irfs3207zpbf

Embed Size (px)

Citation preview

  • 8/7/2019 irfs3207zpbf

    1/1104/07/

    Benefits

    l Improved Gate, Avalanche and Dynamicdv/dt Ruggedness

    l Fully Characterized Capacitance and

    Avalanche SOAl Enhanced body diode dV/dt and dI/dt

    Capability

    www.irf.com 1

    IRFB3207ZPbFIRFS3207ZPbF

    IRFSL3207ZPbFApplicationsl High Efficiency Synchronous Rectification in

    SMPSl Uninterruptible Power Supplyl High Speed Power Switchingl Hard Switched and High Frequency Circuits

    HEXFETPower MOSFET

    S

    D

    G

    G D S

    Gate Drain Source

    TO-220ABIRFB3207ZPbF

    D

    S

    DG

    DD

    SG

    D2Pak

    IRFS3207ZPbFTO-262

    IRFSL3207ZPbF

    SDG

    VDSS 75V

    RDS(on) typ. 3.3m:

    max. 4.1m:

    ID (Silicon Limited) 170Ac

    ID (Package Limited) 120A

    Absolute Maximum RatingsSymbol Parameter Units

    ID @ TC = 25C Continuous Drain Current, VGS @ 10V (Silicon Limited)

    ID @ TC = 100C Continuous Drain Current, VGS @ 10V (Silicon Limited) A

    ID @ TC = 25C Continuous Drain Current, VGS @ 10V (Wire Bond Limited)IDM Pulsed Drain Current d

    PD @TC = 25C Maximum Power Dissipation W

    Linear Derating Factor W/C

    VGS Gate-to-Source Voltage V

    dv/dt Peak Diode Recovery f V/ns

    TJ Operating Junction and C

    TSTG Storage Temperature Range

    Soldering Temperature, for 10 seconds

    (1.6mm from case)

    Mounting torque, 6-32 or M3 screw

    Avalanche CharacteristicsEAS (Thermally limited) Single Pulse Avalanche Energye mJ

    IAR Avalanche Currentd A

    EAR Repetitive Avalanche Energy g mJ

    Thermal Resistance

    Symbol Parameter Typ. Max. Units

    RJC Junction-to-Case k 0.50

    RCS Case-to-Sink, Flat Greased Surface , TO-220 0.50 C/W

    RJA Junction-to-Ambient, TO-220 k 62

    RJA Junction-to-Ambient (PCB Mount) , D2Pakjk 40

    170

    See Fig. 14, 15, 22a, 22b

    300

    16

    -55 to + 175

    20

    2.0

    10lbxin (1.1Nxm)

    300

    Max.

    170c

    120c

    670120

    PD - 97213C

  • 8/7/2019 irfs3207zpbf

    2/11

    IRFB/S/SL3207ZPbF

    2 www.irf.com

    Notes:

    Calculated continuous current based on maximum allowable junction

    temperature. Bond wire current limit is 120A. Note that current

    limitations arising from heating of the device leads may occur with

    some lead mounting arrangements.

    Repetitive rating; pulse width limited by max. junction

    temperature.

    Limited by TJmax, starting TJ = 25C, L = 0.033mHRG = 25, IAS = 102A, VGS =10V. Part not recommended for use

    above this value.

    S

    D

    G

    ISD 75A, di/dt 1730A/s, VDD V(BR)DSS, TJ 175C.

    Pulse width 400s; duty cycle 2%.Coss eff. (TR) is a fixed capacitance that gives the same charging time

    as Coss while VDS is rising from 0 to 80% VDSS.

    Coss eff. (ER) is a fixed capacitance that gives the same energy as

    Coss while VDS is rising from 0 to 80% VDSS.

    When mounted on 1" square PCB (FR-4 or G-10 Material). For recommended footprint and soldering techniques refer to application note #AN-99

    R is measured at TJ approximately 90C.

