26
IS I , ." J. Be Evans, 3. E, Quinlan and J, E, Willard ~e~art~eit of Chemistry, University of Wisconsin, Madison, Wieconsia CmICAL EFFECTS OF NUCLEAR TRANSFORMAT IONS AND THEIR USE IN MAKING LABELED COMPOUNDS The chemical effects of nuclear transformations can be utilized to introducte the radioactive atoms produced into chemical species useful for tracer studies. Gas chromatography offers a means of sep- arating the tagged compounds with high specific . activity. A chromatographic apparatus for separating and identifying labeled compounds is desoribed, Comparisons are made of this with other labeling techniques. 4 J Since 1934 when gsilard and Chalmers (31) reported that 1/ 3d radioiodine produced by the irradiatioli of ethyl iodide with , neutrons appears in a form which can be partially extracted with water, it has been recognized that nuclear ppocesses can$ 3 cause chemical reactions, @ Typical such processes which will be considered in thi'i a 1 ae discussion include the following: C1 (n,\b)Cl (37 .min. ); 88 ~r"[n,%)~r 1s 'l (36 hr.1; I (n, #)1"~(25 min); 14 14 I N (n,p)C (5600 y); ~i'(n,Cf)~'(12 y); ~e@(n,p)~'~l2 y). The notation signifies that the stable isotope at tlie left captures a neutron and emits a gannna ray, proton or W~P d particle, forming the radioisotope - - which indicated

IS Be E, Willard I

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

IS I , ." J. B e Evans, 3. E, Quinlan and J, E, Willard

~ e ~ a r t ~ e i t of Chemistry, University of Wisconsin, Madison, Wieconsia

C m I C A L EFFECTS OF NUCLEAR TRANSFORMAT I O N S AND THEIR USE I N MAKING LABELED COMPOUNDS

The chemical e f fec t s of nuclear transformations

can be u t i l i zed t o introducte the radioactive atoms

produced i n t o chemical species useful f o r t racer

studies. Gas chromatography of fers a means of sep-

arat ing the tagged compounds w i t h high specif ic .

ac t iv i ty . A chromatographic apparatus f o r separating

and identifying labeled compounds i s desoribed,

Comparisons are made of this with other labeling

techniques.

4 J

Since 1934 when gs i l a rd and Chalmers (31) reported t h a t 1/ 3d

radioiodine produced by the i r radiat iol i of e thy l iodide with ,

neutrons appears i n a form which can be p a r t i a l l y extracted

w i t h water, it has been recognized tha t nuclear ppocesses can$ 3

cause chemical reactions, @ Typical such processes which w i l l be considered i n thi'i

a 1 a e discussion include the following: C 1 (n,\b)Cl (37 .min. );

88 ~ r " [ n , % ) ~ r

1s 'l (36 hr.1; I (n, #)1"~(25 min);

14 1 4 I

N (n,p)C (5600 y); ~i'(n,Cf)~'(12 y); ~ e @ ( n , p ) ~ ' ~ l 2 y).

The notation s ign i f i e s t h a t the s tab le isotope a t tlie l e f t

captures a neutron and emits a gannna ray, proton o r W ~ P d par t ic le , forming the radioisotope

- -

which indicated

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

r i g h t . The h a l f - l i f e i s given i n the parentheses a t the r i g h t .

I n each case the r ad ioac t ive product atom i s born with high

energy which allows it t o hrenk i t s parent chemical bond and

subsequently t o r e a c t with surrounding molecules, A s i l l u s -

t r a t e d by Figure 1, a wide v a r i e t y of r a d i o a c t i v e l y l abe led

compounds may r e s u l t . These a re a source of t r a c e r s f o r research,

development and product ion use, i f they can be separa ted from

each o the r with s u f f i c i e n t l y high s p e c i f i c a c t i v i t y , I n the

fol lowing paragraphs we s h a l l review b r i e f l y t h e evo lu t ion of

knowledge a s t o t h e c h a r a c t e r i s t i c s and mechanisms of such

reac t ions , s h a l l descr ibe the use of gas chromatography f o r

sepa ra t ing very h igh spec if i c a c t i v i t y l abe led compounds, s h a l l

compare t h i s method of l a b e l i n g with c e r t a i n o the r methods,

and s h a l l c i t e r e fe rences which may be u s e f u l t o those d e s i r -

ing f u r t h e r acquaintance with the f i e l d , A more comprehensive

d iscuss ion of baaio invoot iga t ions of ehernfcal e f f e c t s of

nuclear t ransformations has been given i n e a r l i e r reviews ( 2 , 3 ) *

References here t o work p r i o r t o these reviews w i l l be l i m i t e d

t o a .few examples,

Mechanism

Although it was a t f i r s t perhaps thought t h a t t h e rup tu re

of t h e carbon-iodine bond i n e t h y l iodide,. observed by S z i l a r d

and Chalmers (31) , r e s u l t e d from t h e momentum c a r r i e d by the

neutron a s i t e n t e r e d the iodine atom it was soon r e a l i z e d t h a t

the process could occur even w i t h neutrons of only thermal

energies . The rupture was then asc r ibed t o the r e c o i l energy

given t o the i odine atom a s a r e s u l t of emission of one o r more

e z s @02

12 7 l a e gamma rays i n the I (n;g)I process. For an 8 Mev. gamma

ray t h i s r e c o i l energy i s 6170 kca l . per mole, which i s more

than one hundred times g r e a t e r than t h e energy of the carbon-

iodine bond, Consis tent with these Ideas was the observat ion

(4.) t h a t i n some gaseous a l k y l h a l i d e s nea r ly 100% of the

halogen atoms which capture neutrons s p l i t t h e parent bond and

appear i n inorganic form. These atoms can be d i s t ingu i shed

from those which have not captured neutrons, because t h e ( n , ~ ) .

process changes them t o r ad ioac t ive i so topes .

