28
J. Brau LCWS 2006 March, 2006 1 J. Brau LCWS 2006 - Bangalore March, 2006 C. Baltay, W. Emmet, H. Neal, D. Rabino Yale University Jim Brau, O. Igonkina, N. Sinev, D. Str University of Oregon

J. Brau LCWS 2006 March, 20061 J. Brau LCWS 2006 - Bangalore March, 2006 C. Baltay, W. Emmet, H. Neal, D. Rabinowitz Yale University Jim Brau, O. Igonkina,

Embed Size (px)

DESCRIPTION

J. Brau LCWS 2006 March, Z= 6.25cm SiD Vertex Layout 5 barrel layers 4 end disks SiD 00 Design drivers: Smallest radius possible Clear pair background Seed tracks & vertexing Improve forward region Role: Z [cm] R [cm] 5 Tesla

Citation preview

Page 1: J. Brau LCWS 2006 March, 20061 J. Brau LCWS 2006 - Bangalore March, 2006 C. Baltay, W. Emmet, H. Neal, D. Rabinowitz Yale University Jim Brau, O. Igonkina,

J. Brau LCWS 2006 March, 2006

1

J. BrauLCWS 2006 - BangaloreMarch, 2006

C. Baltay, W. Emmet, H. Neal, D. RabinowitzYale University

Jim Brau, O. Igonkina, N. Sinev, D. StromUniversity of Oregon

Page 2: J. Brau LCWS 2006 March, 20061 J. Brau LCWS 2006 - Bangalore March, 2006 C. Baltay, W. Emmet, H. Neal, D. Rabinowitz Yale University Jim Brau, O. Igonkina,

J. Brau LCWS 2006 March, 2006

2

ILC Vertex Detectors

S i D

GLD LDC

Page 3: J. Brau LCWS 2006 March, 20061 J. Brau LCWS 2006 - Bangalore March, 2006 C. Baltay, W. Emmet, H. Neal, D. Rabinowitz Yale University Jim Brau, O. Igonkina,

J. Brau LCWS 2006 March, 2006

3Z= 6.25cm

SiD Vertex Layout

5 barrel layers 4 end disks

SiD00

Design drivers:Smallest radius possibleClear pair background

Seed tracks & vertexingImprove forward regionRole:

Z [cm]

R [cm]

5 Tesla

Page 4: J. Brau LCWS 2006 March, 20061 J. Brau LCWS 2006 - Bangalore March, 2006 C. Baltay, W. Emmet, H. Neal, D. Rabinowitz Yale University Jim Brau, O. Igonkina,

J. Brau LCWS 2006 March, 2006

4

SiD Vertex Detector

• BARREL– 100 sensors– 1750 cm2

• FORWARD– 288 sensors– 2100 cm2

Page 5: J. Brau LCWS 2006 March, 20061 J. Brau LCWS 2006 - Bangalore March, 2006 C. Baltay, W. Emmet, H. Neal, D. Rabinowitz Yale University Jim Brau, O. Igonkina,

J. Brau LCWS 2006 March, 2006

5

ORIGINAL IDEA –Hierarchical array (Macro/Micro) w/SARNOFF

Page 6: J. Brau LCWS 2006 March, 20061 J. Brau LCWS 2006 - Bangalore March, 2006 C. Baltay, W. Emmet, H. Neal, D. Rabinowitz Yale University Jim Brau, O. Igonkina,

J. Brau LCWS 2006 March, 2006

6

Summary• Investigation of Hierarchical Approach

– Macro/Micro Hybrid (50 um ~5 um) Macro only, reduced to 10-15 um pixel

• Completed Macropixel design– 645 transistors– Spice simulation verified design– TSMC 0.18 um -> 40-50 um pixel

• Next phase under consideration– Complete design of Macro pixel– Deliverable –tape out for foundry (this year)

• Future– Fab 50 um Macro pixel design– Then, 10-15 um pixel (Macro pixel)

Page 7: J. Brau LCWS 2006 March, 20061 J. Brau LCWS 2006 - Bangalore March, 2006 C. Baltay, W. Emmet, H. Neal, D. Rabinowitz Yale University Jim Brau, O. Igonkina,