    Static @ TJ = 25C (unless otherwise specified)

    Symbol Parameter Min. Typ. Max. UnitsV(BR)DSS Drain-to-Source Breakdown Voltage 75 V

    V(BR)DSS/TJ Breakdown Voltage Temp. Coefficient 0.091 V/C

    RDS(on) Static Drain-to-Source On-Resistance 3.3 4.1 mVGS(th) Gate Threshold Voltage 2.0 4.0 V

    RG(int) Internal Gate Resistance 0.80 IDSS Drain-to-Source Leakage Current 20 A

    250

    IGSS Gate-to-Source Forward Leakage 100 nA

    Gate-to-Source Reverse Leakage -100

    Dynamic @ TJ = 25C (unless otherwise specified)

    Symbol Parameter Min. Typ. Max. Units

    gfs Forward Transconductance 280 S

    Qg Total Gate Charge 120 170 nC

    Qgs Gate-to-Source Charge 27

    Qgd Gate-to-Drain ("Miller") Charge 33

    Qsync Total Gate Charge Sync. (Qg - Qgd) 87

    td(on) Turn-On Delay Time 20 ns

    tr Rise Time 68

    td(off) Turn-Off Delay Time 55

    tf Fall Time 68

    Ciss Input Capacitance 6920 pF

    Coss Output Capacitance 600

    Crss Reverse Transfer Capacitance 270

    Coss eff. (ER) Effective Output Capacitance (Energy Related)i 770

    Coss eff. (TR) Effective Output Capacitance (Time Related)h 960

    Diode CharacteristicsSymbol Parameter Min. Typ. Max. Units

    IS Continuous Source Current 170c

    A(Body Diode)

    ISM Pulsed Source Current 670

    (Body Diode)di

    VSD Diode Forward Voltage 1.3 V

    trr Reverse Recovery Time 36 54 ns TJ = 25C VR = 64V,

    41 62 TJ = 125C IF = 75A

    Qrr Reverse Recovery Charge 50 75 nC TJ = 25C di/dt = 100A/s g

    67 100 TJ = 125C

    IRRM Reverse Recovery Current 2.4 A TJ = 25C

    ton Forward Turn-On Time Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)

    Conditions

    VDS = 50V, ID = 75A

    ID = 75A

    VGS = 20V

    VGS = -20V

    MOSFET symbolshowing the

    VDS = 38V

    Conditions

    VGS = 10V g

    VGS = 0V

    VDS = 50V

    = 1.0MHz

    VGS = 0V, VDS = 0V to 60V j

    VGS = 0V, VDS = 0V to 60V h

    TJ = 25C, IS = 75A, VGS = 0Vg

    integral reverse

    p-n junction diode.

    ConditionsVGS = 0V, ID = 250A

    Reference to 25C, ID = 5mAd

    VGS = 10V, ID = 75A g

    VDS = VGS, ID = 150A

    VDS = 75V, VGS = 0V

    VDS = 75V, VGS = 0V, TJ = 125C

    ID = 75A

    RG = 2.7

    VGS = 10V g

    VDD = 49V

    ID = 75A, VDS =0V, VGS = 10V

  • 8/7/2019 irfs3207zpbf

    3/11

    IRFB/S/SL3207ZPbF

    www.irf.com 3

    Fig 1. Typical Output Characteristics

    Fig 3. Typical Transfer Characteristics Fig 4. Normalized On-Resistance vs. Temperature

    Fig 2. Typical Output Characteristics

    Fig 6. Typical Gate Charge vs. Gate-to-Source VoltageFig 5. Typical Capacitance vs. Drain-to-Source Voltage

    0.1 1 10 100

    VDS, Drain-to-Source Voltage (V)

    10

    100

    1000

    ID,Drain-to-Sourc

    eCurrent(A)

    VGSTOP 15V

    10V8.0V6.0V5.5V5.0V4.8V

    BOTTOM 4.5V

    60s PULSE WIDTHTj = 25C

    4.5V

    2 3 4 5 6 7

    VGS, Gate-to-Source Voltage (V)

