36
Typical Connection 3-PHASE BRIDGE DRIVER Features Floating channel designed for bootstrap operation Fully operational to +600V Tolerant to negative transient voltage - dV/dt immune Gate drive supply range from 10 to 20V (IR2136/IR21368), 11.5 to 20V (IR21362) or 12 to 20V (IR21363/IR21365/ IR21366/IR21367) Undervoltage lockout for all channels Over-current shutdown turns off all six drivers Independent 3 half-bridge drivers Matched propagation delay for all channels Cross-conduction prevention logic Lowside outputs out of phase with inputs. High side outputs out of phase (IR2136/IR21363/IR21365/ IR21366/IR21367/IR21368) or in phase (IR21362) with inputs. 3.3V logic compatible Lower di/dt gate driver for better noise immunity Externally programmable delay for automatic fault clear Description Data Sheet No. PD60166 Rev.R IR2136/IR21362/IR21363/IR21365/ IR21366/IR21367/IR21368 ( J&S ) www.irf.com 1 (Refer to Lead Assign- ments for correct pin con- figuration). This/These diagram(s) show electri- cal connections only. Please refer to our Appli- cation Notes and DesignTips for proper cir- cuit board layout. Packages 28-Lead PDIP 28-Lead SOIC 44-Lead PLCC w/o 12 leads The IR2136/IR21362/IR21363/IR21365/IR21366/IR21367/IR21368(J&S) are high votage, high speed power MOSFET and IGBT drivers with three independent high and low side referenced output channels for 3-phase applications. Proprietary HVIC technology enables ruggedized monolithic construction. Logic inputs are compatible with CMOS or LSTTL outputs, down to 3.3V logic. A current trip function which terminates all six outputs can be derived from an external current sense resistor. An enable function is available to terminate all six outputs simultaneously. An open-drain FAULT signal is provided to indicate that an overcurrent or undervoltage shutdown has occurred. Overcurrent fault conditions are cleared automatically after a delay programmed externally via an RC network connected to the RCIN input. The output drivers feature a high pulse current buffer stage designed for minimum driver cross-conduction. Propagation delays are matched to simplify use in high frequency applications. The floating channel can be used to drive N-channel power MOSFETs or IGBTs in the high side configuration which operates up to 600 volts. VCC HIN1,2,3 / HIN1,2,3 LIN1,2,3 FAULT ITRIP RCIN EN VSS COM LO1,2,3 VS1,2,3 HO1,2,3 VB1,2,3 IR2136(2)(3)(5)(6)(7)(8) TO LOAD VCC HIN1,2,3 / HIN1,2,3 LIN1,2,3 FAULT EN GND up to 600V Part Input Logic Ton (typ.) Toff (typ.) V IH (typ.) VIL (typ.) Vitrip+ UV CC/BS+ UV CC/BS- IR2136 HIN, LIN 400ns 380ns 2.7V 1.7V 0.46V 8.9V 8.2V IR21362 HIN/LIN 400ns 380ns 2.7V 1.7V 0.46V 10.4V 9.4V IR21363 HIN, LIN 400ns 380ns 2.7V 1.7V 0.46V 11.2V 11.0V IR21365 HIN, LIN 400ns 380ns 2.7V 1.7V 4.3V 11.2V 11.0V IR21366 HIN, LIN 250ns 180ns 2.0V 1.3V 0.46V 11.2V 11.0V IR21367 HIN, LIN 250ns 180ns 2.0V 1.3V 4.3V 11.2V 11.0V IR21368 HIN,LIN 400ns 380ns 2.0V 1.3V 4.3V 8.9V 8.2V Feature Comparison: IR2136/IR21362/IR21363/ IR21365/IR21366/IR21367/IR21368

ir2136

Embed Size (px)

Citation preview

Page 1: ir2136

Typical Connection

3-PHASE BRIDGE DRIVERFeatures• Floating channel designed for bootstrap operation

Fully operational to +600VTolerant to negative transient voltage - dV/dt immune

• Gate drive supply range from 10 to 20V (IR2136/IR21368),11.5 to 20V (IR21362) or 12 to 20V (IR21363/IR21365/IR21366/IR21367)

• Undervoltage lockout for all channels• Over-current shutdown turns off all six drivers• Independent 3 half-bridge drivers• Matched propagation delay for all channels• Cross-conduction prevention logic• Lowside outputs out of phase with inputs. High side

outputs out of phase (IR2136/IR21363/IR21365/IR21366/IR21367/IR21368) or in phase(IR21362) with inputs.

• 3.3V logic compatible• Lower di/dt gate driver for

better noise immunity• Externally programmable

delay for automatic faultclear

Description

Data Sheet No. PD60166 Rev.R

IR2136/IR21362/IR21363/IR21365/IR21366/IR21367/IR21368 (J&S)

www.irf.com 1

(Refer to Lead Assign-ments for correct pin con-figuration). This/Thesediagram(s) show electri-cal connections only.Please refer to our Appli-cation Notes andDesignTips for proper cir-cuit board layout.