J. Brau LCWS 2006 March, 2006

7

Page 8: J. Brau LCWS 2006 March, 20061 J. Brau LCWS 2006 - Bangalore March, 2006 C. Baltay, W. Emmet, H. Neal, D. Rabinowitz Yale University Jim Brau, O. Igonkina,

J. Brau LCWS 2006 March, 2006

8

Page 9: J. Brau LCWS 2006 March, 20061 J. Brau LCWS 2006 - Bangalore March, 2006 C. Baltay, W. Emmet, H. Neal, D. Rabinowitz Yale University Jim Brau, O. Igonkina,

J. Brau LCWS 2006 March, 2006

9

Background Hits Dominate Vertex Detector • Events of interest are relatively rare –

– less than 1 Hertz. – hit rate in Vertex Detector dominated by background.

• Detailed calculations yield an expected background estimate of

0.03 hits/mm2/Bunch Crossing • However, with considerable uncertainty on this level

of background. – Difficult calculation. – Background will depend on final choice of collider design

details.

Page 10: J. Brau LCWS 2006 March, 20061 J. Brau LCWS 2006 - Bangalore March, 2006 C. Baltay, W. Emmet, H. Neal, D. Rabinowitz Yale University Jim Brau, O. Igonkina,

J. Brau LCWS 2006 March, 2006

10

The Macropixel Array is Critical • Big Pixel size (initially 50 um x 50 um) limits the

tolerance to higher backgrounds. • Therefore important to strive to reduce Big Pixel

size. – Reducing the Big Pixel size to 10 um x 10 um

(or even 15 um x 15 um) makes detector much more tolerant to backgrounds.

– Macropixel Array (Big Pixel size) of 10-15 um might not need complement of micropixels

• simplified design of single layer of "Macropixels" • with time information• Might not need analog information.

Page 11: J. Brau LCWS 2006 March, 20061 J. Brau LCWS 2006 - Bangalore March, 2006 C. Baltay, W. Emmet, H. Neal, D. Rabinowitz Yale University Jim Brau, O. Igonkina,

J. Brau LCWS 2006 March, 2006

11

What Limits the Macropixel Size – Compress Big Pixel size, retaining storage of hit time

information for 4 hits/pixel/bunch-xing – Area needed with present technology (0.25 um?)

• Comparator/counter/latch, etc., circuit • Storage of up to 4 hits, i.e., 14 bits x 4 deep

– Process Technology - how does pixel size scale as process technology goes 0.25 um, 0.13 um, etc?

• What do you need to go to 10 um x 10 um pixels? • Can you estimate the progress of this technology?• What's available today?

– Much more interesting - what will be available - 5 years from now when we need to fabricate the actual devices?;

– How much does it help to reduce max number of time stamps stored to 2 or 3?

Page 12: J. Brau LCWS 2006 March, 20061 J. Brau LCWS 2006 - Bangalore March, 2006 C. Baltay, W. Emmet, H. Neal, D. Rabinowitz Yale University Jim Brau, O. Igonkina,

J. Brau LCWS 2006 March, 2006

12

Readout Procedure and Speed • First, some numbers:

– Consider chips 22 mm x 125 mm = 2750 mm2 – – Total no. of 10 um x 10 um pixels = 27.5 x 1O6 pixels/chip – – Total hits .03 x 2820 x 2750 = 2 x l05 hits/chip/bunch train

• How long does it take to interrogate a pixel to see if it has a hit (presumably look of a single bit flag?)

• How long does it take to read out one hit pixel – X info (up to 2200) - 12 bits + parity = 14 bits – Y info (up to 12500) - 14 bits + parity = 16 bits – Time (up to 3000) - 12 bits + parity = 14 bits

44 bits total • 2 x 105 hits/chip x 44 bits/hit / 50 MHertz = 176 msec• Might divide each chip into parallel readout streams

(10-20) to accommodate higher background rates?