    0.1

    1

    10

    100

    1000

    ID,Drain-to-SourceCurrent(A)

    TJ = 25C

    TJ = 175C

    VDS = 25V

    60s PULSE WIDTH

    -60 -40 -20 0 20 40 60 80 100120140160180

    TJ , Junction Temperature (C)

    0.5

    1.0

    1.5

    2.0

    2.5

    RDS(on),Drain-to-SourceOnResistance

    (Normalized)

    ID = 75A

    VGS = 10V

    1 10 100

    VDS, Drain-to-Source Voltage (V)

    100

    1000

    10000

    100000

    C,Capacitance(pF)

    VGS = 0V, f = 1 MHZ

    Ciss = Cgs + Cgd, C ds SHORTED

    Crss = CgdCoss = Cds + Cgd

    Coss

    Crss

    Ciss

    0 20 40 60 80 100 120 140

    QG, Total Gate Charge (nC)

    0.0

    2.0

    4.0

    6.0

    8.0

    10.0

    12.0

    VGS,Gate-to-Sourc

    eVoltage(V)

    VDS= 60V

    VDS= 38V

    VDS= 15V

    ID= 75A

    0.1 1 10 100

    VDS, Drain-to-Source Voltage (V)

    10

    100

    1000

    ID,Drain-to-Sourc

    eCurrent(A)

    4.5V

    60s PULSE WIDTHTj = 175C

    VGSTOP 15V

    10V8.0V6.0V5.5V5.0V4.8V

    BOTTOM 4.5V

  • 8/7/2019 irfs3207zpbf

    4/11

    IRFB/S/SL3207ZPbF

    4 www.irf.com

    Fig 8. Maximum Safe Operating Area

    Fig 10. Drain-to-Source Breakdown Voltage

    Fig 7. Typical Source-Drain Diode Forward Voltage

    Fig 11. Typical COSS Stored Energy

    Fig 9. Maximum Drain Current vs. Case Temperature

    Fig 12. Maximum Avalanche Energy vs. DrainCurrent

    0.0 0.5 1.0 1.5 2.0 2.5

    VSD, Source-to-Drain Voltage (V)

    0.1

    1

    10

    100

    1000

    ISD,ReverseDra

    inCurrent(A)

    TJ = 25C

    TJ = 175C

    VGS = 0V

    -60 -40 -20 0 20 40 60 80 100120140160180

    TJ , Temperature ( C )

    70

    75

    80

    85

    90

    95

    100

    V(BR)D

    SS,

    Drain-to-SourceBreakdownVoltage(V)

    Id = 5mA

    -10 0 10 20 30 40 50 60 70 80

    VDS, Drain-to-Source Voltage (V)

    0.0

    0.5

    1.0

    1.5

    2.0

    2.5

    Energy(

    J)

    1 10 100

    VDS, Drain-to-Source Voltage (V)

    0.1

    1

    10

    100

    1000

    10000

    ID,Drain-to-SourceCurrent(A)

    OPERATION IN THIS AREALIMITED BY RDS(on)

    Tc = 25CTj = 175CSingle Pulse

    100sec

    1msec10msec

    DC

    25 50 75 100 125 150 175

    TC , Case Temperature (C)

    0

    20

    40

    60

    80

    100

    120

    140

    160

    180

    ID, DrainCurrent(A)

    Limited By Package

    25 50 75 100 125 150 175

    Starting TJ , Junction Temperature (C)

    0

    100

    200

    300

    400

    500

    600

    700

    EAS,SinglePulseAvala

    ncheEnergy(mJ) ID

    TOP 17A

    30A

    BOTTOM102A

  • 8/7/2019 irfs3207zpbf

    5/11

    IRFB/S/SL3207ZPbF

    www.irf.com 5

    Fig 13. Maximum Effective Transient Thermal Impedance, Junction-to-Case

    Fig 14. Typical Avalanche Current vs.Pulsewidth

    Fig 15. Maximum Avalanche Energy vs. Temperature

    Notes on Repetitive Avalanche Curves , Figures 14, 15:(For further info, see AN-1005 at www.irf.com)1. Avalanche failures assumption:

    Purely a thermal phenomenon and failure occurs at a temperature far inexcess of Tjmax. This is validated for every part type.

