuhler and D. Serre, L1 stability of shock waves in scalar viscousconservation laws, Comm. Pure Appl. Math. 51 (1998), no. 3, 291301.

    [FS01] H. Freistuhler and D. Serre, The L1-stability of boundary layers for scalarviscous conservation laws, J. Dynam. Differential Equations 13 (2001),no. 4, 745755.

    [GM83] Y. Giga and T. Miyakawa, A kinetic construction of global solutions of first order quasilinear equations, Duke Math. J. 50 (1983), no. 2, 505515.

    [IO60] A.M. Ilin and O.A. Olenik, Asymptotic behavior of solutions of theCauchy problem for some quasi-linear equations for large values of the

    time, Mat. Sb. (N.S.) 51 (93) (1960), 191216.[Kim03] Y.J. Kim, Asymptotic behavior of solutions to scalar conservation laws

    and optimal convergence orders to N-waves, J. Differential Equations 192(2003), no. 1, 202224.

    [KM85] S. Kawashima and A. Matsumura, Asymptotic stability of traveling wavesolutions of systems for one-dimensional gas motion, Comm. Math. Phys.101 (1985), no. 1, 97127.

    [Lax57] P. D. Lax, Hyperbolic systems of conservation laws. II, Comm. Pure Appl.Math. 10 (1957), 537566.

    [LN97] T.-P. Liu and K. Nishihara, Asymptotic behavior for scalar viscous con-servation laws with boundary effect, J. Differential Equations 133 (1997),no. 2, 296320.

    [LP84] T.-P. Liu and M. Pierre, Source-solutions and asymptotic behavior inconservation laws, J. Differential Equations 51 (1984), no. 3, 419441.

    [LPT94] P.-L. Lions, B. Perthame, and E. Tadmor, A kinetic formulation of mul-tidimensional scalar conservation laws and related equations, J. Amer.Math. Soc. 7 (1994), no. 1, 169191.

    [MV06] S. Martin, J. Vovelle, Large-time behaviour of the entropy solution of ascalar conservation law with boundary conditions, accepted for publicationin Quart. J. Mech. Appl. Math.

    [MN94] A. Matsumura and K. Nishihara, Asymptotic stability of traveling waves for scalar viscous conservation laws with non-convex nonlinearity, Comm.Math. Phys. 165 (1994), no. 1, 8396.

    [MT99] C. Mascia and A. Terracina, Large-time behavior for conservation lawswith source in a bounded domain, J. Differential Equations 159 (1999),no. 2, 485514.

  • 8/3/2019 J. Vovelle and S. Martin- Large-Time Behavior of Entropy Solutions to Scalar Conservation Laws on Bounded Domain

    10/21

  • 8/3/2019 J. Vovelle and S. Martin- Large-Time Behavior of Entropy Solutions to Scalar Conservation Laws on Bounded Domain

    11/21

    Contents

    Part I Plenary Lectures

    General Relativistic Hydrodynamics andMagnetohydrodynamics: Hyperbolic Systemsin Relativistic AstrophysicsJ.A. Font . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

    On Approximations for Overdetermined Hyperbolic EquationsS.K. Godunov . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

    Stable Galaxy Configurations

    Y. Guo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35

    Dissipative Structure of Regularity-Loss Typeand ApplicationsS. Kawashima . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

    Dissipative Hyperbolic Systems: the Asymptotic Behaviorof SolutionsS. Bianchini, B. Hanouzet, and R. Natalini . . . . . . . . . . . . . . . . . . . . . . . 59

    Part I I Invited Lectures

    Higher Order Numerical Schemes for Hyperbolic Systems

    with an Application in Fluid DynamicsV. Dolejs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

    A Penalization Technique for the Efficient Computationof Compressible Fluid Flow with ObstaclesG. Chiavassa and R. Donat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

  • 8/3/2019 J. Vovelle and S. Martin- Large-Time Behavior of Entropy Solutions to Scalar Conservation Laws on Bounded Domain

    12/21

    VIII Contents

    Exact Solutions to Supersonic Flow onto a Solid WedgeV. Elling and T.-P. Liu. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

    Resonance and NonlinearitiesT. Gallou et . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

    Lp-Stability Theory of the Boltzmann Equation Near VacuumS.-Y. Ha, M. Yamazaki, and S.-B. Yun . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

    A Relaxation Scheme for the Two-Layer ShallowWater SystemR. Abgrall and S. Karni . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