Packages

28-Lead PDIP

28-Lead SOIC

44-Lead PLCC w/o 12 leads

The IR2136/IR21362/IR21363/IR21365/IR21366/IR21367/IR21368(J&S) are high votage, high speed power MOSFETand IGBT drivers with three independent high and low side referenced output channels for 3-phase applications.Proprietary HVIC technology enables ruggedized monolithic construction. Logic inputs are compatible with CMOSor LSTTL outputs, down to 3.3V logic. A current trip function which terminates all six outputs can be derived froman external current sense resistor. An enable function is available to terminate all six outputs simultaneously. Anopen-drain FAULT signal is provided to indicate that an overcurrent or undervoltage shutdown has occurred.Overcurrent fault conditions are cleared automatically after a delay programmed externally via an RC networkconnected to the RCIN input. The output drivers feature a high pulse current buffer stage designed for minimumdriver cross-conduction. Propagation delays are matched to simplify use in high frequency applications. Thefloating channel can be used to drive N-channel power MOSFETs or IGBTs in the high side configuration whichoperates up to 600 volts.

VCC

HIN1,2,3 / HIN1,2,3

LIN1,2,3

FAULT

ITRIP

RCIN

EN

VSS COM

LO1,2,3

VS1,2,3

HO1,2,3

VB1,2,3

IR2136(2)(3)(5)(6)(7)(8)

TOLOAD

VCC

HIN1,2,3 / HIN1,2,3

LIN1,2,3

FAULT

EN

GND

up to 600V

PartInput LogicTon (typ.)Toff (typ.)VIH (typ.)VIL (typ.)Vitrip+UV CC/BS+UV CC/BS-

IR2136HIN, LIN400ns380ns2.7V1.7V0.46V8.9V8.2V

IR21362HIN/LIN400ns380ns2.7V1.7V0.46V10.4V9.4V

IR21363HIN, LIN400ns380ns2.7V1.7V0.46V11.2V11.0V

IR21365HIN, LIN400ns380ns2.7V1.7V4.3V11.2V11.0V

IR21366HIN, LIN250ns180ns2.0V1.3V0.46V11.2V11.0V

IR21367HIN, LIN250ns180ns2.0V1.3V4.3V11.2V11.0V

IR21368HIN,LIN400ns380ns2.0V1.3V4.3V8.9V8.2V

Feature Comparison: IR2136/IR21362/IR21363/IR21365/IR21366/IR21367/IR21368

Page 2: ir2136

IR2136(2)(3)(5)(6)(7)(8)(J&S)

2 www.irf.com

Recommended Operating ConditionsThe Input/Output logic timing diagram is shown in figure 1. For proper operation the device should be used within the recom-mended conditions. All voltage parameters are absolute referenced to COM. The VS offset rating is tested with all suppliesbiased at 15V differential.

VB1,2,3 High side floating supply voltage IR2136(8) VS1,2,3 +10 VS1,2,3 +20

IR21362 VS1,2,3 +11.5 VS1,2,3 +20

IR2136(3)(5)(6)(7) VS1,2,3 +12 VS1,2,3 +20

VS1,2,3 High side floating supply offset voltage Note 1 600

VHO1,2,3 High side output voltage VS1,2,3 VB1,2,3

VLO1,2,3 Low side output voltage 0 VCC

VCC Low side and logic fixed supply voltage IR2136(8) 10 20

IR21362 11.5 20

IR2136(3)(5)(6)(7) 12 20

VSS Logic ground -5 5

VFLT FAULT output voltage VSS VCC

VRCIN RCIN input voltage VSS VCC

Symbol Definition Min. Max. Units

V

Note 1: Logic operational for VS of COM -5V to COM +600V. Logic state held for VS of COM -5V to COM -VBS. (Please refer to the Design Tip DT97-3 for more details).Note 2: All input pins (HIN-, HIN, LIN-, EN and ITRIP) are internally clamped with a 5.2V zener diode.