I n l i q u i d o r s o l i d organic media from 20% t o nea r ly 100%

of the r ad ioac t ive atoms which have s p l i t t h e i r parent bonds

r e e n t e r organic combination, Early t h e o r i e s a sc r ibed t h i s t o

a " b i l l i a r d b a l l collision^^ mechanism (22) i n which t h e r e c o i l

atom was pos tu la ted t o l o s e i t s energy by a head.*on c o l l i s i o n . with an atom of equal mass, t h e s t ruck atom being knocked on,

leaving behind a r a d i c a l which combined w i t h the r ad ioac t ive

r e c o i l atom, It was necessary t o d i s c a r d t h i s hypothesis when

i t was observed i n s e v e r a l l a b o r a t o r i e s t h a t : a ) Halogen atoms

. ac t iva ted by neutron capture can e n t e r organic combination not

only by replacement of halogen atoms bu t by rep lac ing various

o the r atoms and. r a d i c a l s (4, 11, 12, 23) including hydrogen

atoms; b ) Low.concentrations of atom scavengers a l t e r the

chemical f a t e of r ad ioac t ive halogen atoms produced by the ( n , ~ )

process i n organic compounds i n d i c a t i n g t h a t many of the r e c o i l

atoms do not e n t e r s t a b l e combination u n t i l a f t e r they have

l o s t t h e i r excess energy and d i f fused i n thermal equi l ibr ium

wi th the medium ( 1 3 ) .

These f a c t s suggested t h a t the r e c o i l atom must form a

t r a c k o r pocket of r a d i c a l s of var ious s o r t s , wi th one of which

i t may combine a f t e r becoming thermalized, I f i t does not f i r s t

C A I e n t e r s ta ,h le combination by a "hotl1 r e a c t i on, Conc.urrently,

i n v e s t i g a t o r s became aware o f t h e f a c t t h a t the atoms produced

by the (n,X) process of ten , and perhaps always, c a r r y a posi-

t i v e charge . ( 3 3 ) a s a r e s u l t of 'some of t h e energy of t h e

nuclear process being made a v a i l a b l e f o r e j e c t i n g e l e c t r o n s

from the o r b i t s . This charge might lead t o r e a c t i o n as a r e -

s u l t of the energy l i b e r a t e d on n e u t r a l i z a t i o n o r a s a r e s u l t

of ion-molecule r eac t ions ( 2 8 ) . To explore the' r e l a t i v e e f f e c -

t iveness of r e c o i l energy and of charge i n causing r e a c t i o n , 80

the products r e s u l t i n g from a c t i v a t i o n by the B r (11.4. hr .1

I T 8 0 2+ B r (18 min.) isomeric t r a n s i t i o n i n s e v e r a l media were

'7 9 80 compared wi th those formed by the B r ( n , ~ ) ~ r process ( 1 0 ) ~

80 The isomeric t r a n s i t i o n i s known t o produce B r atoms with

an average charge of 910 (34). I n a number of t e s t s the pro- .

ducts 'of a c t i v a t i o n by the two processes have been i n d i s t i n -

guishable . Unfortunately t h i s r e s u l t does not d i s t i n g u i s h . .

d e c i s i v e l y between t h e charge and recoil ,mechanisms s ince atoms

from the isomeric t r a n s i t i o n may acqui re some k i n e t i c e n e r g y

from coulomb repuls ion , a l though t h i s i s much lower than t h e

eneragy acquired. from r e c o i l i n t h e ( n , 6 ) process. Recoil atoms 7 9 7 8

of y e t much h igher energy produced by the B r (n,2n)Br

r e a c t i on produce s imi l a r r e s u l t s (30) . Consequently, the

quest ion of t h e separa te con t r ibu t ions of charge and r e c o i l

energy i s n o t y e t solved al though t h e r e i s evidence from some

gas phase r e a c t i o n s t h a t both rnay be important ( 2 1 ) ,

S tudies of iodine, bromine, and ch lo r ine a c t i v a t e d by the

(n ,$ ) process i n the gas phase show t h a t such atoms a r e able

t o undergo unique processes unl ike those observed f o r halogen :3

atoms a c t i v a t e d i n any o t h e r way ( 1 6 ) , I n gaseous hydrocarbons

o r a l k y l h a l i d e s they can d i sp lace hydrogen atoms and organic

groups i n bimolecular, non-radical r e a c t i ons t o produce a

mult i tude of l abe led compounds from a s i n g l e type of organic

gas , It seems probable t h a t these r eac t ions a re ion-molecule

processes (28), al though the p o s s i b i l i t y cannot be excluded

t h a t they a r e due t o atoms i n an exc i t ed s t a t e not encountered

i n photochemical s tud ies . I t i s poss ib le t h a t a s i m i l a r

unique mechanism may c o n t r i b u t e i n p a r t t o the formation of

the m u l t i p l i c i t y of products observed i n condensed phases,

Carbon and Hydrogen Labeling

The above o u t l i n e of the development of knowledge of t h e

chemical e f f e c t s of nuclear t ransformations i n organic systems .

has d e a l t wholly wi th halogen atoms, These have received

predominant a t t e n t i o n i n such i n v e s t i g a t i o n s u n t i l r e c e n t l y

because the r ad ioac t ive spec ies have s u i t a b l e h a l f - l i v e s and

a re convenient ly made, wi th s a t i s f a c t o r y cap tu re c r o s s sec t ions ,

by neutron i r r a d i a t i on 'of the n a t u r a l l y occuring i so topes ,

Also, when s t a b i l i z e d i n organic combination they do not e a s i l y

exchange wi th o the r molecular forms, o r 'hydrolyze,

From the s tandpoint of preparing r a d i o a c t i v e l y l abe led

compounds f o r use i n research , development and production con-

t r o l i t would o f t e n be d e s i r a b l e t o be ab le t o employ carbon,

hydrogen, oxygen o r nf trogen. Unfortunately n i t rogen and

oxygen a r e excluded f r o m such use by the very s h o r t h a l f - l i v e s

- 005 4 -A

of t h e i r r a d i o i s o t o p e s . Carbon and hydrogen each has a n a t u r -

a l l $ occu r ing i s o t o p e which c a p t u r e s neu t rons t o form a r a d f o - 13 14 2 3

a c t i v e i so tope , f e e . C (n,)oC (5600 y ) and H (n ,a )H ( 1 2 Y ) ,

b u t i n each c a s e t h e n a t u r a l abundance of t h e c a p t u r i n g iso , tope

i s s o low, t h e c r o s s s e c t i o n f o r neu t ron c a p t u r e is s o low,

and t h e h a l f . l i f e i s s o long, t h a t i t i s i m p r a ~ t i c a l ~ t o use i

t h e p roces s f o r producing u s e f u l amounts of t h e r ad i+c t i , ve

s p e c i e s . There a r e however s e r v i c e a b l e t r a n s m u t a t i o q p roces se s 1 4 3

t by which C and H may be produced from o t h e r elemerjts. These

14 14 6 3 3 3 f a r e N (n ,p )C , L i (n,c.q)H . a n d He (n ,p )H . The n a t u r a l