    Group Dynamics of Phototaxis: Interacting Stochastic

    Many-Particle Systems and Their Continuum LimitD. Bhaya, D. Levy, and T. Requeijo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

    Vacuum Problem of One-Dimensional CompressibleNavierStokes EquationsH.-L. Li, J. Li, and Z. Xin. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

    Stability and Instability Issues for Relaxation Shock ProfilesC. Mascia. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

    A New hp-Adaptive DG Scheme for Conservation Laws Basedon Error ControlA. Dedner and M. Ohlberger. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

    Elliptic and Centrifugal Instabilities in Incompressible FluidsF. Gallaire, D. Gerard-Varet, and F. Rousset . . . . . . . . . . . . . . . . . . . . . . 199

    On Compressible CurrentVortex SheetsY. Trakhinin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

    On the Motion of Binary Fluid MixturesK. Trivisa. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

    On the Optimality of the Observability Inequalities forKirchhoff Plate Systems with Potentials in UnboundedDomainsX. Zhang and E. Zuazua . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233

  • 8/3/2019 J. Vovelle and S. Martin- Large-Time Behavior of Entropy Solutions to Scalar Conservation Laws on Bounded Domain

    13/21

    Contents IX

    Part I II Mini-Symposium on Hydraulics

    High Order Finite Volume Methods Applied to SedimentTransport and Submarine AvalanchesD. Bresch, M.J.C. Daz, E.D. Fernandez-Nieto, A.M. Ferreiro,

    and A. Mangeney . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247

    On a Well-Balanced High-Order Finite Volume Scheme forthe Shallow Water Equations with Bottom Topography andDry AreasJ.M. Gallardo, M. Castro, C. Pares, and J.M. Gonzalez-Vida . . . . . . . 259

    A Simple Well-Balanced Model for Two-Dimensional CoastalEngineering ApplicationsF. Marche . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271

    A Model for Bed-Load Transport and MorphologicalEvolution in Rivers: Description and PertinenceA. Paquier and K. El Kadi. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285

    Part IV Contributed Talks

    Homogenization of Conservation Laws with OscillatorySource and Nonoscillatory Data

    D. Amadori . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .299

    Short-Time Well-Posedness of Free-Surface Problemsin Irrotational 3D FluidsD.M. Ambrose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307

    Mathematical Study of Static Grain Deep-Bed Drying ModelsD. Aregba-Driollet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315

    Finite Volume Central Schemes for Three-DimensionalIdeal MHDP. Arminjon and R. Touma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323

    Finite Volume Methods for Low Mach Number Flows

    under buoyancyP. Birken . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331

    Time Splitting with Improved Accuracyfor the Shallow Water EquationsA. Bourchtein and L. Bourchtein . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339

  • 8/3/2019 J. Vovelle and S. Martin- Large-Time Behavior of Entropy Solutions to Scalar Conservation Laws on Bounded Domain

    14/21

    X Contents

    Compact Third-Order Logarithmic Limiting for NonlinearHyperbolic Conservation LawsM. Cada, M. Torrilhon, and R. Jeltsch . . . . . . . . . . . . . . . . . . . . . . . . . . . 347

    A Finite Volume Grid for Solving Hyperbolic Problemson the SphereD. Calhoun, C. Helzel, and R.J. LeVeque . . . . . . . . . . . . . . . . . . . . . . . . . 355

    Capturing Infinitely Sharp Discrete Shock Profiles with theGodunov SchemeC. Chalons and F. Coquel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363

    Propagation of Diffusing Pollutant by a Hybrid

    EulerianLagrangian MethodA. Chertock, E. Kashdan, and A. Kurganov . . . . . . . . . . . . . . . . . . . . . . . 371

    Nonlocal Conservation Laws with MemoryC. Christoforou . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 381

    Global Weak Solutions for a Shallow Water EquationG.M. Coclite, H. Holden, and K.H. Karlsen . . . . . . . . . . . . . . . . . . . . . . . 389

    Structural Stability of Shock Solutions of Hyperbolic Systemsin Nonconservation Form via Kinetic RelationsB. Audebert and F. Coquel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 397

    A Hyperbolic Model of Multiphase Flow

    D. Amadori and A. Corli . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 407

    Nonlinear Stability of Compressible Vortex SheetsJ-F. Coulombel and P. Secchi. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 415

    Regularity and Compactness for the DiPernaLions FlowG. Crippa and C. De Lellis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 423