Symbol Definition Min. Max. UnitsVS High side offset voltage VB1,2,3 - 25 VB1,2,3 + 0.3

VBS High side floating supply voltage -0.3 625

VHO High side floating output voltage VS1,2,3 - 0.3 VB1,2,3 + 0.3

VCC Low side and logic fixed supply voltage -0.3 25

VSS Logic ground VCC - 25 VCC + 0.3

VLO1,2,3 Low side output voltage -0.3 VCC + 0.3

VIN Input voltage LIN,HIN,ITRIP, EN, RCIN VSS - 0.3 lower of

(VSS + 15) or

VCC + 0.3)

VFLT FAULT output voltage VSS - 0.3 VCC + 0.3

dV/dt Allowable offset voltage slew rate — 50 V/ns

PD Package power dissipation @ TA ≤ +25°C (28 lead PDIP) — 1.5

(28 lead SOIC) — 1.6

( 44leadPLCC) — 2.0

RthJA Thermal resistance, junction to ambient (28 lead PDIP) — 83

(28 lead SOIC) — 78

(44 lead PLCC) — 63

TJ Junction temperature — 150

TS Storage temperature -55 150

TL Lead temperature (soldering, 10 seconds) — 300

V

°C/W

Absolute Maximum RatingsAbsolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage parametersare absolute voltages referenced to COM. The thermal resistance and power dissipation ratings are measured under boardmounted and still air conditions.

W

°C

Page 3: ir2136

www.irf.com 3

IR2136(2)(3)(5)(6)(7)(8)(J&S)

Note 2: All input pins (HIN-, HIN, LIN-, EN and ITRIP) are internally clamped with a 5.2V zener diode.

Recommended Operating Conditions cont.The Input/Output logic timing diagram is shown in figure 1. For proper operation the device should be used within the recom-mended conditions. All voltage parameters are absolute referenced to COM. The VS offset rating is tested with all suppliesbiased at 15V differential.

Symbol Definition Min. Max. UnitsV

Static Electrical CharacteristicsVBIAS (VCC, VBS1,2,3) = 15V unless otherwise specified. The VIN, VTH and IIN parameters are referenced to VSS andare applicable to all six channels (HS1,2,3 and LS1,2,3). The VO and IO parameters are referenced to COM and VS1,2,3and are applicable to the respective output leads: HO1,2,3 and LO1,2,3.

Symbol Definition Min. Typ. Max. Units Test ConditionsVIH Logic “0” input voltage LIN1,2,3, HIN1,2,3

IR2136(3)(5) 3.0 — —

Logic “1” input voltage HIN1,2,3 IR21362

Logic “0” input voltage LIN1,2,3, HIN1,2,3

IR21366(7)(8) 2.5 — —

VIL Logic “1” input voltage LIN1,2,3, HIN1,2,3

IR2136(3)(5) — — 0.8

Logic “0” input voltage HIN1,2,3 IR21362

Logic “0” input voltage LIN1,2,3, HIN1,2,3

IR21366(7)(8) — — 0.8

VEN,TH+ EN positive going threshold — — 3

VEN,TH- EN negative going threshold 0.8 — —

VIT,TH+ ITRIP positive going threshold

IR2136(2)(3)(6) 0.37 0.46 0.55

IR21365(7)(8) 3.85 4.30 4.75

VIT,HYS ITRIP input hysteresis

IR2136(2)(3)(6) — 0.07 —

IR21365(7)(8) — .15 —

VRCIN,TH+ RCIN positive going threshold — 8 —

VRCIN,HYS RCIN input hysteresis — 3 —

VOH High level output voltage, VBIAS - VO — 0.9 1.4 IO = 20 mA

VOL Low level output voltage, VO — 0.4 0.6 IO = 20 mA

VCCUV+ VCC and VBS supply undervoltage IR2136(8) 8.0 8.9 9.8

VBSUV+ positive going threshold IR21362 9.6 10.4 11.2

IR21363(5)(6)(7) 10.6 11.1 11.6

V

VITRIP ITRIP input voltage VSS VSS +5

VIN Logic input voltage LIN, HIN (IR2136,IR21363(5)(6)(7)(8)),

HIN(IR21362), EN VSS VSS +5

TA Ambient temperature -40 125oC

Page 4: ir2136

IR2136(2)(3)(5)(6)(7)(8)(J&S)

4 www.irf.com

Static Electrical Characteristics cont.VBIAS (VCC, VBS1,2,3) = 15V unless otherwise specified. The VIN, VTH and IIN parameters are referenced to VSS andare applicable to all six channels (HS1,2,3 and LS1,2,3). The VO and IO parameters are referenced to COM and VS1,2,3and are applicable to the respective output leads: HO1,2,3 and LO1,2,3.