14 abundance of N i n n i t r o g e n i s 99.6% and i t s c r o s s s e c t i o n

f o r t h e ( n , p ) p roces s w i th thermal neu t rons is . 1.76 b a r n s ; 6

t h e n a t u r a l abundance of L i i s 7.5% and the c r o s s s e c t i o n . 945 3

ba rns ; He , a decay produc t of tri tium, may be purchased a t a

reasonable c .os t , i t s c r o s s s e c t i o n i s 5400 b a r n s , A s i n t h e

case of t h e r a d i o a c t i v e halogen atomo produced by t h e (n,Y) 14 3

proces s , t h e C and H a r e born w i t h h igh , r e c o i l energy and

a r e presumably p o s i t i v e l y charged, t h e r e c o i l energy be ing

much g r e a t e r because t h e e n e r g e t i c p a r t i c l e e j e c t e d i s a massive %

pro ton o r a l p h a p a r t i c l e r a t h e r than a gamma ray . I

It h a s been shown t h a t by exposing n i t r o g e n compounds i n 14

hydrocarbon s o l v e n t s t o neu t rons i t i s p o s s i b l e t o form C - l a b e l e d molecules i nvo lv ing replacement of normal C o r N atoms

1 4 by C , and a l s o t o form molecules w i t h l a r g e r and s m a l l e r

carbon s k e l e t o n s t h a n t h e s u b s t r a t e (29, 40 ) . T r i t o n s formed 6 3

by t h e L i (n ,q )H process i n f i n e l y ground mix tu re s of l i t h i u m

sa l t s w i t h o rgan ic compounds form l a b e l e d molecules of t h e

s u b s t r a t e a s w e l l a s o t h e r , p r o d u c t s ( 2 6 ) . The d i s t r i b u t i o n of

t he , l a b e l on t h e d i f f e r e n t ca rbon atoms of t h e molecules formed 3

5 i s s e l e c t i v e r a t h e r t han s t a t i s t i c a l . When mix tu re s of He .

with methane, e thane 03 propane a r e i r r a d i a t e d w i t h neu t rons m .

t h e tritium formed i s 'found i n compounds r e q u i r i n g b o t h

. . l eng then ing and s h o r t e n i n g of t h e carbon c h a i n s (15, 27) ,

S e p a r a t i o n by Gas Chromatography

P r i o r t o t h e a v a i l a b i l i t y of g a s chromatography it was

impossible t o s e p a r a t e w i thou t c a r r i e r o r s o l v e n t unweighable

amounts of l a b e l e d compounds such a s a r e i n d i c a t e d by t h e peaks

of F igu re s 1 and 2. With gas chromatography, however, t h e

only s o l v e n t r e q u i r e d i s a c a r r i e r gas , such a s helium, from

'which t h e unweighable components can be removed, w i th appro-

p r i a t e c o l d t r a p s , a s t hey come o f f t h e column. It h a s been

demonstra ted tha t e s s e n t i a l l y c a r r i e r - f r e e components a r e

s e p a r a t e d by t h e chromatographic column a s e f f e c t i v e l y a s com-

ponents p r e s e n t i n macro anlounts (9 , 1 0 ) . This i s i l l u s t r a t e d

by F igu re 1 where a l l o f t h e r a d i o a c t i v i t y peaks a r e f o r .

l l c a r r i e r - f r e e l t p roduc ts , excep t t hose under t h e d o t t e d l i n e s

which i n d i c a t e added c a r r i e r s d e t e c t e d by thermal c o n d u c t i v i t y .

Fo r t hose compounds which a r e s u f f i c i e n t l y v o l a t i l e and s t a b l e

t o be s e p a r a t e d by gas chromatography the use of chemical

. . e f f e c t s of n u c l e a r t r ans fo rma t ions f o r producing h i g h s p e c i f i c

a c t i v i t y t r a c e r s i s , then,, no l onge r s u b j e c t t o t h e s t r i n g e n t

l i m i t a t i o n s fo rmer ly impos'ed by t h e s e p a r a t i o n problem,

I d e n t i f i c a t i o n of P,roduc t s . Before gas chromatography was

a v a i l a b l e i t had been demonstrated t h a t n u c l e a r ' t r a n s f o r m a t i o n s

i nvo lv ing ha logen atoms can l e a d t o a v a r i e t y of l a b e l e d com-

pounds i n a l k y l h a l i d e media, This was d-one by t h e r e l a t i v e l y 5 (J(P'7

- 8 -

l a b o r i o u s pro.cess of add.ing c a r r i e r s f o r su spec t ed produc ts

!: t o t h e i r r a d i a t e d sample, d i s t i l l i n g and observ ing t h e r a d i o -

-. . a c t i v i t y i n succes s ive f r a c t i o n s of t h e d i s t i l l a t e (6 , 11). E

With gas chromatography one can f i r s t determine. t he number of

c a r r i e r - f r e e compounds p r e s e n t by making a chromatogram of the '

r a d i o a c t i v i t y peaks from s a y a 50 m i c r o l i t e r sample of t h e

i r r a d i a t e d m a t e r i a l . To ano the r sample he c a n then add non-

r a d i o a c t i v e macro p o r t i o n s of su spec t ed produc ts whose o r d e r

o f . emergence from the column has been p r e v i o u s l y determined.

I By s imu l t aneous ly moni to r ing t he r a d i o a c t i v i t y and h e a t conduc-

t i v i t y changes ' i n t h e e f f l u e n t gas from t h e column, u s i n g a

. . two pen c h a r t r e c o r d e r t o g ive a r e c o r d such a s . t h a t of F igure

1, t h e r a d i o a c t i v i t y peaks a r e e a s i l y . i d e n t i f i ed. ' Each of t h e 1 .i

l a b e l e d . . peaks i n F igu re 1 has been charaacterized by th i s method,

Often s fgn i f i c a n t guesses a s ' t o , t he i d e n t f t y of peaks may be

made from a knowledge t h a t t h e compounds come off ' a p a r t i c u l a r

column i n t he o r d e r of some pr 'operty. Those .of F igu re 1 emerge

i n t h e o r d e r of t h e i r b o i l i n g p o i n t s . There i s the p o s s i b i l i t y

t h a t two compounds mag n o t , be, r e s o l v e d . by t h e column, i n which

c a s e t h e s u p e r p o s i t i o n of t h e thermal c o n d u c t i v i t y and r a d i o -

a c t i v i t y peaks may . l e a d t o a f a l s e conc lus ion . Where t h e r e i s

doubt, a's f o r example i n the nC,II1lBrfl peak .of F igu re 1 t h e I . I ..._ . components of t h e peak should be t r apped and run th rough a

column of a d i f f e r e n t type.

