29
Flow Simulation & Analysis Group IV Modeling and Analysis of Heart Murmurs Rajat Mittal, Jung Hee Seo, Hani Bakhshae, Chi Zhu Department of Mechanical Engineering & Division of Cardiology Andreas Androu, Guillaume Garreau Electrical Engineering Johns Hopkins University

IV Modeling and Analysis of Heart Murmurs - uniroma2.itpeople.uniroma2.it/roberto.verzicco/publication/seminars/Mittal4.pdf · IV Modeling and Analysis of Heart Murmurs. Rajat Mittal,

  • Upload
    others

  • View
    9

  • Download
    1

Embed Size (px)

Citation preview

Page 1: IV Modeling and Analysis of Heart Murmurs - uniroma2.itpeople.uniroma2.it/roberto.verzicco/publication/seminars/Mittal4.pdf · IV Modeling and Analysis of Heart Murmurs. Rajat Mittal,

Flow Simulation & Analysis Group

IV Modeling and Analysis of Heart Murmurs

Rajat Mittal, Jung Hee Seo, Hani Bakhshae, Chi Zhu

Department of Mechanical Engineering & Division of Cardiology

Andreas Androu, Guillaume Garreau

Electrical Engineering

Johns Hopkins University

Page 2: IV Modeling and Analysis of Heart Murmurs - uniroma2.itpeople.uniroma2.it/roberto.verzicco/publication/seminars/Mittal4.pdf · IV Modeling and Analysis of Heart Murmurs. Rajat Mittal,

Cardiac Auscultation

2

Digital Stethoscope

BioSignetic Corporation

But… • Low specificity (high false positives) • Diagnosis is based on the empirical/statistical correlation • Source mechanism of murmurs is poorly understood • No modality provides simultaneous assessment of source and measurement

• 3000 year old technique • Cheap • Non-invasive, high sensitivity • Good as a screening tool

60% of all pediatric murmurs leading to referral are “innocent”

Page 3: IV Modeling and Analysis of Heart Murmurs - uniroma2.itpeople.uniroma2.it/roberto.verzicco/publication/seminars/Mittal4.pdf · IV Modeling and Analysis of Heart Murmurs. Rajat Mittal,

Computational Hemo-acoustics

3

Computational Hemo-acoustics (CHA) directly simulate the above procedure: • Prediction of murmur generation/propagation • Source mechanism of murmurs • Better Disease - Hemodynamics - Sound (Auscultation) relation Present Approach: -Immersed Boundary Method based Hybrid Approach • Blood Flow - IBM Incompressible Navier-Stokes solver • Flow induced sound - Linearized Perturbed Compressible Equations (LPCE) • Sound Propagation in tissue – Linear wave equation

Pressure Fluctuation in the Heart

Structural wave Propagation

Surface fluctuation on the chest

Can computational modeling provide the missing link between cause (pathology) and effect (sound)?

Page 4: IV Modeling and Analysis of Heart Murmurs - uniroma2.itpeople.uniroma2.it/roberto.verzicco/publication/seminars/Mittal4.pdf · IV Modeling and Analysis of Heart Murmurs. Rajat Mittal,

Computational Hemoacoustics

4

νρ

∇⋅ = + ∇ = ∇

20

0

10, DUU P UDt

Incompressible N-S Eqns.

Structural wave Eqns.

Hemodynamics Wave Propagation

( , )P x t

Hemodynamic Sound Source

Sound Signal

,1

ij jk iij p

k j i

ij ji iu i

j j j i

p uu u St x x x

p uu u St x x x x

λ δ µ

ηρ ρ

∂ ∂∂ ∂+ + + = ∂ ∂ ∂ ∂

∂ ∂∂ ∂∂+ = + + ∂ ∂ ∂ ∂ ∂

Page 5: IV Modeling and Analysis of Heart Murmurs - uniroma2.itpeople.uniroma2.it/roberto.verzicco/publication/seminars/Mittal4.pdf · IV Modeling and Analysis of Heart Murmurs. Rajat Mittal,