Page 13: J. Brau LCWS 2006 March, 20061 J. Brau LCWS 2006 - Bangalore March, 2006 C. Baltay, W. Emmet, H. Neal, D. Rabinowitz Yale University Jim Brau, O. Igonkina,

J. Brau LCWS 2006 March, 2006

13

Page 14: J. Brau LCWS 2006 March, 20061 J. Brau LCWS 2006 - Bangalore March, 2006 C. Baltay, W. Emmet, H. Neal, D. Rabinowitz Yale University Jim Brau, O. Igonkina,

J. Brau LCWS 2006 March, 2006

14

Charge Spreading • Important to minimize charge spreading

– pixel size sets scale that would reduce need for analog information.

• How small can we keep the charge spreading? – Thickness of expitaxial layer - 10 to 15 um – Possible approach - full depletion of epitaxial

layer • requires high resistivity? - few kohm-cm? or less?

– Depletion voltage, field in epilayer?

Page 15: J. Brau LCWS 2006 March, 20061 J. Brau LCWS 2006 - Bangalore March, 2006 C. Baltay, W. Emmet, H. Neal, D. Rabinowitz Yale University Jim Brau, O. Igonkina,

J. Brau LCWS 2006 March, 2006

15

Page 16: J. Brau LCWS 2006 March, 20061 J. Brau LCWS 2006 - Bangalore March, 2006 C. Baltay, W. Emmet, H. Neal, D. Rabinowitz Yale University Jim Brau, O. Igonkina,

J. Brau LCWS 2006 March, 2006

16

Read Noise • Minimum ionizing particle leaves

88e- /micron in expitaxial layer – 10 um thick epi x 88e-/um = 880 electrons

• GOAL - signal to noise of 10 to 20 – Can we keep read noise below 50 e- or so? – This consideration determines thickness of

the exitaxial layer.

Page 17: J. Brau LCWS 2006 March, 20061 J. Brau LCWS 2006 - Bangalore March, 2006 C. Baltay, W. Emmet, H. Neal, D. Rabinowitz Yale University Jim Brau, O. Igonkina,

J. Brau LCWS 2006 March, 2006

17

Power Consumption

• Keep power to ~100 millwatts/chip (goal) ~4 mW/cm2

• Trade-off noise with power• Make design choices which optimize

noise/power tradeoffs

Page 18: J. Brau LCWS 2006 March, 20061 J. Brau LCWS 2006 - Bangalore March, 2006 C. Baltay, W. Emmet, H. Neal, D. Rabinowitz Yale University Jim Brau, O. Igonkina,

J. Brau LCWS 2006 March, 2006

18

Macropixel Block Diagram

ComparatorDetector

TimingLogic Counter Decoder

14x4Memory

Array

I/OInterface

Write

14

MINIT

RDCLK

ROW_SEL

EmptyY1/Y2

DIO(13:0)

SF_OUT

Vref Bias

RESET

Bias

144

Page 19: J. Brau LCWS 2006 March, 20061 J. Brau LCWS 2006 - Bangalore March, 2006 C. Baltay, W. Emmet, H. Neal, D. Rabinowitz Yale University Jim Brau, O. Igonkina,

J. Brau LCWS 2006 March, 2006

19

Power Dissipation Analysis

• Additional 67- to 100-fold reduction expected by power cycling analog components (0.37 – 0.55 uW)

Detector

Comparator

Timing Logic

Counter/Decoder

Mem. Array

IO Interface

Analog

Digital

ComponentBefore

Optimization

Sub_total

Sub_total

Total

0.05uW

0.07uW

~ 0uW

0.01uW

0.13uW

9.9uW

27.0uW

36.9uW

37.03uW

OptimizedPower Dissipation

11.7uW

35.1uW

46.8uW

Detector

Comparator

Timing Logic

Counter/Decoder

Mem. Array

IO Interface

Analog

Digital

ComponentBefore

Optimization

Sub_total

Sub_total

Total

0.05uW

0.07uW

~ 0uW

0.01uW

0.13uW

9.9uW

27.0uW

36.9uW

37.03uW

OptimizedPower Dissipation

11.7uW

35.1uW

46.8uW

Page 20: J. Brau LCWS 2006 March, 20061 J. Brau LCWS 2006 - Bangalore March, 2006 C. Baltay, W. Emmet, H. Neal, D. Rabinowitz Yale University Jim Brau, O. Igonkina,