    A Note on L1 Stability of Traveling Waves for aOne-Dimensional BGK ModelC.M. Cuesta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 431

    The Weak Rankine Hugoniot InequalityB. Despres . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 439

    Numerical Investigations Concerning the Strategy of Controlof the Spatial Order of Approximation Along a FittedGasLiquid InterfaceC. Dickopp and J. Ballmann . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 449

  • 8/3/2019 J. Vovelle and S. Martin- Large-Time Behavior of Entropy Solutions to Scalar Conservation Laws on Bounded Domain

    15/21

    Contents XI

    Domain Decomposition Techniques and Hybrid MultiscaleMethods for Kinetic EquationsG. Dimarco and L. Pareschi. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 457

    A Shock Sensor-Based Second-Order Blended (Bx) UpwindResidual Distribution Scheme for Steady and UnsteadyCompressible FlowJ. Dobes and H. Deconinck. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 465

    Artificial Compressibility Approximation for theIncompressible NavierStokes Equationson Unbounded DomainD. Donatelli and P. Marcati. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 475

    Traveling-Wave Solutions for Hyperbolic Systemsof Balance LawsA. Dressel and W.-A. Yong . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 485

    A Hyperbolic-Elliptic Model for Coupled Well-PorousMedia FlowS. Evje and K.H. Karlsen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 493

    High-Resolution Finite Volume Methods for ExtracorporealShock Wave TherapyK. Fagnan, R.J. LeVeque, T.J. Matula, and B. MacConaghy . . . . . . . . 503

    Asymptotic Properties of a Class of Weak Solutions to the

    NavierStokesFourier SystemE. Feireisl. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 511

    A New Technique for the Numerical Solution of theCompressible Euler Equations with Arbitrary Mach NumbersM. Feistauer and V. Kucera. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 523

    Monokinetic Limits of theVlasov-Poisson/Maxwell-Fokker-Planck SystemL. Hsiao, F. Li, and S. Wang . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 533

    High-Resolution Methods and Adaptive Refinement forTsunami Propagation and Inundation

    D.L. George and R.J. LeVeque . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .541

    Young Measure Solutions of Some Nonlinear MixedType EquationsH.-P. Gittel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 551

    Computing Phase Transitions Arising in Traffic Flow ModelingC. Chalons and P. Goatin. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 559

  • 8/3/2019 J. Vovelle and S. Martin- Large-Time Behavior of Entropy Solutions to Scalar Conservation Laws on Bounded Domain

    16/21

    XI I Contents

    Dafermos Regularization for Interface Couplingof Conservation LawsB. Boutin, F. Coquel, and E. Godlewski. . . . . . . . . . . . . . . . . . . . . . . . . . . 567

    Nonlocal Sources in Hyperbolic Balance Lawswith ApplicationsR.M. Colombo and G. Guerra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 577

    Comparison of Several Finite Difference Methods forMagnetohydrodynamics in 1D and 2DP. Havlk and R. Liska . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 585

    On Global Large Solutions to 1-D Gas Dynamics

    E.E. Endres and H.K. Jenssen. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .593

    A Carbuncle Free Roe-Type Solverfor the Euler EquationsF. Kemm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 601

    WENOCLAW: A Higher Order Wave Propagation MethodD.I. Ketcheson and R.J. LeVeque . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 609

    Unsteady Transonic Airfoil Flow Simulations usingHigh-Order WENO SchemesI. Klioutchnikov, J. Ballmann, H. Oliver, V. Hermes, and A. Alshabu 617

    The PredictorCorrector Method for Solving

    of Magnetohydrodynamic ProblemsT. Kozlinskaya and V. Kovenya . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 625

    A Central-Upwind Scheme for Nonlinear Water WavesGenerated by Submarine LandslidesA. Kurganov and G. Petrova . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 635

    An A Posteriori Error Estimate for Glimms SchemeM. Laforest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 643

    Multiphase Flows in Mass Transfer in Porous MediaW. Lambert and D. Marchesin. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 653

    Nonlinear HyperbolicElliptic Coupled Systems Arising in

    Radiation DynamicsC. Lattanzio, C. Mascia, and D. Serre . . . . . . . . . . . . . . . . . . . . . . . . . . . . 661

    The Lagrangian Coordinates Applied to the LWR ModelL. Ludovic, C. Estelle, and L. Jorge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 671

  • 8/3/2019 J. Vovelle and S. Martin- Large-Time Behavior of Entropy Solutions to Scalar Conservation Laws on Bounded Domain