Murmur Associated with Aortic Stenosis

LV AO

Aortic Valve Stenosis

Aortic Stenosis Murmur

Simplified Hemodynamic Modeling

LV AO

75% Aortic valve stenosis

Page 6: IV Modeling and Analysis of Heart Murmurs - uniroma2.itpeople.uniroma2.it/roberto.verzicco/publication/seminars/Mittal4.pdf · IV Modeling and Analysis of Heart Murmurs. Rajat Mittal,

Cardio-Thoracic Phantom Studies

6

U

Stenosis

Flow fluctuation

Thoracic phantom (silicone gel)

D

Wave propagation

U=0.25 m/s D=1.5875 cm DT=9.84 cm Re=UD/ν=4000 St=fD/U

Material: EcoFlex-10 ρ=1040 kg/m3

E=55.16 kPa K=91.3 Mpa (cb=297.3 m/s) G=18.39 kPa (cs=4.2 m/s) µ=14 Pa s

DT

Page 7: IV Modeling and Analysis of Heart Murmurs - uniroma2.itpeople.uniroma2.it/roberto.verzicco/publication/seminars/Mittal4.pdf · IV Modeling and Analysis of Heart Murmurs. Rajat Mittal,

Acoustic Sensors

7

Biopac sensor attached to the Micromanipulator

HP sensor attached to the Micromanipulator

Page 8: IV Modeling and Analysis of Heart Murmurs - uniroma2.itpeople.uniroma2.it/roberto.verzicco/publication/seminars/Mittal4.pdf · IV Modeling and Analysis of Heart Murmurs. Rajat Mittal,

Silicone Rubber- Tissue Mimicking Material

• Silicone rubber, Ecoflex 010 (Smooth-on) – Easy to produce – Extremely stable – Non-toxic and – Negligible shrinkage

• Procedure to make

– Mixing Part A part B, – Adding Silicon thinner, – Degassing for 3-4 min in (-29 in Hg) to

remove air bubbles

Page 9: IV Modeling and Analysis of Heart Murmurs - uniroma2.itpeople.uniroma2.it/roberto.verzicco/publication/seminars/Mittal4.pdf · IV Modeling and Analysis of Heart Murmurs. Rajat Mittal,

Murmur Generating

9

3D printed Casts

U

Stenosis

Flow fluctuation

D

Wave propagatio

n

Page 10: IV Modeling and Analysis of Heart Murmurs - uniroma2.itpeople.uniroma2.it/roberto.verzicco/publication/seminars/Mittal4.pdf · IV Modeling and Analysis of Heart Murmurs. Rajat Mittal,

Fluid Flow Circuit

10

Page 11: IV Modeling and Analysis of Heart Murmurs - uniroma2.itpeople.uniroma2.it/roberto.verzicco/publication/seminars/Mittal4.pdf · IV Modeling and Analysis of Heart Murmurs. Rajat Mittal,

11

Biopac sensor attached to the Micromanipulator

HP sensor attached to the Micromanipulator

Page 12: IV Modeling and Analysis of Heart Murmurs - uniroma2.itpeople.uniroma2.it/roberto.verzicco/publication/seminars/Mittal4.pdf · IV Modeling and Analysis of Heart Murmurs. Rajat Mittal,

Cardiothoracic Phantom-2nd generation

12

• Adding lung to the phantom • Foam is used to model the lung • Non-axisymmetric model

Page 13: IV Modeling and Analysis of Heart Murmurs - uniroma2.itpeople.uniroma2.it/roberto.verzicco/publication/seminars/Mittal4.pdf · IV Modeling and Analysis of Heart Murmurs. Rajat Mittal,

z/DEn

ergy

0 1 2 3 40

5

10

15

20

25

30-6060-120120-480

×10-10

Experimental Measurements

Frequency spectrum

Outer-surface radial accelerations

Energy mapping

Frequency [Hz]

Rad

iala

ccel

erat

ion

100 101 102 10310-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

HPBIOPAC

Page 14: IV Modeling and Analysis of Heart Murmurs - uniroma2.itpeople.uniroma2.it/roberto.verzicco/publication/seminars/Mittal4.pdf · IV Modeling and Analysis of Heart Murmurs. Rajat Mittal,