Equipment, The equipment used i n o b t a i n i n g t h e chromato-

grams of ~ ig t .&e 1 i s diagrammed i n F igure 3 .' . The column c o n s i s -

t e d of 12 f e e t of 4 mn. I . D . g l a s s t u b i n g c o i l e d ' i n t o a double

s p i r a l e i g h t inches l ong and f o u r inches i n d i ame te r and packed

with 40-60 mesh Johns -Manville C-22 f i r e b r i c k coa t ed w i t h 40%

'of i t s weight of General E l e c t r i c SF-96 ( 4 0 ) s i l i c o n e o i l ,

During t h e 30 minute s e p a r a t f o n , r u n t h e t empera ture oP the

h e a t i n g b a t h around t h e column was r a i s e d g r a d u a l l y from 40' t o

ZOO0 t o a l low components of s u c c e s s i v e l y h i g h e r b o i l i n g p o i n t

t o move through the column a t a d e s i r a b l e r a t e . The e f f l u e n t

gas passed t o t h e bo t tom.cf a t h i n wa l l ed 1 m l , g l a s s th imble

which f i t i n t h e w e l l 0 f . a NaI ( T l ) s c i n t i l l a t i o n c r y s t a l ; The

l a t t e r f e d th rough a p h o t o m u l t i p l i e r tube, ' p r e a m p l i f i e r , l i n e a r

a m p l i f i e r and r a t e . m e t e r t o t h e c h a r t r e c o r d e r , From t h e

s c i n t i l l a t i o n c o u n t e r the gas passed i n o r d e r through t h e thermal

. c o n d u c t i v i t y s ens ing c e l 1 , a l i q u i d a i r t r a p ( i n which t h e

c o m p o n e n t o under a n a l y s i s were f r o z e n from t h e hel ium s t r e a m ) ,

t h e thermal c o n d u c t i v i t y r e f e r e n c e c e l l , and t h e f lowmeter.

The f low r a t e was main ta ined a t 60 rnl,/min, by i n c r e a s i n g t h e

p r e s s u r e from 1 2 t o 1 9 lb. /sq, i n , a s t h e temperature i nc rea sed .

P l a c i n g , t h e r e f e r e n c e c e l l o n . t h e e f f l u e n t s i d e r a t h e r t h a n t h e

i n p u t s i d e of t h e system avoid.ed v a r i a t i o n s i n t h e base l i n e of

t h e c h a r t r e c o r d e r a s t h e r educ ing va lve .was a d j u s t e d 'dur ing a

run. The n e g a t i v e peak inmed ia t e ly fo l l owing t h e a i r peak of

.F igu re 1 i s due t o t h e f a c t t h a t a i r i s n o t removed' by t h e

l i q u i d a i r t r a p , The tubes from t h e coiwnn t o t h e s c i n t i l l a t i o n

c o u n t e r and from t h e ' c o u n t e r t o t he c e l l were wound with nichrome

wi re and a s b e s t o s and e l e c t r i c a l l y h e a t e d t o p reven t condensa t ion

of t h e l e s s v o l a t i l e compone'nts.

Equipment Modi,f i c a t i ons , Many modif i c a t i ons of t h e above

equipment a r e of course p o s s i b l e , and i n some c a s e s a r e neces -

s a r y t o a l low t h e s e p a r a t i o n of d i f f e r e n t chemical s p e c i e s and

t h e moni tor1ing of d i f f e r e n t t y p e s and e n e r g i e s of r a d i a t i o n ,

The aluminum c l a d s c i n t i l l a t i on c o u n t e r w i t h g l a s s th imble

i n tho w e l l g i v e s h i g h e f f i c i e ' n c y f o r t h e coun t ing of gamma

r a y s and h igh ' energy b e t a r a y s b u t i s u s e l e s s . f o r count ing

t h e weak b e t a r a y s f'rom tri t i m o r carbon-14. For t r i t i u m it

i s neces sa ry t o have t h e compound t o be counted i n s i d e t h e

coun te r . This was accomplished i n ' the exper iment of F igu re 2

(15) by us ing methane, a good coun te r gas , t o c a r r y t he sample

through t h e chrorria.tographic column and t h e n a l l owing i t t o

f low through a ' p r o p o r t i o n a l c o u n t e r which c o n s i s t e d of a n

i n t e r n a l l y s i l v e r e d g l a s s sphere of 1 0 m l , vo l . (14) . It cad^ b w c Y i ~ ' r t)/

i s i n t e r e s t i n g t o n o t e t h a t the,peak f o r t r i t i a t e d methane

shows up w e l l even w i t h methane a s t he c a r r i e r gas.

The use of methane has t h e d i sadvantage t h a t i t s h e a t con-

d u c t i v i t y i s no t a s much d i f f e r e n t from t h a t of most compounds

of i n t e r e s t a s i s t h a t of helium, and t h a t t h e p o t e n t i a l r e -

q u i r e d f o r coun t ing i s h i g h e r t h a n t h a t of mix tures of t he

r a r e gases w i t h hydrocarbons. Wolfgang and Rowland (27, 4 2 )

have avoided t h e s e d i sadvantages by us ing he l ium a s t he gas

t o c a r r y t h e sample t h rough t h e chromatographic column and

h e a t c o n d u c t i v i t y c e l l , f o l l o w i n g which methane i s b l e d i n t o

t h e s t ream t o make a good coun t ing mixture . The mixed gas i s

then passed t h rougha c y l i n d r i c a l b r a s s p r o p o r t i o n a l coun te r ,

These a u t h o r s have a l s o g iven a u s e f u l a n a l y s i s of t h e e f f e c t

of chamber volume and f low r a t e on t h e s e n s i t i v i t y of d e t e c t i o n

of t h e r a d i o a c t i v i t y peaks. Wilzbach, Kaplan and Riesz (38)

have avoided t h e n e c e s s i t y , fo r a s p e c i a l c o u n t e r gas by employ-

i n g a s t h e i r d e t e c t o r a f low type i o n i z a t i o n chamber i n con-

j unc t ion w i t h a v i b r a t i n g r e e d e l e c t r o m e t e r . I n a d d i t i o n t o

01s 03-0

b - -. - 11 - opera t ing a t low vol tage with any c a r r i e r gas t h i s u n i t should

, , t o l e r a t e gaseous s p e c i e s which form negat ive ions , such a s

- - - .. a l k y l halides., -whf ch s t o p the- opera t ion of -proportional -cow-ters, \b-

although such spec ies may poss ib ly reduce t h e d e t e c t i o n e f f i c -

,.\ . u iency r a t e s somewhat. When an i o n i z a t i o n chamber i s used which

is small enough so t h a t a s i g n i f i c a n t f r a c t i o n of the b e t a

p a r t i c l e s reach the wa l l s the s e n s i t i v i t y of the chamber w i l l

vary a s the composit ion of t h e flow gas v a r i e s ; the l a r g e r

the ,number of e l e c t r o n s per molecule i n the gas the l a r g e r

w i l l be the number o f ' ion p a i r s produced per b e t a emit ted . i n

the chamber.