Symbol Definition Min. Typ. Max. Units Test ConditionsVCCUV- VCC and VBS supply undervoltage IR2136(8) 7.4 8.2 9.0

VBSUV- negative going threshold IR21362 8.6 9.4 10.2

IR21363(5)(6)(7) 10.4 10.9 11.4

VCCUVH VCC and VBS supply undervoltage IR2136 0.3 0.7 —

VBSUVH lockout hysteresis IR21362 0.5 1.0 —

IR21363(5) — 0.2 —

ILK Offset supply leakage current — — 50 VB1,2,3=VS1,2,3=600V

IQBS Quiescent VBS supply current — 70 120

IQCC Quiescent VCC supply current — 1.6 2.3 mA

VIN, CLAMP Input clamp voltage (HIN, LIN, ITRIP and EN) 4.9 5.2 5.5 V IIN =100µAILIN+ Input bias current (LOUT = HI) IR2136(2)(3)(5) — 200 300 VLIN = 5V

IR21366(7)(8) — 30 100

ILIN- Input bias current (LOUT = LO) IR2136(2)(3)(5) — 100 220 VLIN = 0V

IR21366(7)(8) — 0 1

IHIN+ Input bias current (HOUT = HI) IR2136(3)(5) — 200 300 VHIN = 5V

IR21362 — 30 100

IR21366(7)(8) — 30 100

IHIN- Input bias current (HOUT = LO) IR2136(3)(5) — 100 220 VHIN = 0V

IR21362(6)(7)(8) — 0 1

IITRIP+ “high” ITRIP input bias current — 30 100 VITRIP = 5V

IITRIP- “low” ITRIP input bias current — 0 1 VITRIP = 0V

IEN+ “high” ENABLE input bias current — 30 100 VENABLE= 5V

IEN- “low” ENABLE input bias current — 0 1 VENABLE = 0V

IRCIN RCIN input bias current — 0 1 VRCIN = 0V or 15V

IO+ Output high short circuit pulsed current 120 200 — VO=0V, PW ≤ 10 µs

IO- Output low short circuit pulsed current 250 350 — VO=15V, PW ≤10 µs

RON,RCIN RCIN low on resistance — 50 100

RON,FLT FAULT low on resistance — 50 100

VIN = 0V or 5V

µA

Ω

µA

mA

V

Page 5: ir2136

www.irf.com 5

IR2136(2)(3)(5)(6)(7)(8)(J&S)

VCC VBS ITRIP ENABLE FAULT LO1,2,3 HO1,2,3<UVCC X X X 0 (note 1) 0 0

15V <UVBS 0V 5V high imp LIN1,2,3 0

15V 15V 0V 5V high imp LIN1,2,3 HIN1,2,3

15V 15V >VITRIP 5V 0 (note 2) 0 0

15V 15V 0V 0V high imp 0 0

Note: A shoot-through prevention logic prevents LO1,2,3 and HO1,2,3 for each channel from turning on simultaneously.Note 1: UVCC is not latched, when VCC>UVCC, FAULT returns to high impedance.Note 2: When ITRIP <VITRIP, FAULT returns to high-impedance after RCIN pin becomes greater than 8V (@ VCC = 15V)

NOTE: For high side PWM, HIN pulse width must be ≥ 1µsec

Dynamic Electrical CharacteristicsVCC = VBS = VBIAS = 15V, VS1,2,3 = VSS = COM, TA = 25oC and CL = 1000 pF unless otherwise specified.

Symbol Definition Min. Typ. Max. Units Test Conditionston Turn-on propagation delay IR2136(2)(3)(5)(8) 300 425 550

IR21366(7) — 250 —

toff Turn-off propagation delay IR2136(2)(3)(5)(8) 250 400 550

IR21366(7) — 180 —

tr Turn-on rise time — 125 190

tf Turn-off fall time — 50 75

tEN ENABLE low to output IR2136(2)(3)(5)(8) 300 450 600 VIN, VEN = 0V or 5V

shutdown propagation delay IR21366(7) 100 250 400

tITRIP ITRIP to output shutdown propagation delay 500 750 1000 VITRIP = 5V

tbl ITRIP blanking time 100 150 — VIN = 0V or 5V

VITRIP = 5V

tFLT ITRIP to FAULT propagation delay 400 600 800 VIN = 0V or 5V

VITRIP = 5V

tFILIN Input filter time (HIN, LIN, EN) 100 200 — VIN = 0 & 5V

(IR2136(2)(3)(5)(8) only)

tFLTCLR FAULT clear time RCIN: R=2meg, C=1nF 1.3 1.65 2 mS VIN = 0V or 5V

VITRIP = 0V

DT Deadtime 220 290 360 VIN = 0 & 5V

MT Matching delay ON and OFF — 40 75

MDT Matching delay, max (ton,toff) - min (ton,toff), — 25 70(ton,toff are applicable to all 3 channels)

PM Output pulse width matching, PWin -PWout (fig.2) — 40 75

nS

VIN = 0 & 5V

nSExternal dead

time>400nsec

Page 6: ir2136

IR2136(2)(3)(5)(6)(7)(8)(J&S)