J. Brau LCWS 2006 March, 2006

20

Other Considerations• Dark Current

– Keep it small – Sarnoff – will reset array on each bunch

• Should not be a problem • Operating Temperature

– Sarnoff expects modest cooling (<0C adequate)• Device Thickness

– Thinning below 50 um looks feasible• B Field – Lorentz angle

Page 21: J. Brau LCWS 2006 March, 20061 J. Brau LCWS 2006 - Bangalore March, 2006 C. Baltay, W. Emmet, H. Neal, D. Rabinowitz Yale University Jim Brau, O. Igonkina,

J. Brau LCWS 2006 March, 2006

21

Spice Model Verification of Design

Page 22: J. Brau LCWS 2006 March, 20061 J. Brau LCWS 2006 - Bangalore March, 2006 C. Baltay, W. Emmet, H. Neal, D. Rabinowitz Yale University Jim Brau, O. Igonkina,

J. Brau LCWS 2006 March, 2006

22

0.18um1.8V/3.3V

0.13um1.2V/2.5V/3.3V

90nm1.2V/2.5V

65nm1.0V/1.2V/2.5V

40um

30um

20um

15um

Pixel Pitch

Min. Feature Size

10um

45nm0.8V/1.0V/1.2V

2002 2004 2005 2007 2009

Year Available

50um

SARNOFF Response to Question on FutureTechnology Roadmap: Macropixel size estimationvs. Mixed-signal Process Technologies

Page 23: J. Brau LCWS 2006 March, 20061 J. Brau LCWS 2006 - Bangalore March, 2006 C. Baltay, W. Emmet, H. Neal, D. Rabinowitz Yale University Jim Brau, O. Igonkina,

J. Brau LCWS 2006 March, 2006

23

CONCLUSION

• Completed macropixel design– 645 transistors– Spice simulation verifies design– TSMC 0.18 um -> 40-50 um pixel

• Next phase under consideration– Complete design of macro pixel– Deliverable –tape out for foundry

• Future– Fab 50 um pixel chip– Then, 10-15 um pixel

Page 24: J. Brau LCWS 2006 March, 20061 J. Brau LCWS 2006 - Bangalore March, 2006 C. Baltay, W. Emmet, H. Neal, D. Rabinowitz Yale University Jim Brau, O. Igonkina,

J. Brau LCWS 2006 March, 2006

24

EXTRAS

Page 25: J. Brau LCWS 2006 March, 20061 J. Brau LCWS 2006 - Bangalore March, 2006 C. Baltay, W. Emmet, H. Neal, D. Rabinowitz Yale University Jim Brau, O. Igonkina,

J. Brau LCWS 2006 March, 2006

25

Page 26: J. Brau LCWS 2006 March, 20061 J. Brau LCWS 2006 - Bangalore March, 2006 C. Baltay, W. Emmet, H. Neal, D. Rabinowitz Yale University Jim Brau, O. Igonkina,

J. Brau LCWS 2006 March, 2006

26

Page 27: J. Brau LCWS 2006 March, 20061 J. Brau LCWS 2006 - Bangalore March, 2006 C. Baltay, W. Emmet, H. Neal, D. Rabinowitz Yale University Jim Brau, O. Igonkina,

J. Brau LCWS 2006 March, 2006

27

• Power Reduction Ratio = 1/67 to 1/100 (0.552 W to 0.37 W)

• Activate the Detector and the Comparator during the Bunch Train and deactivate rest of the time

200ms 0.95ms

Enable

BunchTrain

2~3ms

Power Reduction Method

Page 28: J. Brau LCWS 2006 March, 20061 J. Brau LCWS 2006 - Bangalore March, 2006 C. Baltay, W. Emmet, H. Neal, D. Rabinowitz Yale University Jim Brau, O. Igonkina,

J. Brau LCWS 2006 March, 2006

28