Computational/Experimental Studies

U

Stenosis

Flow fluctuation

Thoracic phantom (silicone gel)

D

Wave propagation

Re=UD/ν=4000

Simple model for the aortic stenosis murmur

Material properties: Tissue mimicking, viscoelastic gel (EcoFlex-10) ρ=1040 kg/m3

K=1.04 GPa (cb=1000.0 m/s) G=18.39 kPa (cs=4.2 m/s) µ=14 Pa s Other parameters: U=0.25 m/s D=1.5875 cm DT=9.84 cm (gelA), 16.51 cm (gelB) c.f. Biological soft tissue: K=2.25 GPa (cb=1500 m/s) G=0.1 MPa (cs=10 m/s) µ=0.5 Pa s

DT

L=7D

Page 15: IV Modeling and Analysis of Heart Murmurs - uniroma2.itpeople.uniroma2.it/roberto.verzicco/publication/seminars/Mittal4.pdf · IV Modeling and Analysis of Heart Murmurs. Rajat Mittal,

Computational Modeling

15

Hemodynamics IBM, Incompressible N-S

Elastic wave eq. for viscoelastic material Generalized Hooke’s law Kelvin-Voigt model

0

1

λ δ µ

ηρ ρ

′ ′∂ ∂′ ′∂ ∂+ + + = ∂ ∂ ∂ ∂

′ ′∂ ∂′ ′∂ ∂∂+ = + ∂ ∂ ∂ ∂ ∂

ij jk iij

k j i

ij ji i

j j j i

p uu ut x x x

p uu ut x x x x

High-order IBM, 6th order Compact Finite Difference Scheme, 4 stage Runge-Kutta method

i ij jP n p n′ ′=

4~ (10 )iu O −′

0iu′ =

0iu′ =

210, ( ) νρ

∂∇ ⋅ = + ⋅∇ + ∇ = ∇

UU U U P Ut

Page 16: IV Modeling and Analysis of Heart Murmurs - uniroma2.itpeople.uniroma2.it/roberto.verzicco/publication/seminars/Mittal4.pdf · IV Modeling and Analysis of Heart Murmurs. Rajat Mittal,

Freq [Hz]PS

D100 101 102 10310-7

10-6

10-5

10-4

10-3

10-2

10-1

100

-1.0D-0.5D00.5D1.0D1.5D2.0D2.5D3.0D3.5D4.0D

Flow Simulation

Axial velocity

Vorticity

Pressure

ReD=4000 Wall pressure spectrum

2D 0

Page 17: IV Modeling and Analysis of Heart Murmurs - uniroma2.itpeople.uniroma2.it/roberto.verzicco/publication/seminars/Mittal4.pdf · IV Modeling and Analysis of Heart Murmurs. Rajat Mittal,

3D Elastic Wave Simulation Radial velocity fluctuation contours

• 200x200x320 (12.8 M), about 60 hrs with 1024 cores for real time 0.8 sec

Page 18: IV Modeling and Analysis of Heart Murmurs - uniroma2.itpeople.uniroma2.it/roberto.verzicco/publication/seminars/Mittal4.pdf · IV Modeling and Analysis of Heart Murmurs. Rajat Mittal,

Comparison with Experimental Measurements

Frequency [Hz]

Rad

iala

ccel

erat

ion

[m/s

ec2 ]

Exp

100 101 102 10310-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

-1D01D2D3D4DExp-HPExp-BIOPAC

Frequency spectrum

Outer-surface radial accelerations

z/D

Sim

ulat

ion

Exp

0 1 2 3 40

1

2

3

0

5

10

15

20

25

30-6060-120120-480

×10-10×10-7

Energy mapping

Solid: simulation Dashed: measurement

Page 19: IV Modeling and Analysis of Heart Murmurs - uniroma2.itpeople.uniroma2.it/roberto.verzicco/publication/seminars/Mittal4.pdf · IV Modeling and Analysis of Heart Murmurs. Rajat Mittal,

Free-Space Green’s Tensor

d

( , ) ( , ) ( )i ij jU r G r Fω ω ω=

1( ) ( )21( ) ( )