    17/21

    Contents XIII

    Hyperbolic Conservation Laws and Spacetimeswith Limited RegularityP.G. LeFloch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 679

    Arbitrary LagrangianEulerian (ALE) Method in CylindricalCoordinates for Laser Plasma SimulationsM. Kucharik, R. Liska, R. Loubere, and M. Shashkov. . . . . . . . . . . . . . . 687

    Numerical Aspects of Parabolic Regularization for ResonantHyperbolic Balance LawsM. Kraft and M. Lukacov a-Medvidov a . . . . . . . . . . . . . . . . . . . . . . . . . . . . 695

    Three-Dimensional Adaptive Central Schemes on

    Unstructured Staggered GridsA. Madrane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 703

    High Amplitude Solutions for Small Data in Pairs ofConservation Laws that Change TypeV. Matos and D. Marchesin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 711

    Asymptotic Behavior of Riemann Problem with Structurefor Hyperbolic Dissipative SystemsA. Mentrelli and T. Ruggeri. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 721

    Maximal Entropy Solutions for a Scalar Conservation Lawwith Discontinuous FluxS. Mishra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 731

    Semidiscrete Entropy Satisfying Approximate RiemannSolvers and Application to the Suliciu RelaxationApproximationT. Morales and F. Bouchut. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 739

    On the L2-Well Posedness of an Initial Boundary ValueProblem for the Linear Elasticity in Two and ThreeSpace DimensionsA. Morando and D. Serre . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 747

    Intersections Modeling with a Class of Second-OrderModels for Vehicular Traffic Flow

    M. Herty, S. Moutari, and M. Rascle . . . . . . . . . . . . . . . . . . . . . . . . . . . . .755

    Some Contributions About an Implicit Discretization of a 1DInviscid Model for River FlowsA. Bermudez de Castro, R. Munoz-Sola, C. Rodrguez,

    and M. Angel Vilar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 765

  • 8/3/2019 J. Vovelle and S. Martin- Large-Time Behavior of Entropy Solutions to Scalar Conservation Laws on Bounded Domain

    18/21

    XIV Co ntents

    Remarks on the Nonhomogeneous Oseen Problem Arisingfrom Modeling of the Fluid Around a Rotating BodyS. Kracmar, S. Necasov a, and P. Penel. . . . . . . . . . . . . . . . . . . . . . . . . . . 775

    Multi-D Bony Type Potentialfor the BoltzmannEnskog EquationS.-Y. Ha and S.E. Noh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 783

    Convergence of Well-Balanced Schemes for the InitialBoundary Value Problem for Scalar Conservation Laws in 1DM. Nolte and D. Kr oner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 791

    Stability for Multidimensional Periodic Waves

    Near Zero FrequencyM. Oh and K. Zumbrun . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 799

    Existence of Strong Traces for Quasisolutions of ScalarConservation LawsE.Y. Panov . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 807

    Path-Conservative Numerical Schemes for NonconservativeHyperbolic SystemsC. Pares . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 817

    Numerical Modeling of Two-Phase Gravitational GranularFlows with Bottom TopographyM. Pelanti, F. Bouchut, A. Mangeney, and J.-P. Vilotte . . . . . . . . . . . . 825

    Linear Lagrangian Systems of Conservation LawsY.-J. Peng . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 833

    Normal Modes Analysis of Subsonic Phase Boundariesin Elastic MaterialsH. Freist uhler and R.G. Plaza . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 841

    Large Time Step Positivity-Preserving Methodfor Multiphase FlowsF. Coquel, Q.-L. Nguyen, M. Postel, and Q.-H. Tran . . . . . . . . . . . . . . . 849

    Velocity Discretization in Numerical Schemesfor BGK EquationsA. Alaia, S. Pieraccini, and G. Puppo . . . . . . . . . . . . . . . . . . . . . . . . . . . . 857

    A SpaceTime Conservative Method for Hyperbolic Systemsof Relaxation TypeS. Qamar and G. Warnecke . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 865

  • 8/3/2019 J. Vovelle and S. Martin- Large-Time Behavior of Entropy Solutions to Scalar Conservation Laws on Bounded Domain

    19/21

    Contents XV

    A Numerical Scheme Based on Multipeakons for ConservativeSolutions of the CamassaHolm EquationH. Holden and X. Raynaud. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 873

    Consistency of the Explicit Roe Scheme for Low MachNumber Flows in Exterior DomainsF. Rieper and G. Bader. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 883