6 www.irf.com

Functional Block Diagram

IR2136/21363/21365

COM

VCC

LO1

LO2

LO3

DELAYVSS/COM

LEVELSHIFTER

DELAYVSS/COM

LEVELSHIFTER

DELAYVSS/COM

LEVELSHIFTER

LIN1

HIN1

LIN2

HIN2

LIN3

HIN3

DEADTIME &SHOOT-THROUGH

PREVENTION

DEADTIME &SHOOT-THROUGH

PREVENTION

DEADTIME &SHOOT-THROUGH

PREVENTION

VS1

HO1

VB1

HVLEVEL

SHIFTER

VSS/COMLEVEL

SHIFTER

LATCH

UVDETECT

SET

RESET DRIVER

VS2

HO2

VB2

HVLEVEL

SHIFTER

VSS/COMLEVEL

SHIFTER

LATCH

UVDETECT

SET

RESET DRIVER

VS3

HO3

VB3

HVLEVEL

SHIFTER

VSS/COMLEVEL

SHIFTER

LATCH

UVDETECT

SET

RESET DRIVER

DRIVER

DRIVER

DRIVER

INPUTNOISEFILTER

INPUTNOISEFILTER

INPUTNOISEFILTER

INPUTNOISEFILTER

INPUTNOISEFILTER

INPUTNOISEFILTER

UVDETECT

EN

ITRIP +-

0.5V

RCIN

S

R

Q

FAULT

INPUTNOISEFILTER

VSS

INPUTNOISEFILTER

SETDOMINANT

LATCH

Page 7: ir2136

www.irf.com 7

IR2136(2)(3)(5)(6)(7)(8)(J&S)

IR21362

COM

VCC

LO1

LO2

LO3

DELAYVSS/COM

LEVELSHIFTER

DELAYVSS/COM

LEVELSHIFTER

DELAYVSS/COM

LEVELSHIFTER

LIN1

HIN1

LIN2

HIN2

LIN3

HIN3

DEADTIME &SHOOT-THROUGH

PREVENTION

DEADTIME &SHOOT-THROUGH

PREVENTION

DEADTIME &SHOOT-THROUGH

PREVENTION

VS1

HO1

VB1

HVLEVEL

SHIFTER

VSS/COMLEVEL

SHIFTER

LATCH

UVDETECT

SET

RESET DRIVER

VS2

HO2

VB2

HVLEVEL

SHIFTER

VSS/COMLEVEL

SHIFTER

LATCH

UVDETECT

SET

RESET DRIVER

VS3

HO3

VB3

HVLEVEL

SHIFTER

VSS/COMLEVEL

SHIFTER

LATCH

UVDETECT

SET

RESET DRIVER

DRIVER

DRIVER

DRIVER

INPUTNOISEFILTER

INPUTNOISEFILTER

INPUTNOISEFILTER

INPUTNOISEFILTER

INPUTNOISEFILTER

INPUTNOISEFILTER

UVDETECTEN

ITRIP +-

0.5V

RCIN

S

R

Q

FAULT

INPUTNOISEFILTER

VSS

INPUTNOISEFILTER

SETDOMINANT

LATCH

Functional Block Diagram

Page 8: ir2136

IR2136(2)(3)(5)(6)(7)(8)(J&S)

8 www.irf.com

Functional Black Diagram

IR21366/IR21367/IR21368

COM

VCC

LO1

LO2

LO3

DELAYVSS/COM

LEVELSHIFTER

DELAYVSS/COM

LEVELSHIFTER

DELAYVSS/COM

LEVELSHIFTER

LIN1

HIN1

LIN2

HIN2

LIN3

HIN3

DEADTIME &SHOOT-THROUGH

PREVENTION

DEADTIME &SHOOT-THROUGH

PREVENTION

DEADTIME &SHOOT-THROUGH

PREVENTION

VS1

HO1

VB1

HVLEVEL

SHIFTER

VSS/COMLEVEL

SHIFTER

LATCH

UVDETECT

SET

RESET DRIVER

VS2

HO2

VB2

HVLEVEL

SHIFTER

VSS/COMLEVEL

SHIFTER

LATCH

UVDETECT

SET

RESET DRIVER

VS3

HO3

VB3

HVLEVEL

SHIFTER

VSS/COMLEVEL

SHIFTER

LATCH

UVDETECT

SET

RESET DRIVER

DRIVER

DRIVER

DRIVER

UVDETECT

EN

ITRIP +-

RCIN

S

R

Q

FAULT

INPUTNOISEFILTER

VSS

INPUTNOISEFILTER

SETDOMINANT

LATCH

Page 9: ir2136

www.irf.com 9

IR2136(2)(3)(5)(6)(7)(8)(J&S)

Lead DefinitionsSymbol DescriptionVCC Low side and logic fixed supply

VSS Logic Ground

HIN1,2,3 Logic inputs for high side gate driver outputs (HO1,2,3), out of phase (IR2136/IR21363(5)(6)(7)(8)HIN1,2,3 Logic inputs for high side gate driver outputs (HO1,2,3), in phase (IR21362)

LIN1,2,3 Logic inputs for low side gate driver outputs (LO1,2,3), out of phaseFAULT Indicates over-current (ITRIP) or low-side undervoltage lockout has occured. Negative logic,

open-drain output

EN Logic input to enable I/O functionality. Positive logic, i.e. I/O logic functions when ENABLE ishigh. No effect on FAULT and not latched

ITRIP Analog input for overcurrent shutdown. When active, ITRIP shuts down outputs and activates

FAULT and RCIN low. When ITRIP becomes inactive, FAULT stays active low for an externallyset time TFLTCLR, then automatically becomes inactive (open-drain high impedance).