2

i ti i

i ti i

u t U e d

f t F e d

ω

ω

ω ωπ

ω ωπ

=

=

( )2 2

2 ( ) ( ) ( )i lij kl ik jl il jk i

j k

u u f t rt x x

ρ λδ δ µ δ δ δ δ δ∂ ∂− + + =

∂ ∂ ∂

(1) (1)0 22

(1) (1)0 22

( , ) ( ) ( 3 ) ( )12 ( 2 )

2 ( ) ( 3 ) ( )12

p i jij ij p ij p

i jsij s ij s

ik x xG r h k r h k r

r

x xik h k r h k rr

ω δ δπ λ µ

δ δπµ

= + − +

− − + −

Green’s tensor (Ben-Menahem & Singh,1981)

/ , ( 2 ) /

/ , /p p p

s s s

k c c

k c c

ω λ µ ρ

ω µ ρ

= = +

= =

r

θ

Analytical estimation of elastic wave solution (no geometrical effects)

Page 20: IV Modeling and Analysis of Heart Murmurs - uniroma2.itpeople.uniroma2.it/roberto.verzicco/publication/seminars/Mittal4.pdf · IV Modeling and Analysis of Heart Murmurs. Rajat Mittal,

Evaluation of Radial Acceleration

d r

θ

2, , 2,( , ) ( ) ( , ) ( ), ( ) ( )ω ω ω ω ω ω= = ∆∑

m mn k k n k k kk

a r i G r F F P A

( )ωkP

2 ( )ωa

1x2x

Frequency [Hz]R

adia

lacc

eler

ati o

n[ m

/sec

2 ]100 101 102 10310-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

3D SimulationGreen-CompGreen-ShearGreen-Total

Oblique shear waves contribute significantly to the stethoscopic signal!

Page 21: IV Modeling and Analysis of Heart Murmurs - uniroma2.itpeople.uniroma2.it/roberto.verzicco/publication/seminars/Mittal4.pdf · IV Modeling and Analysis of Heart Murmurs. Rajat Mittal,

Source Localization

Surface measurements 1, 2, .... Mu u u

Source mapping

1, 2, .... NF F F

1( ; )

N

m m n nn

u G x x F=

=∑

1 1

M N

u F

u F

=

G

[ ] [ ]F u+= G

G: M by N complex matrix

G+: Pseudo inverse of G

Page 22: IV Modeling and Analysis of Heart Murmurs - uniroma2.itpeople.uniroma2.it/roberto.verzicco/publication/seminars/Mittal4.pdf · IV Modeling and Analysis of Heart Murmurs. Rajat Mittal,

Source Localization

z/D

Nor

mal

ized

Sour

ceEn

ergy

-1 0 1 2 3 4

0.2

0.4

0.6

0.8

1

EstimatedMeasured

*30-120 Hz

Proceeding towards using a multi-sensor stethoscopic array (StethoVest) for automatic murmur localization

Page 23: IV Modeling and Analysis of Heart Murmurs - uniroma2.itpeople.uniroma2.it/roberto.verzicco/publication/seminars/Mittal4.pdf · IV Modeling and Analysis of Heart Murmurs. Rajat Mittal,

23

Computational Modeling

Aortic stenosis Patient specific geometry Model

U=0.25 m/s

Re=UD/ν=4000

D=1.5875 cm

Epidermal surface

Page 24: IV Modeling and Analysis of Heart Murmurs - uniroma2.itpeople.uniroma2.it/roberto.verzicco/publication/seminars/Mittal4.pdf · IV Modeling and Analysis of Heart Murmurs. Rajat Mittal,

24

Fluid Solver:

Acoustic Solver:

vi – structure velocity. λ, μ – 1st and 2nd Lame’s constants. ρs – density. K – bulk modulus, = 1.04 GPa. G – shear modulus, = 18.39 KPa. η – viscosity, = 14.0 Pa s.