    2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded.3. Equation below based on circuit and waveforms shown in Figures 16a, 16b4. PD (ave) = Average power dissipation per single avalanche pulse.5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase

    during avalanche).6. Iav = Allowable avalanche current.

    7. T = Allowable rise in junction temperature, not to exceedTjmax (assumed as

    25C in Figure 14, 15).tav = Average time in avalanche.D = Duty cycle in avalanche = tav f

    ZthJC(D, tav) = Transient thermal resistance, see Figures 13)

    PD (ave) = 1/2 ( 1.3BVIav) =DT/ ZthJC

    Iav =2DT/ [1.3BVZth]

    EAS (AR) = PD (ave)tav

    1E-006 1E-005 0.0001 0.001 0.01 0.1

    t1 , Rectangular Pulse Duration (sec)

    0.001

    0.01

    0.1

    1

    ThermalRespon

    se(Z

    thJC

    )

    0.20

    0.10

    D = 0.50

    0.02

    0.01

    0.05

    SINGLE PULSE( THERMAL RESPONSE )

    Notes:1. Duty Factor D = t1/t22. Peak Tj = P dm x Zthjc + Tc

    Ri (C/W) i (sec)

    0.1049 0.000099

    0.2469 0.001345

    0.1484 0.008469

    J

    J

    1

    1

    2

    2

    3

    3

    R1R1 R2

    R2 R3R3

    C

    Ci= i/Ri

    25 50 75 100 125 150 175

    Starting TJ , Junction Temperature (C)

    0

    20

    40

    60

    80

    100

    120

    140

    160

    180

    200

    EAR

    ,AvalancheEnergy(mJ)

    TOP Single Pulse

    BOTTOM 1.0% Duty Cycle

    ID = 102A

    1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01

    tav (sec)

    0.1

    1

    10

    100

    1000

    AvalancheCurrent(A)

    0.05

    Duty Cycle =Single Pulse

    0.10

    Allowed avalanche Current vs avalanchepulsewidth, tav, assuming j = 25C andTstart = 150C.

    0.01

    Allowed avalanche Current vs avalanchepulsewidth, tav, assuming Tj = 150C andTstart =25C (Single Pulse)

  • 8/7/2019 irfs3207zpbf

    6/11

    IRFB/S/SL3207ZPbF

    6 www.irf.com

    Fig. 17 - Typical Recovery Current vs. dif/dtFig 16. Threshold Voltage vs. Temperature

    Fig. 19 - Typical Stored Charge vs. dif/dtFig. 18 - Typical Recovery Current vs. dif/dt

    Fig. 20 - Typical Stored Charge vs. dif/dt

    -75 -50 -25 0 25 50 75 100 125 150 175 200

    TJ , Temperature ( C )

    0.5

    1.0

    1.5

    2.0

    2.5

    3.0

    3.5

    4.0

    4.5

    VGS(th),G

    atethres

    holdVoltage(V)

    ID = 150A

    ID = 250A

    ID = 1.0mA

    ID = 1.0A

    0 200 400 600 800 1000

    diF/dt (A/s)

    0

    5

    10

    15

    20

    IRR(

    A)

    IF = 45A

    VR = 64V

    TJ = 25C

    TJ = 125C

    0 200 400 600 800 1000

    diF/dt (A/s)

    0

    5

    10

    15

    20

    IRR(

    A)

    IF = 30A

    VR = 64V

    TJ = 25C

    TJ = 125C

    0 200 400 600 800 1000

    diF/dt (A/s)

    20

    100

    180

    260

    340

    QRR(

    A)

    IF = 30A

    VR = 64V

    TJ = 25C

    TJ = 125C

    0 200 400 600 800 1000

    diF/dt (A/s)