Kokes, Tobin and Emmett ( 1 9 ) were probably the f i r s t i n -

v e s t i g a t o r s t o sepa ra te r ad ioac t ive ly l abe led compounds by gas

chromatography and analyze the e f f l u e n t by both counting and

hea t conduct iv i ty . They analyzed macro amounts of hydrocarbons 1 4

labolod w i t h C . Thcir radf o a c t i v i t g d e t e c t o ~ l was a mica

window Geiger tube arranged s o t h a t the gas sample flowed

through a compartment enclosing the window.

For many systems an important r e q u i s i t e of the radf oactfv-

i t y d e t e c t o r 1 s t h a t it be ab le to operate a t e l eva ted tempera-

t u r e ' s o t h a t it can be hea ted t o prevent ' compounds of low

v o l a t i l i t y from condensing. In taking the .data of Figure 1

the thimble' i n the wel l of the s c i n t i l l a t i o n counter was main-

t a i n e d a t 200' ( 9 ) . This i s n o t an id .eal arrangement because a

it r i s k s the p o s s i b i l i t y of cracking an expensive c r y s t a l and

because t h e s e n s i t i v i t y of t h e c r y s t a l drops a f t e r a prolonged

period of hea t ing the we l l , I t has, however, been used success-

f u l l y f o r hundreds of experiments, The s e n s i t i v i t y remains

s u f f i c i e n t l y cons tant f o r the time requi red f o r a run. When it

drops, due t o long hea t ing , i t r e t u r n s t o i t s normal value on

cooling. Another method ,of counting ene rge t i c b e t a p a r t i c l e s

o r gamma rays ini)a h o t f lowing gas i s t o pass the gases through

an e l e c t r i c a l l y heated t h i n wal led g l a s s tube ad jacen t t o a t h i n

walled Geiger ' counter (9, , lo ) . The counter is mounted h o r i -

z o n t a l l y below the flow tube and the two a re separa ted by a

t h i n shee t of aluminum f o i l thus al lowing the counter t o operate

a t . nea r room temperature, In genera l Geiger counters and pro-

p o r t i o n a l counters do not operate s a t i s f a c t o r i l y above about

75' C. Therefore f o r experiments such a s those of Figure 2

the gases from the chromatographic column were passed through

a l eng th of unheated tubing before e n t e r i n g the counter tube,

Wilzbach and coworkers (38) have operated t h e i r flow i o n i z a t i o n

chamber a t 110' but f i n d t h a t the leakage current becomes

excessive a t higher temperature;. I t I s t o be expected t h a t

t h i s may be remedied by using d i f f e r e n t i n s u l a t o r s o r , by o the r

changes i n the m a t e r i a l s of cons t ruc t ion . ,

A very promising prospect f o r the manufacture of flow

counters operable a t temperatures up t o 200' C , o r h igher i s

the type of tube developed by L. B. Clarke, Sr: of the Naval

Research Labora tor ies ( 7 ) . These tubes have cathodes cons is -

t i n g of f i l m s deposi ted by passing a mixture of s t ann ic ch lo r ide

and methyl a l coho l vapors through the heated g lass s h e l l .

Co l l ec t ion of ~ r o d u c t s . The requirements f o r sample

c o l l e c t i o n a r e simply a s e r i e s of small t r a p s which can be

cooled w i t h l i q u i d a i r o r o t h e r r e f r i g e r a n t and through which

the e f f l u e n t stream from t h e chromatographic column can be

d i r e c t e d i n t u r n a s successive peaks appear, The s imples t ' u n i t

i s a small U tube with a ground j o i n t which can a t t a c h t o the

e f f l u e n t end of the column. Manifolds of var ious s o r t s with . ,

-*

severa l t r a p s i n p o s i t i o n f o r convenient r ap id switching from

f-, one t o another have been devised.

Spec i f i c ~ c t i v i t y of Products. Those l a b e l e d molecules

which a r e formed by s u b s t i t u t i o n of the r e c o i l atom f o r a

s i n g l e atom of the same element i n the t a r g e t molecule ( a s i n

the formation of l a b e l e d n-propyl bromide from n-propyl bromide

o r of t r i t i a t e d propane from propane) a r e l i m i t e d i n s p e c i f i c

a c t i v i t y by d i l u t i o n by the i n a c t i v e molecules o r i g i n a l l y present .

Attempts t o increase the s p e c i f i c a c t i v i t y by longer i r r a d i a t i o n s

a t h igher f l u x e s may r e s u l t i n major decomposition by r a d i o l y s i s ,

The l abe led compounds which a r e d i f f e r e n t from the t a r g e t mole-

*. - cule ( a s i n the formation of methyl bromide from n-p.ropyl

bromide o r of t r i t i a t e d methane from propane) would be present

i n t h e " c a r r i e r - f r e e t 1 s t a t e (I .e, undi lu ted by non-radioact i ve

molecules) i f the s t a r t i n g m a t e r i a l were abso lu te ly pure and

i f none of the i n a c t i v e spec ies i n quest ion were formed by the

a c t i o n on the s t a r t i n g compound of gamma rays, f a s t neutrons

and r e c o i l atoms, I n p r a c t i c e such r a d i o l y t i c a c t i o n cannot be

avoided and non-radioact ive molecules a r a produced which s r e

i d e n t i c a l t o some o r a l l of t h e s p e c i e s produced by the r a c o i l

l a b e l i n g reac t ion , thereby lowering the s p e c i f i c a c t i v i t i e s of

- . these spec ies ,

The r a t i o of i n a c t i ve molecules produced by r a d i o l y s f s t o

r ad ioac t ive molecules produced by t h e l abe led r e c o i l atoms

depends on: 1) The G value (molecules formed pe r 100 ev

- 14 - absorbed) f o r t h e p a r t i c u l a r r a d f o l y s i s s t e p ; 2 ) The r a t i o of

neu t rons t o gamma r a y s from t h e neu t ron sou rce ; 3 ) The r e c o i l

e n e r g i e s of t h e p a r t i c l e s from t h e n u c l e a r p roces s which forms

t h e l a b e l i n g atom; 4) The neu t ron c a p t u r e c r o s s s e c t i o n f o r

t h e p rocess which produces t he l a b e l i n g atom; 5 ) The ccncen t r a -

t i o n of t h e neu t ron c a p t u r i n g atom r e l a t i v e t o o t h e r atoms.