Vicar Code, sharp interface IBM

See: Mittal, R., et al., JCP, 2008

Interior nodes: 6th –order compact scheme Immersed boundary: approximating polynomial method Time advancement: 4th –order Runge-Kutta method

See: Seo, J. H., & Mittal, R. ,JCP, 2011

Numerical methods:

Computational Modeling

Page 25: IV Modeling and Analysis of Heart Murmurs - uniroma2.itpeople.uniroma2.it/roberto.verzicco/publication/seminars/Mittal4.pdf · IV Modeling and Analysis of Heart Murmurs. Rajat Mittal,

Hemodynamic Simulation Results

25

x component of vorticity

75% 90%

Same contour level

50%

Page 26: IV Modeling and Analysis of Heart Murmurs - uniroma2.itpeople.uniroma2.it/roberto.verzicco/publication/seminars/Mittal4.pdf · IV Modeling and Analysis of Heart Murmurs. Rajat Mittal,

Hemodynamic Simulation Results

26

Contour of surface pressure

75% 90%

5 times larger contour level

50%

Baseline 5 times smaller contour level

Page 27: IV Modeling and Analysis of Heart Murmurs - uniroma2.itpeople.uniroma2.it/roberto.verzicco/publication/seminars/Mittal4.pdf · IV Modeling and Analysis of Heart Murmurs. Rajat Mittal,

Source Location

27

75%

90% 100 times larger contour level

Surface Signal

50%

1000 times smaller contour level

Baseline

Page 28: IV Modeling and Analysis of Heart Murmurs - uniroma2.itpeople.uniroma2.it/roberto.verzicco/publication/seminars/Mittal4.pdf · IV Modeling and Analysis of Heart Murmurs. Rajat Mittal,

Realistic Thorax Model

28

CT scan data (Visible Human)

Material property (density and speed of sound) mapping

3D model of the thorax (density iso-surfaces)

Need to account or thoracic structures on sound propagation

Page 29: IV Modeling and Analysis of Heart Murmurs - uniroma2.itpeople.uniroma2.it/roberto.verzicco/publication/seminars/Mittal4.pdf · IV Modeling and Analysis of Heart Murmurs. Rajat Mittal,

Cited Paper - Hemoacoustics • Jung Hee Seo, Vijay Vedula, Theodore Abraham, and Rajat Mittal, “Multiphysics computational models for cardiac

flow and virtual cardiography”, Int. J. Num. Meth. Biomed. Eng., doi: 10.1002/cnm.2556, 2013.680, DOI: 10.1007/s10439-014-1018-4.

• Jung Hee Seo and Rajat Mittal, “A Coupled Flow-Acoustic Computational Study of Bruits from a Modeled Stenosed Artery”, Medical & Biological Engineering & Computing, Vol 50(10) pp 1025-35, 2012.

• Andreou, A.G.; Abraham, T.; Thompson, W.R.; Jung Hee Seo; Mittal, R., “Mapping the cardiac acousteome: An overview of technologies, tools and methods,” Information Sciences and Systems (CISS), 2015 49th Annual Conference on , vol., no., pp.1,6, 18-20 March 2015, doi: 10.1109/CISS.2015.7086899

• Bakhshaee, H.; Garreau, G.; Tognetti, G.; Shoele, K.; Carrero, R.; Kilmar, T.; Chi Zhu; Thompson, W.R.; Jung Hee Seo; Mittal, R.; Andreou, A.G., “Mechanical design, instrumentation and measurements from a hemoacoustic cardiac phantom,” Information Sciences and Systems (CISS), 2015 49th Annual Conference on , vol., no., pp.1,5, 18-20 March 2015, doi: 10.1109/CISS.2015.7086901.

• Jung Hee Seo and Rajat Mittal, “A Coupled Flow-Acoustic Computational Study of Bruits from a Modeled Stenosed Artery”, Medical & Biological Engineering & Computing, Vol 50(10) pp 1025-35, 2012.

• J. H. Seo and R. Mittal, “A Higher-Order Immersed Boundary Method for acoustic wave scattering and low-Mach number flow-induced sound in complex geometries”, Journal of Computational Physics, 2011, Vol. 230, Issue 4, pp. 1000-1019 .

• Jung Hee Seo, Vijay Vedula, Theodore Abraham, and Rajat Mittal, “Multiphysics computational models for cardiac flow and virtual cardiography”, Int. J. Num. Meth. Biomed. Eng., doi: 10.1002/cnm.2556, 2013.680,

29