    Weak and Classical Solutions for a Model Problem inRadiation HydrodynamicsC. Rohde, N. Tiemann, and W.-A. Yong. . . . . . . . . . . . . . . . . . . . . . . . . . 891

    Spectral Analysis of Coupled HyperbolicParabolic Systems

    on Finite and Infinite IntervalsJ. Rottmann-Matthes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 901

    Toward an Improved Capture of Stiff Detonation WavesO. Rouch, M.-O. St-Hilaire, and P. Arminjon . . . . . . . . . . . . . . . . . . . . . 911

    Generalized Momenta of Mass and Their Applications to theFlow of Compressible FluidO. Rozanova . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 919

    ADERRungeKutta Schemes for Conservation Lawsin One Space DimensionG. Russo, E.F. Toro, and V.A. Titarev . . . . . . . . . . . . . . . . . . . . . . . . . . . 929

    Strong Boundary Traces and Well-Posedness for ScalarConservation Laws with Dissipative Boundary ConditionsB. Andreianov and K. Sbihi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 937

    A Relaxation Method for the Couplingof Systems of Conservation LawsA. Ambroso, C. Chalons, F. Coquel, E. Godlewski, F. Lagoutiere,

    P.-A. Raviart, and N. Seguin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 947

    Increasing Efficiency Through Optimal RK Time Integrationof Diffusion EquationsF. Cavalli, G. Naldi , G. Puppo, and M. Semplice . . . . . . . . . . . . . . . . . . 955

    Numerical Simulation of Relativistic Flows Described by aGeneral Equation of StateS. Serna . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 963

    On Delta-Shocks and Singular ShocksV.M. Shelkovich . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 971

  • 8/3/2019 J. Vovelle and S. Martin- Large-Time Behavior of Entropy Solutions to Scalar Conservation Laws on Bounded Domain

    20/21

    XVI Co ntents

    Finite Dimensional Representation of Solutions of ViscousConservation LawsW. Shen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 981

    A Moving-Boundary Tracking Algorithm for InviscidCompressible FlowK.-M. Shyue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 989

    Transparent Boundary Conditions for the Elastic Waves inAnisotropic MediaI.L. Sofronov and N.A. Zaitsev . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 997

    Counterflow Combustion in a Porous Medium

    A.J. de Souza . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1005

    Global Attractor and its Dimension for aKleinGordonSchrodinger SystemM.N. Poulou and N.M. Stavrakakis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1013

    A Few Remarks About a Theoremby J. RauchF. Sueur. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1021

    A Riemann Solver Approach for Conservation Laws withDiscontinuous FluxM. Garavello, R. Natalini, B. Piccoli, and A. Terracina. . . . . . . . . . . . . 1029

    The Strong Shock Wave in the Problem on Flow AroundInfinite Plane WedgeD.L. Tkachev, A.M. Blokhin, and Y.Y. Pashinin. . . . . . . . . . . . . . . . . . . 1037

    The Derivative Riemann Problemfor the BaerNunziato EquationsE.F. Toro and C.E. Castro . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1045

    Stability of Contact Discontinuities for the NonisentropicEuler Equations in Two-Space DimensionsA. Morando and P. Trebeschi. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1053

    Three-Dimensional Numerical MHD Simulationsof Solar ConvectionS.D. Ustyugov . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1061

    Large-Time Behavior of Entropy Solutions to ScalarConservation Laws on Bounded DomainJ. Vovelle and S. Martin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1069

  • 8/3/2019 J. Vovelle and S. Martin- Large-Time Behavior of Entropy Solutions to Scalar Conservation Laws on Bounded Domain

    21/21

    Contents XVII

    A Second-Order Improved Front Tracking Method for theNumerical Treatment of the Hyperbolic Euler EquationsJ.A.S. Witteveen. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1077

    Simulation of Field-Aligned Ideal MHD Flows AroundPerfectly Conducting Cylinders Using an ArtificialCompressibility ApproachM.S. Yalim, D.V. Abeele, and A. Lani . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1085

    Vanishing at Most Seventh-Order Terms of ScalarConservation LawsN. Fujino and M. Yamazaki . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1093

    Large-Time Behavior for a Compressible EnergyTransport ModelL. Hsiao and Y. Li. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1101

    Novel Entropy Stable Schemes for 1D and 2D Fluid EquationsE. Tadmor and W. Zhong. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1111

    Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1121