In carbon and t r i t i u m l a b e l i n g a l l of t h e energy of t h e n u c l e a r

p rocess ( n , p o r n;ty) i s u s u a l l y absorbed i n t h e system s i n c e 1 4

t h e e m i t t e d pro tons oi7 a l p h a p a r t i c l e s , a s w e l l a s t h e C and 3

H atoms have s h o r t ranges i n m a t t e r , whereas i n t h e (n , x ) proces se s t h e e m i t t e d gamma r a y i s only wsakly absorbed and

t h e r e c o i l energy of t h e tagged atom i s r e l a t i v e l y ' l o w . I n a 6 3

t y p i c a l c a se of l a b e l i n g by t h e L i (n,?)H p roces s t h e r a t i o

of r a d i o a c t i v e t r i t i u m . atoms formed t o .molecules of t h e sub- '6

s t r a t e decomposed by t h e r e c o i l i n g p a r t i c l e s may be 1 0

The l o n g e r t h e h a l f l i f e of a r a d i o a c t i v e s p e c i e s t h e more

atoms must be produced t o g ive a u s e f u l d i s i n t e g r a t i o n r a t e f .or

t r a c e r purposes, i . e . the l o n g e r i s t h e r e q u i r e d i r r a d i a t i o n

time. Consequently t h e l o n g e r t h e h a l f l i f e t h e lower w i l l be

t h e s p e c i f i c a c t i v i t y expressed a s t h e r a t i o of d i s i n t e g r a t i o n

r a t e t o i n a c t i v e molecules. - 1'4 E

For t h e r ea sons enumerated above C and H cannot be p r e -

pared by r e c o i l l a b e l i n g w i t h n e a r l y a s h i g h s p e c i f i c a c t i v i t y

a s can t h e halogens . T y p i c a l s p e c i f i c a c t i v i t i e s r e p o r t e d i n 6 3

t h e l i t e r a t u r e a r e 2 x 1 0 H d i s i n t e g r a t i o n s p e r minute pe r

mi l l i g r am of g a l k c t o s e prom i r r a d i a t i o n of a mix ture of Li,CO, 1 4

and g a l a c t o s e (25) and 420 C dep,m./mg, of a c r i d i n e from .

. i r r a d i a t i o n . o f t h a t compound ( 3 9 ) .

Other Labeling Methods

By Ioniz ing Radiation. By use of t h s chemical e f f e c t s of --- -. .

.C. nuclear t ransformat ions f t i s poss ib le t o produce l abe led mole-

cu les much more complex than can be read1 l y produced by chemical P\

syntheses . The m e t h ~ d has the disadvantage t h a t i t r e q u i r e s a

h igh i n t e n s i t y neutron source such a s a nuclear r e a c t o r ,

hrilzbach (37 ) has pioneered a new method of la:).eling with tritium

which promises t o have a l l of t h e advantages of t h e nuclear

a c t i v a t i o n method f o ~ t h i s element while being simpler t o ca r ry

, out and l e s s sub jec t t o reduct ion i n s p e c i f i c a c t i v f t y due t o

r a d i a t i o n damage, He has shown t h a t it i s possfb le t o l a b e l

complex compounds wi th t r i t i u m by simply allowing the des i red

compound t o s tand i n c o n t a c t with tritium gas , Rates of forma-

t f o n of the t r i t i a t e d form of the o r i g i n a l compound as h igh a s

2.2 m f l l i c u r i e s per curie-day exposure have been o b a ~ r v e d and

y i e l d s of t r i t i a t e d r a d i o l y s i s products aye s t i 11 g r e a t e r ,

When these spec ies can be separa ted f n high puri-ty each i s a

p o t e n t i a l l y use fu l t r a c e r compound. Among the labe l3d coxpounds

prepared have been c h o i e s t e r o l ' w i t h a s p e c i f i c 2-c t iv i ty of 64

mc./g. and d i g i t o x i n with a s p e c i f i c a c t i v i t y of 90mc ./g.

In the Wilzbach method the tritium e n t e r s combination a s

a r e s u l t of t h e i o n i z a t i o n and e x c i t a t i o n of molecules of the

medium by t h e b e t a r a d i a t i o n of the tritium (1, 24) . I d e n t i c a l

r eac t ions can be induced i n s h o r t e r times by i r r a d i a t i n g a

mixture of t r i t i u m and the organic compound with an in tense ex-

t e r n a l source of gamma r a d i a t i o n ( I ) , Mixtures of tritium with

methane y i e l d not only t r i t i a t e d methane but a igo t r i t i a t e d

I

hydrocarbons of each c h a i n l e n g t h up t o a t l e a s t C6 , and when . .

tritium i s a l lowed t o s t a n d w i t h h e x a n e birth c h a i n , l eng then ing

a n d . chaan de.gradatio;? occG.~, ' .' . . .

L A t approximately t h e . sam.e ti me t h a t tile unique r e a c t i o n s

A noted above have come. t o l i g h t t h e f o l l o w i n g ~ S s e r v a t i o n s have

been r epo r t ed : 1) Hydrocarbon ions formed by t h e e l e c t r o n beam

i n t h e i o n i z a t i o n chamber of a mass, spec t rome te r~show very h i g h + =I-

c r o s s s e c t i o n s f o r r e a c t i o n s such a s CH, + CH4-C,H, + H2

(28); 2 ) 0 rgan ica l l .g bound t r i t i u m i s formed.. when' gaseous T, a t

about 5 0 microns p r e s s u r e f s s u b j e c t e d t o a . f i e l d of on iy 200

volts/cm. between. e l e c t r o d e s c o a t e d w i t h va r ious o rgan ic comp~unds

' ( f o r t imes t o o s h o r t t o al low d e t e c t a b l e r a d i a t i o n induced 41' '1 4+

l a b e l i n g ) ( % ) ; 3 ) C i ons formed i n a mass spec t rometer and

a l lowed t o Impinge on s o l i d benzene y i e l d bo th benzene and 1 4 .

I s t o luene l a b e l e d w i t h C ( 2 0 ) .