    20

    100

    180

    260

    340

    QRR(A

    )

    IF = 45A

    VR = 64V

    TJ = 25C

    TJ = 125C

  • 8/7/2019 irfs3207zpbf

    7/11

    IRFB/S/SL3207ZPbF

    www.irf.com 7

    Fig 22a. Switching Time Test Circuit Fig 22b. Switching Time Waveforms

    VGS

    VDS

    90%

    10%

    td(on) td(off)tr tf

    VGS

    Pulse Width < 1sDuty Factor < 0.1%

    VDD

    VDS

    LD

    D.U.T

    +

    -

    Fig 21b. Unclamped Inductive WaveformsFig 21a. Unclamped Inductive Test Circuit

    tpV(BR)DSS

    IAS

    RG

    IAS

    0.01tp

    D.U.T

    LVDS

    +-

    VDD

    DRIVER

    15V

    20VVGS

    Fig 23a. Gate Charge Test Circuit Fig 23b. Gate Charge Waveform

    Vds

    Vgs

    Id

    Vgs(th)

    Qgs1 Qgs2 Qgd Qgodr

    Fig 20. Peak Diode Recovery dv/dt Test Circuit for N-ChannelHEXFETPower MOSFETs

    1K

    VCCDUT

    0

    L

    Circuit Layout Considerations

    Low Stray Inductance

    Ground Plane

    Low Leakage Inductance

    Current Transformer

    P.W.Period

    di/dt

    Diode Recoverydv/dt

    Ripple 5%

    Body Diode Forward Drop

    Re-AppliedVoltage

    Reverse

    RecoveryCurrent

    Body Diode ForwardCurrent

    VGS=10V

    VDD

    ISD

    Driver Gate Drive

    D.U.T. ISD Waveform

    D.U.T. VDS Waveform

    Inductor Curent

    D =P.W.

    Period

    * VGS = 5V for Logic Level Devices

    *

    +

    -

    +

    +

    +-

    -

    -

    RGVDD dv/dt controlled by RG

    Driver same type as D.U.T.

    ISD controlled by Duty Factor "D"

    D.U.T. - Device Under Test

    D.U.T

    Inductor Current

  • 8/7/2019 irfs3207zpbf

    8/11

    IRFB/S/SL3207ZPbF

    8 www.irf.com

    TO-220AB packages are not recommended for Surface Mount Application.

    TO-220AB Package Outline (Dimensions are shown in millimeters (inches))

    TO-220AB Part Marking Information

    @ Y 6 H Q G @ )

    D I U C @ 6 T T @ H 7 G ` G D I @ 8

    U C D T D T 6 I D S A

    G P U 8 P 9 @ & ' (

    6 T T @ H 7 G @ 9 P I X X ( ( ( &

    Q 6 S U I V H 7 @ S

    6 T T @ H 7 G `

    G P U 8 P 9 @

    9 6 U @ 8 P 9 @

    ` @ 6 S & 2 ( ( &

    G D I @ 8

    X @ @ F (

    G P B P

    S @ 8 U D A D @ S

    D I U @ S I 6 U D P I 6 G

    Note: "P" in assembly lineposition indicates "Lead-Free"

  • 8/7/2019 irfs3207zpbf

    9/11

    IRFB/S/SL3207ZPbF

    www.irf.com 9

    D2Pak (TO-263AB) Part Marking Information

    D2Pak (TO-263AB) Package OutlineDimensions are shown in millimeters (inches)

    9 6 U @ 8 P 9 @

    ` @ 6 S 2 !

    X @ @ F !

    6 2 6 T T @ H 7 G ` T D U @ 8 P 9 @

    S @ 8 U D A D @ S

    D I U @ S I 6 U D P I 6 G

    Q 6 S U I V H 7 @ S

    Q 2 9 @ T D B I 6 U @ T G @ 6 9 A S @ @

    Q S P 9 V 8 U P Q U D P I 6 G

    A $ " T

    D I U C @ 6 T T @ H 7 G ` G D I @ G

    6 T T @ H 7 G @ 9 P I X X ! !

    U C D T D T 6 I D S A $ " T X D U C

    G P U 8 P 9 @ ' ! #

    D I U @ S I 6 U D P I 6 G

    G P B P

    S @ 8 U D A D @ S

    G P U 8 P 9 @

    6 T T @ H 7 G `

    ` @ 6 S 2 !