RCIN External RC network input used to define FAULT CLEAR delay, TFLTCLR, approximately equalto R*C. When RCIN>8V, the FAULT pin goes back into open-drain high-impedance

COM Low side gate driver return

VB1,2,3 High side floating supply

HO1,2,3 High side gate driver outputs

VS1,2,3 High voltage floating supply returns

LO1,2,3 Low side gate driver output

Note 2: All input pins (HIN-, HIN, LIN-, EN and ITRIP) are internally clamped with a 5.2V zener diode.

Page 10: ir2136

IR2136(2)(3)(5)(6)(7)(8)(J&S)

10 www.irf.com

28 Lead PDIP 44 Lead PLCC w/o 12 leads 28 lead SOIC (wide body)

IR2136/IR21363(5)(6)(7)(8) IR2136/IR21363(5)(6)(7)(8) (J) IR2136/IR21363(5)(6)(7)(8) (S)

1 VCC

2 HIN1

3 HIN2

4 HIN3

5 LIN1

6 LIN2

7 LIN3

8 FAULT

9 ITRIP

10 EN

11 RCIN

12 VSS

13 COM

14 LO3

28VB1

27HO1

26VS1

25

24VB2

23HO2

22VS2

21

20VB3

19HO3

18VS3

17

16LO1

15LO2

IR2136FAULT

8

9

10

11

LIN1

12

LIN2

13

LIN3

14

15

ITRIP

16EN

17

7

VSS

LO1

18

LO3

VS3

HO3

VB3

29

41

VS1

LO2

CO

M

30

31

VS2

HO2

VB2

35

36

37

19 20 21 22 23 24 25

HO

1

VB1

VCC

HIN

1

HIN

2

HIN

3

42433456

IR213644 LEAD PLCC w/o 12 LEADS

RCIN

1 VCC

2 HIN1

3 HIN2

4 HIN3

5 LIN1

6 LIN2

7 LIN3

8 FAULT

9 ITRIP

10 EN

11 RCIN

12 VSS

13 COM

14 LO3

28VB1

27HO1

26VS1

25

24VB2

23HO2

22VS2

21

20VB3

19HO3

18VS3

17

16LO1

15LO2

IR2136

Lead Assignments

28 Lead PDIP 44 Lead PLCC w/o 12 leads 28 lead SOIC (wide body)

IR21362 IR21362J IR21362S

1 VCC

2 HIN1

3 HIN2

4 HIN3

5 LIN1

6 LIN2

7 LIN3

8 FAULT

9 ITRIP

10 EN

11 RCIN

12 VSS

13 COM

14 LO3

28VB1

27HO1

26VS1

25

24VB2

23HO2

22VS2

21

20VB3

19HO3

18VS3

17

16LO1

15LO2

1 VCC

2 HIN1

3 HIN2

4 HIN3

5 LIN1

6 LIN2

7 LIN3

8 FAULT

9 ITRIP

10 EN

11 RCIN

12 VSS

13 COM

14 LO3

28VB1

27HO1

26VS1

25

24VB2

23HO2

22VS2

21

20VB3

19HO3

18VS3

17

16LO1

15LO2

FAULT

8

9

10

11

LIN1

12

LIN2

13

LIN3

14

15

ITRIP

16EN

17

7

VS

S

LO1

18

LO3

VS3

HO3

VB3

29

41

VS

1

LO2

CO

M

30

31

VS2

HO2

VB2

35

36

37

19 20 21 22 23 24 25

HO

1

VB

1

VC

C

HIN

1

HIN

2

HIN

3

42433456

RCIN

Page 11: ir2136

www.irf.com 11

IR2136(2)(3)(5)(6)(7)(8)(J&S)

Figure 3. Output Enable Timing Waveform

EN

HO1,2,3

LO1,2,3

50%

90%

ten

Figure 1. Input/Output Timing Diagram

HIN1,2,3

LIN1,2,3

EN

ITRIP

FAULT

RCIN

HO1,2,3

LO1,2,3

HIN1,2,3

Figure 2. Switching Time Waveforms

LIN1,2,3HIN1,2,3

HO1,2,3LO1,2,3

50% 50%

90%

10%10%

90%

ton tr tftoff

LIN1,2,3HIN1,2,3

50% 50%

PWIN

PWOUT

Page 12: ir2136

IR2136(2)(3)(5)(6)(7)(8)(J&S)