Each of t h o t lunconvent ional l l r e a c t i o n s c i t e d i n t h i s s e c -

t i o n a s w e l l a s those i n i t i a t e d by n u c l e a r t r ans fo rma t ion ,

i nvo lves a mechanism of ac t t i va t i on which produces i o n s , The

sugges t i on i s obvious t h a t it may be pos . s ib le t o d . iscover many

u s e f u l l a b e l i n g r e a c t i o n s which. can be i n i t i a t e d by al10,wing

a lpha , b e t a o r gamma r a y s o r a n e l e c t r i c a l d i s c h a r g e t ,o i o n i z e

mix tu re s of s imple t agged molecules with o t h e r molecules . Con- 1 4 1 4 14 1 4

ven ien t source molecules may inc lude C 0, C 0,; C H4, C, H,, , 36 3 6 3 6 3 6 82 82

H2S , S 02, H C 1 , C l , , HBr , B r , , v a r i o u s t r i t i a t e d

(.

compounds, and many o t h e r s .

By Chemical Syn thes i s and By Exchange; The p r e p a r a t i o n of

l a b e l e d compounds by t h e use of n u c l e a r t r ans fo rma t ions and by

i o n i z i n g r a d i a t i o n both invo lve equipment and t e c h n i ques which

a r e u n f a m i l i a r t o many chemists . These methods g e n e r a l l y pro-

duce complex ~ n i x t u r e s of l a b e l e d compounds f rom which t h e d e s i r e d

components must be s c r u p ~ ~ l o u s l y purf f l e d be fo re use. Furthermore, . . if t h e molecule d e s i r s d h a s s e v e r a l atoms of she elemen? t o be

tagged tlze l a b e l i s usua1l.y rando~nly o r s em1 -r;andomly d i s tri bu-

t e d , For such r ea scns 'the g r e a t m a j o r i t y of a l l l a b e l e d com-

pounds produced f o r t r a c e r s t u d i e s t o d a t e ha1:e been those which

a r e sirnple enough f o r cliemical s y n t h e s i s , I n o r d e r t o o b t a i n

h igh y i e l d s from t h e r a d i o a c t i v e s t a r t i n g compcund, t o p reven t

unnecessa.ry d i l u t i o n of t h e tagged element w i t . h non-radioactive

i s o t o p e s , and t o avoid con tamina t ion of th.e l a b o r a t o r y , i t i s

o f t e n d e s i r a b l e . t o dks ign s y n t h e t i c procedures m i t a b l e f o r use

w i t h i-nilligram q u a n t i t i e s of r e a g e n t s , u s i n g vacuun l i n e tech.-

n iques ( 5 ) . I n a n e x t e n s i v e review of chemical and b i o s y n t h e t i c

l a b e l i n g methods Thomas and Turner ( 31 ) have c i t e d over f o u r

hundred i l l u s t r a t i v e r e f e r e n c e s , In such syn theses of compousc:l.:;

l a b e l e d w i t h ca rbon o r hydrogen i t i s customary t o s t a r t w i t h 1 4 3

BaC O3 o r H, gas , which a r e a v a i l a b l e from t h e a tomic energy

commission l a b o r a t o r i e s i n - s e v e r a l c o u n t r i e s , o r w i t h s imple 1 4 3

compounds of C o r H, a v a i l a b l e from commercial s u p p l i e r s .

I l l u s t r a t i v e of s imple chemica l l a b e l i n g p roces se s which

have 'been found u s e f u l i n our l a b o r a t o r y a r e t h e fo l l owing . 3 6

1) Many organ ic c h l o r i d e s may be e a s i l y l a b e l e d w i t h C 1 by 3 6 3 6

exchange w i t h A 1 C 1 3 ( 2 ) . AgCl i s p r e c i p i t a t e d f rom a s o l u t i o n 3 6

of H C 1 ob t a ined from tl?e Oak Ridge Na t iona l Laboratory , d r i e d

by f u s i o n under vacuum, and h e a t e d wi th A 1 me ta l t o produce 3 6

A 1 C 1 3 t o which, t h e o rgan ic c h l o r i d e i s exposed on t h e vacuum 8 2

system. 2 ) Labe l ing of o rgan ic bromides w i th B r may be

Or5

8 2 accomplished i n a n analogous f a s h i o n , t h e A l B r , be lng conven-

e 2 i e n . t l y prodil.ced by r e a c t i o n . of A 1 ~:i t ,h By, 1r!?!.cn has been formed

by i r i - a d i a t f on of lf.q,-did e lementa l F3pZ ?.XZ a rj72-cle a:? r e a c t o r , 8 2

3 ) Photocharnical reeztlox!.~ haire been 933!5 t.0 ayod~j-ce IBr and

9 % 82 and Bi-, , a t e lsvateci t,c.rr,p";>a.t~ires w i t h a ?4/iacciz laxp, !j.) HBr

may be p ~ e p a r s d by th.3 ~ ~ p i d c x s h z i ~ g s r ~ h i c h ozcurs c n a f x i n g 8 2

t ank HSr and Br, fo l iowed by removal of t h e E r a by con.l;act wf.i;h

mercury. 5 ) O ~ g a n i 2 f odides appear - to be qua.n.ti t a t i v e l g con-

v e r t e d t o khe c o r r e s p o n l i n g r a d i o b r c a l d e s by sin2le replacemer1-3 e.2 d .2

r e a c t i o n s w i th Bp, (17)e 6 ) B I ar:2 E C1 ( 8 1 have jeer1 ? r e - 5 0

pared by h a a t i n g mix tures of H, and 2, and of 11, + Z C 1 ever a

h o t p la t inum w i r e , 7 ) Aroaatkc compounds may be l a b s l e d w i t h 3 I

t r i t i u m by h e a t i n g wl.th HI C l i n t h e p r e s m c e of a c a t a l y s t such 14

a s SnC1, (8). 8 ) E t h y l bsnzenes l a b e l e d w i t h S 8 . ~ 3 produced 1 4

by p a s s i n g e. gaseous mix.tv.re of benzsne and C e t h y l ch?-~;.ido

ove r anhydrous aluminum c h l o r i d e (3 ) ,

B i o s y n t h e s i s , Labeled compounds t o o complex t o be p repared

by chemical s y n t h e s i s have i n a number of i n s t a n c e s been made 1 4

by f e e d i n g C 0, t o growing p l a n t s , Rather h i g h s p e c i f i c

a c t i v i t i e s of randomly l a b e l e d compounds can be ob t a ined by

s t a r t i n g with young p l a n t s , The u se of o t h e r growing organisms 1 4 3 2

f o r f n c o r p o r a t i n g C and o t h e r rad ioe lements , p a r t i c u l a r l y P 36

and. S . , has been r e p o r t e d by many i n v e s t i g a t o r s . Some of t h e i r

r e s u l t s a r e c i t e d by Thomas and Turner ( 3 2 ) and by Kamen (18)