    Q 6 S U I V H 7 @ S

    9 6 U @ 8 P 9 @

    G D I @ G

    X @ @ F !

    25

    A $ " T

    G P B P

    6 T T @ H 7 G `

    G P U 8 P 9 @

    Note: For the most current drawing please refer to IR website at http://www.irf.com/package/pkhexfet.html

  • 8/7/2019 irfs3207zpbf

    10/11

    IRFB/S/SL3207ZPbF

    10 www.irf.com

    TO-262 Part Marking Information

    TO-262 Package OutlineDimensions are shown in millimeters (inches)

    G P B P

    S @ 8 U D A D @ S

    D I U @ S I 6 U D P I 6 G

    G P U 8 P 9 @

    6 T T @ H 7 G `

    G P B P

    S @ 8 U D A D @ S

    D I U @ S I 6 U D P I 6 G

    9 6 U @ 8 P 9 @

    X @ @ F (

    ` @ 6 S & 2 ( ( &

    Q 6 S U I V H 7 @ S

    6 2 6 T T @ H 7 G ` T D U @ 8 P 9 @

    25

    Q S P 9 V 8 U P Q U D P I 6 G

    Q 2 9 @ T D B I 6 U @ T G @ 6 9 A S @ @

    @ Y 6 H Q G @ ) U C D T D T 6 I D S G " " G

    G P U 8 P 9 @ & ' (

    6 T T @ H 7 G `

    Q 6 S U I V H 7 @ S

    9 6 U @ 8 P 9 @

    X @ @ F (

    G D I @ 8

    G P U 8 P 9 @

    ` @ 6 S & 2 ( ( &

    6 T T @ H 7 G @ 9 P I X X ( ( ( &

    D I U C @ 6 T T @ H 7 G ` G D I @ 8

    Note: For the most current drawing please refer to IR website at http://www.irf.com/package/pkhexfet.html

  • 8/7/2019 irfs3207zpbf

    11/11

    IRFB/S/SL3207ZPbF

    www irf com 11

    Data and specifications subject to change without notice

    This product has been designed and qualified for the Industrial market

    Qualification Standards can be found on IRs Web site

    IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105

    TAC Fax: (310) 252-7903Visit us at www.irf.com for sales contact information. 04/08

    D2Pak (TO-263AB) Tape & Reel InformationDimensions are shown in millimeters (inches)

    3

    4

    4

    TRR

    FEED DIRECTION

    1.85 (.073)1.65 (.065)

    1.60 (.063)1.50 (.059)

    4.10 (.161)3.90 (.153)

    TRL

    FEED DIRECTION

    10.90 (.429)10.70 (.421)

    16.10 (.634)15.90 (.626)

    1.75 (.069)1.25 (.049)

    11.60 (.457)11.40 (.449)

    15.42 (.609)15.22 (.601)

    4.72 (.136)4.52 (.178)

    24.30 (.957)23.90 (.941)

    0.368 (.0145)0.342 (.0135)

    1.60 (.063)1.50 (.059)

    13.50 (.532)

    12.80 (.504)

    330.00(14.173)MAX.

    27.40 (1.079)

    23.90 (.941)

    60.00 (2.362)

    MIN.

    30.40 (1.197)MAX.

    26.40 (1.039)24.40 (.961)

    NOTES :1. COMFORMS TO EIA-418.2. CONTROLLING DIMENSION: MILLIMETER.3. DIMENSION MEASURED @ HUB.

    4. INCLUDES FLANGE DISTORTION @ OUTER EDGE.

    Note: For the most current drawing please refer to IR website at http://www.irf.com/package/pkhexfet.html