12 www.irf.com

Figure 4. Internal Deadtime Timing Waveforms

LIN1,2,3HIN1,2,3

HO1,2,3

LO1,2,3

50% 50%

LIN1,2,3HIN1,2,3

50% 50%

50% 50%

50% 50%

DT DT

Figure 5. ITRIP/RCIN Timing Waveforms

RCIN

Anyoutput

tflt

ITRIP

FAULT

50%

50%

titrip

90%

50%

50%

tfltclr

Vrcin,th+

Ut in,fil t in,fil

on on on offoffoff

high

low

HIN/LIN

HO/LO

Figure 5.5 Input Filter Function

Page 13: ir2136

www.irf.com 13

IR2136(2)(3)(5)(6)(7)(8)(J&S)

0

200

400

600

800

1000

10 12 14 16 18 20

Supply Voltage (V)

Turn

-on

Prop

agat

ion

Del

ay (n

s)

Figure 6B. Turn-on Propagation Delay vs. Supply Voltage

M in.

Typ.

M ax.

0

200

400

600

800

1000

-50 -25 0 25 50 75 100 125

Temperature (oC)

Turn

-on

Prop

agat

ion

Del

ay (n

s)

Typ.

M ax.

Figure 6A. Turn-on Propagation Delay vs. Temperature

M in.

0

200

400

600

800

1000

3 3.5 4 4.5 5

Input Voltage (V)

Turn

-on

Prop

agat

ion

Del

ay (n

s)

Figure 6C. Turn-on Propagation Delay vs. Input Voltage

Typ.

M ax.

M in.

0

200

400

600

800

1000

-50 -25 0 25 50 75 100 125

Temperature (oC)

Turn

-off

Prop

agat

ion

Del

ay (n

s)

Typ.

M ax.

Figure 7A. Turn-off Propagation Delay vs. Temperature

M in.

Page 14: ir2136

IR2136(2)(3)(5)(6)(7)(8)(J&S)

14 www.irf.com

0

200

400

600

800

1000

3 3.5 4 4.5 5

Input Voltage (V)

Turn

-off

Prop

agat

ion

Del

ay (n

s)

Figure 7C. Turn-off Propagation Delay vs. Input Voltage

Typ.

M ax.

M in.

0

100

200

300

400

-50 -25 0 25 50 75 100 125

Temperature (oC)

Turn

-on

Ris

e Ti

me

(ns)

Typ.

M ax.

Figure 8A. Turn-on Rise Time vs. Temperature

0

200

400

600

800

1000

10 12 14 16 18 20

Supply Voltage (V)

Turn

-off

Prop

agat

ion

Del

ay (n

s)

Figure 7B. Turn-off Propagation Delay vs. Supply Voltage

M in.

Typ.

M ax.

0

100

200

300

400

10 12 14 16 18 20

Supply Voltage (V)

Turn

-on

Ris

e Ti

me

(ns)

Figure 8B. Turn-on Rise Time vs. Supply Voltage

Typ.

M ax.

Page 15: ir2136

www.irf.com 15

IR2136(2)(3)(5)(6)(7)(8)(J&S)

0

50

100

150

200

-50 -25 0 25 50 75 100 125

Temperature (oC)

Turn

-off

Fall

Tim

e (n

s)

Typ.

M ax.

Figure 9A. Turn-off Fall Time vs. Temperature

0

200

400

600

800

1000

-50 -25 0 25 50 75 100 125

Temperature (oC)

EN to

Out

put S

hutd

own

Tim

e (n

s)

Typ.

M ax.

Figure 10A. EN to Output Shutdown Time vs. Temperature

M in.

0

50

100

150

200

10 12 14 16 18 20

Supply Voltage (V)

Turn

-off

Fall

Tim

e (n

s)

Figure 9B. Turn-off Fall Time vs. Supply Voltage

Typ.

M ax.

0

200

400

600

800

1000

10 12 14 16 18 20

Supply Voltage (V)

EN to

Out

put S

hutd

own

Tim

e (n

s)

Figure 10B. EN to Output Shutdown Time vs. Supply Voltage

Typ.

M ax.

M in.

Page 16: ir2136

IR2136(2)(3)(5)(6)(7)(8)(J&S)

16 www.irf.com

0

300

600

900

1200

1500

-50 -25 0 25 50 75 100 125

Temperature (oC)

ITR

IP to

Out

put S

hutd

own

Tim

e (n

s)

Typ.

M ax.

Figure 11A. ITRIP to Output Shutdown Time vs. Temperature

M in.