. . . LSterature Ci ted

1. Ahpens, R e W., ~ a u e r , M. C. , and Willard, J. E.9 2. &* Chcm5

2, Blau, M a , and Willard, J., 50, L e & a Cheme -0, .a, k42 (1951)

3 . Blau, M a , and Wil lard, J, E , , L, &. Chem. & b y Zy 3330

(1953 )

4. Bohlmann, E. G., and Wil lerd, J. Be, J , &;!o .Chert. a,, a,

5. Calvin, M u , Heidelberger, C , , Reid, J. C., Tolber t , B e M0.3

and Yankwich, P. 3'., " I so top ic Carbonu, John Idiisy and Sons,

N e w York, 1949,

6, Chien, J, C . W , , and Willard, J o E , , Le Am, Chem, &go, 3,

7, Clark, L. B e S r , , Rev. S c i , I n s t r . 6, 1202 (1955)

8, Comyns, A. E., Howald, R, Am, .and Willard, J, E. , LO 40 m.: . .

7 -

? S O C , 78, 3989 (1956). -

9. Evans, J. B., Ph, Do Thesis, Universi ty of Wisconsin, 1957,

Available from Universi ty Microfilms, Ann Arbor, Michigan.

10, Evans, J, B. and Willard, J. E*, L. &a Chem. &* 78, 2908

(1956).

11. Fox, M. S. and Libby, W. Fa,, J . Chem* P h ~ s . 0, 487 (1952).

12. Gluckauf, E. and Fay, J . , J. Chem. &., 390 (1936)

13. Goldhaber, So, and Wil lard, J, E., h e Chem* 749 318

14. Gordus, A. A., Ph, 'D, Thesfs, Univers i ty of Wisconsin, 1956,

a, Available from Universi t y Microfilms, Ann Arbor, Michigan,

. 15. Gordus, A , A , , $suer, M'. C , , and Willard, J. E., 2. &, Chem,

SOC -* Y 79, 3284 (1957). . . 4

4 16, Gordus, A , A . and Wil lard, J. E,, J, Q. them.' &* 79, 4609

1 .- - . . -

17. ~ a n r a h a n , R . J., Ph. D. t h e s i s , Univers i ty of .l$isconoin,

p . 56, 1956. Avai lable from Unive r s i ty ~ i c r o f i l m s , Ann Arbor,

1 ' Michigan,

18. Kamen, M. D , , I s o t o p i c Tracers i n Biology, 3 r d . ed., Academic '.'

Press , New York, 1957.

19. Kokes, R e J., Tobin, H , , Jr,, and Emmet, P. H., J. Chem,

20. Lemmon, R. M., Mazzet t i , F o , Reynolds, D, L a , and Calvin, M e ,

J. Am, Chem. &., s, 6414 (1956)e - 21. Levey, G., and Wil lard, J . E., J . Chem. Phys. a,, 904 (1956).

22, Libby., W. F.,. L. Am. Chem. Sot* 69, 2523 (194?) ,

23, Reid, A , , P h ~ s o &. 62, 530 (19461, ,

24. Riesz, P,, and Wilzbach, K. E., L, P h ~ s , Chem., i n p res s .

25. Rowland, F., Turton, C., and Wolfgang, R. , 2. Chem.

z, ,2354 (1956) e

26. Rowland, F. S., and Wolfgang, R., Nucleonic&, a, 58 ( 1 9 5 6 ) .

27. Sayed, M. F, and Wolfgang, R. , L. & Chem. k., 2, 3286

(1957).

28. S c h i s s l e r , D. 0 , and Stevenson, D. P., J . Chem. ~ h y s . a, ~ 926 (19561,

29. Schrodt, A. G e y and Libby, W. F., 2.' &. Chemo ,? --*' Sot SZ 1267

30c Schuler, R. H a , and McCauley, .C. Be, L. k*, D,.

821 (195719

31. Szilasd, Lo, and Chalmers, T. A., Nature, 134, 462 (1934)e

32. Thomas, $ . - L a , and Turner, Ha S. Q,~lar t r Rev., 2, 487 (195310 .

J. Chem, Phsrs., 20, 1688 (1952.). 33. Wexler, S. and Davies, T. Ha, - ' 34. Wexler, S. and Davies, To H a , Phw. we, 88, 1203 (1952).

35. Wil lard, J. E.,'&., R e v . Nuclear E,o, 1, 193 (1953).

8 ; ' 36. Wil lard, J. E., &. E. '~hys. Chem., 6 , 141 (1955) 0

37. Wfl.zbach, K , E., L. &I. Chem. ao, 2, 1013 (1.957)e I

38. Wilzbach, Ka E*, Kaplan,. L e y and Riesz, P o , P r iva te comrnuni-

$., c a t f on. : ,*'

39. Wolf, ' A , P , , and Anderson, R, C , , 2. & O Chem. *a , a, 1608 (1955)'m

40, Wolf,, A , P , , Gordon, B, , and. Anderson, R. C , , La &I, Chem,

SOC g , ' 2 6 5 7 (1956)a. -@ 9

41. ~ o l f k a n ~ , . R., P r a t t , T., and Rowland, F. S O , J O Cbeme

42, Wolfgang, R , , and Rowland, F, S, , Anal, Chem., submitted, s

r ' l .I 1

RADIOACTIVITY-

. .

-. Figu re 1. Gas chromatogram of r a d i o a c t i v e p roduc ts of neu t ron

i r r a d i a t i o n of n-propyl bromide p l u s 5 mole $ bromine; d o t t e d

l i n e shows compounds added f o r , i d e n t i f i c a t f on of t r a c e amounts

of r a d i o a c t i v e s p e c i e s ,

Ftgure 2 , ,Gas chromatogram of . t r f ' t i a t e d -products from 3 3

H & ' ( ~ , ~ ) H r e a c t i o n i n C,H,. (56crn. C3H8, 6 mm. Ha , 5 mme 1 a

H,; 1 hr . i r r a d i a t i o n i n Argonne CPS r e a c t o r a s 2 x 1 0 -2 -1

neutron crn, see , ; s e p a ~ ~ a l ; e d on s I l i c a g e l es1umn)a

TEMP BATH

Figure 3, Gas chromatographic apparatus for identification

of radioactive compounds produced as a consequence of nuclear

reactions,