25
J. Slutsker J. Slutsker , G. McFadden, J. Warren, W. , G. McFadden, J. Warren, W. Boettinger, (NIST) Boettinger, (NIST) K. Thornton K. Thornton , A. Roytburd, P. Voorhees, (U Mich, U , A. Roytburd, P. Voorhees, (U Mich, U Md, NWU) Md, NWU) Surface Energy and Surface Stress in Phase-Field Models of Elasticity •Surface excess quantities and phase- field models •1-D Elastic equilibrium – axial stress & biaxial strain •3-D Equilibrium of two-phase spherical systems Goal: illuminate phase-field description of surface energy and surface strain by simple examples

J. Slutsker, G. McFadden, J. Warren, W. Boettinger, (NIST) K. Thornton, A. Roytburd, P. Voorhees, (U Mich, U Md, NWU) Surface Energy and Surface Stress

Embed Size (px)

Citation preview

Page 1: J. Slutsker, G. McFadden, J. Warren, W. Boettinger, (NIST) K. Thornton, A. Roytburd, P. Voorhees, (U Mich, U Md, NWU) Surface Energy and Surface Stress

J. SlutskerJ. Slutsker, G. McFadden, J. Warren, W. Boettinger, (NIST), G. McFadden, J. Warren, W. Boettinger, (NIST)

K. ThorntonK. Thornton, A. Roytburd, P. Voorhees, (U Mich, U Md, NWU), A. Roytburd, P. Voorhees, (U Mich, U Md, NWU)

Surface Energy and Surface Stress in Phase-Field Models of Elasticity

•Surface excess quantities and phase-field models

•1-D Elastic equilibrium – axial stress & biaxial strain

•3-D Equilibrium of two-phase spherical systems

Goal: illuminate phase-field description of surface energy and surface strain by simple examples

Page 2: J. Slutsker, G. McFadden, J. Warren, W. Boettinger, (NIST) K. Thornton, A. Roytburd, P. Voorhees, (U Mich, U Md, NWU) Surface Energy and Surface Stress

Surface Excess Quantities (Gibbs)

Page 3: J. Slutsker, G. McFadden, J. Warren, W. Boettinger, (NIST) K. Thornton, A. Roytburd, P. Voorhees, (U Mich, U Md, NWU) Surface Energy and Surface Stress

Kramer’s Potential (fluid system)

(surface energy)

Page 4: J. Slutsker, G. McFadden, J. Warren, W. Boettinger, (NIST) K. Thornton, A. Roytburd, P. Voorhees, (U Mich, U Md, NWU) Surface Energy and Surface Stress

z

Solid

“Liquid”

1-D Elastic System (single component)

Page 5: J. Slutsker, G. McFadden, J. Warren, W. Boettinger, (NIST) K. Thornton, A. Roytburd, P. Voorhees, (U Mich, U Md, NWU) Surface Energy and Surface Stress

“Kramer’s Potential” (elastic system)

Page 6: J. Slutsker, G. McFadden, J. Warren, W. Boettinger, (NIST) K. Thornton, A. Roytburd, P. Voorhees, (U Mich, U Md, NWU) Surface Energy and Surface Stress

Planar Geometry

•Solid and “liquid” separated by an interface

•Planar geometry

•No dynamics

•Applied uniaxial stress or biaxial strain

1D problem

0

z

Solid

Liquid

•Examine

Equilibrium temperature (T0)

Surface energy and surface stress (Gibbs adsorption)

•Analytical results and numerical results are compared

eS

Page 7: J. Slutsker, G. McFadden, J. Warren, W. Boettinger, (NIST) K. Thornton, A. Roytburd, P. Voorhees, (U Mich, U Md, NWU) Surface Energy and Surface Stress

Phase-Field Model of Elasticity

1.0

0.8

0.6

0.4

0.2

0.0

1.00.80.60.40.20.0

0.06

0.05

0.04

0.03

0.02

0.01

0.00

Page 8: J. Slutsker, G. McFadden, J. Warren, W. Boettinger, (NIST) K. Thornton, A. Roytburd, P. Voorhees, (U Mich, U Md, NWU) Surface Energy and Surface Stress

1-D Phase-Field Solution

Page 9: J. Slutsker, G. McFadden, J. Warren, W. Boettinger, (NIST) K. Thornton, A. Roytburd, P. Voorhees, (U Mich, U Md, NWU) Surface Energy and Surface Stress

1-D Stress and Strain Fields

Page 10: J. Slutsker, G. McFadden, J. Warren, W. Boettinger, (NIST) K. Thornton, A. Roytburd, P. Voorhees, (U Mich, U Md, NWU) Surface Energy and Surface Stress

Analytical Results: Melting Temperature

• First integral

•We thus obtain,

where denotes the jump across the interface

Page 11: J. Slutsker, G. McFadden, J. Warren, W. Boettinger, (NIST) K. Thornton, A. Roytburd, P. Voorhees, (U Mich, U Md, NWU) Surface Energy and Surface Stress

Numerical Simulation: Melting Temperature

• “Physical” parameters for Aluminum eutectic is used

• Variables are non-dimensionalized using the latent heat per unit volume and the system length

• Here, we focus on applied stress with no misfit:

Page 12: J. Slutsker, G. McFadden, J. Warren, W. Boettinger, (NIST) K. Thornton, A. Roytburd, P. Voorhees, (U Mich, U Md, NWU) Surface Energy and Surface Stress

Simulation and analytics agree

Page 13: J. Slutsker, G. McFadden, J. Warren, W. Boettinger, (NIST) K. Thornton, A. Roytburd, P. Voorhees, (U Mich, U Md, NWU) Surface Energy and Surface Stress

Analytical Results: Surface Energy

• Surface energy is associated with the surface excess of thermodynamic potential [Johnson (2000)]

• “Gibbs adsorption equation” can be derived [Cahn (1979)]:

Page 14: J. Slutsker, G. McFadden, J. Warren, W. Boettinger, (NIST) K. Thornton, A. Roytburd, P. Voorhees, (U Mich, U Md, NWU) Surface Energy and Surface Stress

Numerical and analytical results agree

Page 15: J. Slutsker, G. McFadden, J. Warren, W. Boettinger, (NIST) K. Thornton, A. Roytburd, P. Voorhees, (U Mich, U Md, NWU) Surface Energy and Surface Stress

L SuS=0

T

Bulk modulus, KL=KS=K

Shear modulus, =0 in “liquid”

VS<VL

Self-strain: jk in liquid 0 in solid

R1

R

f=fS-fL= LV (T-T0)/T0

(1) (2)

Compare phase-field & sharp interface results for Claussius-Clapyron/Gibbs-Thomson effects [numerics & asymptotics] [Johnson (2001)]

Elastic Equilibrium of a Spherical Inclusion

Page 16: J. Slutsker, G. McFadden, J. Warren, W. Boettinger, (NIST) K. Thornton, A. Roytburd, P. Voorhees, (U Mich, U Md, NWU) Surface Energy and Surface Stress

Phase-Field Model

Page 17: J. Slutsker, G. McFadden, J. Warren, W. Boettinger, (NIST) K. Thornton, A. Roytburd, P. Voorhees, (U Mich, U Md, NWU) Surface Energy and Surface Stress

Sharp-Interface Model

Page 18: J. Slutsker, G. McFadden, J. Warren, W. Boettinger, (NIST) K. Thornton, A. Roytburd, P. Voorhees, (U Mich, U Md, NWU) Surface Energy and Surface Stress

Interface Conditions

Page 19: J. Slutsker, G. McFadden, J. Warren, W. Boettinger, (NIST) K. Thornton, A. Roytburd, P. Voorhees, (U Mich, U Md, NWU) Surface Energy and Surface Stress

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

0 100 200 300 400 500 600 700 800 900 1000

LS

Solid Inclusion

Page 20: J. Slutsker, G. McFadden, J. Warren, W. Boettinger, (NIST) K. Thornton, A. Roytburd, P. Voorhees, (U Mich, U Md, NWU) Surface Energy and Surface Stress

0.00E+00

1.00E-01

2.00E-01

3.00E-01

4.00E-01

5.00E-01

6.00E-01

0 100 200 300 400 500 600 700 800 900 1000

L S

Liquid Inclusion

Page 21: J. Slutsker, G. McFadden, J. Warren, W. Boettinger, (NIST) K. Thornton, A. Roytburd, P. Voorhees, (U Mich, U Md, NWU) Surface Energy and Surface Stress

0

0.2

0.4

0.6

0.8

1

1.2

0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9

T/T0

Liq

uid

frac

tion

S

L

Phase-Field Calculations

Liquid-Solid volume mismatch produces stress and alters equilibrium temperature (Claussius-Clapyron)

Page 22: J. Slutsker, G. McFadden, J. Warren, W. Boettinger, (NIST) K. Thornton, A. Roytburd, P. Voorhees, (U Mich, U Md, NWU) Surface Energy and Surface Stress

0

0.2

0.4

0.6

0.8

1

1.2

0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9

Phase Field vs Sharp Interface (no surface energy)L

iqui

d fr

acti

on

Page 23: J. Slutsker, G. McFadden, J. Warren, W. Boettinger, (NIST) K. Thornton, A. Roytburd, P. Voorhees, (U Mich, U Md, NWU) Surface Energy and Surface Stress

T/T0

0

0.2

0.4

0.6

0.8

1

1.2

0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9

Phase Field vs Sharp Interface (surface energy fit)L

iqui

d fr

acti

on

Page 24: J. Slutsker, G. McFadden, J. Warren, W. Boettinger, (NIST) K. Thornton, A. Roytburd, P. Voorhees, (U Mich, U Md, NWU) Surface Energy and Surface Stress

Conclusions

Future Work

• Phase-field models provide natural surface excess quantities

• Surface stress is included – but sensitive to interpolation through the interface

• Surface energy and Clausius-Clapyron effects included

• More detailed numerical evaluation of surface stress in 3-D

• Derive formal sharp-interface limit of phase-field model

Page 25: J. Slutsker, G. McFadden, J. Warren, W. Boettinger, (NIST) K. Thornton, A. Roytburd, P. Voorhees, (U Mich, U Md, NWU) Surface Energy and Surface Stress

(End)