0

200

400

600

800

1000

3 3.5 4 4.5 5

EN Voltage (V)

EN to

Out

put S

hutd

own

Tim

e (n

s)

Figure 10C. EN to Output Shutdown Time vs. EN Voltage

Typ.

M ax.

M in.

0

300

600

900

1200

1500

10 12 14 16 18 20

Supply Voltage (V)

ITR

IP to

Out

put S

hutd

own

Tim

e (n

s)

Figure 11B. ITRIP to Output Shutdown Time vs. Supply Voltage

Typ.

M ax.

M in.

0

200

400

600

800

1000

1200

-50 -25 0 25 50 75 100 125

Temperature (oC)

ITR

IP to

FAU

LT In

dica

tion

Tim

e (n

s)

Typ.

M ax.

Figure 12A. ITRIP to FAULT Indication Time vs. Temperature

M in.

Page 17: ir2136

www.irf.com 17

IR2136(2)(3)(5)(6)(7)(8)(J&S)

0

200

400

600

800

1000

1200

10 12 14 16 18 20

Supply Voltage (V)

Faul

t Ind

icat

ion

Tim

e (n

s)

Figure 12B. ITRIP to FAULT Indication Time vs. Supply Voltage

Typ.

M ax.

M in.

0.5

1.0

1.5

2.0

2.5

3.0

-50 -25 0 25 50 75 100 125

Temperature (oC)

FAU

LT C

lear

Tim

e (m

s)

Typ.

M ax.

Fig13A. FAULT Clear Time vs. Temperature

M in.

0.5

1.0

1.5

2.0

2.5

3.0

10 12 14 16 18 20

Supply Voltage (V)

Faul

t Cle

ar T

ime

(ms)

Figure 13B. FAULT Clear Time vs. Supply Voltage

M ax.

M in.

Typ.

0

100

200

300

400

500

600

-50 -25 0 25 50 75 100 125

Temperature (oC)

Dea

d Ti

me

(ns)

Typ.

M ax.

Figure 14A. Dead Time vs. Temperature

M in.

Page 18: ir2136

IR2136(2)(3)(5)(6)(7)(8)(J&S)

18 www.irf.com

0

100

200

300

400

500

600

10 12 14 16 18 20

Supply Voltage (V)

Dea

d Ti

me

(ns)

Figure 14B. Dead Time Time vs. Supply Voltage

Typ.

M ax.

M in.

0

1

2

3

4

5

6

-50 -25 0 25 50 75 100 125

Temperature (oC)

Logi

c "0

" Inp

ut T

hres

hold

(V)

Figure 15A. Logic "0" Input Threshold vs. Temperature

M ax.

0

1

2

3

4

5

6

10 12 14 16 18 20

Supply Voltage (V)

Logi

c "0

" Inp

ut T

hres

hold

(V)

Figure 15B. Logic "0" Input Threshold vs. Supply Voltage

M ax.

0

1

2

3

4

5

6

-50 -25 0 25 50 75 100 125

Temperature (oC)

Logi

c "1

" Inp

ut T

hres

hold

(V)

M in.

Figure 16A. Logic "1" Input Threshold vs. Temperature

Page 19: ir2136

www.irf.com 19

IR2136(2)(3)(5)(6)(7)(8)(J&S)

0

1

2

3

4

5

6

10 12 14 16 18 20

Supply Voltage (V)

Logi

c "1

" Inp

ut T

hres

hold

(V)

Figure 16B. Logic "1" Input Threshold vs. Supply Voltage

M in.

200

300

400

500

600

700

800

-50 -25 0 25 50 75 100 125

Temperature (oC)

ITR

IP P

ositi

ve G

oing

Thr

esho

ld (m

V

Typ.

M ax.

Figure 17A. ITRIP Positive Going Threshold vs. Temperature (IR2136/21362/21363/IR21366 Only)

M in.

200

300

400

500

600

700

800

10 12 14 16 18 20

Supply Voltage (V)

ITR

IP P

ositi

ve G

oing

Thr

esho

ld (m

V

Figure 17B. ITRIP Positive Going Threshold vs. Supply Voltage (IR2136/21362/21363/IR21366 Only)

Typ.

M ax.

M in.

3.0

3.5

4.0

4.5

5.0

5.5

-50 -25 0 25 50 75 100 125

Temperature (oC)

ITR

IP P

ositi

ve G

oing

Thr

esho

ld (V

Typ.

M ax.

Figure 17C. ITRIP Positive Going Threshold vs. Temperature (IR21365/IR21367/IR21368 Only)

M in.

Page 20: ir2136

IR2136(2)(3)(5)(6)(7)(8)(J&S)

20 www.irf.com

0.0

0.5

1.0

1.5

2.0

2.5

3.0

-50 -25 0 25 50 75 100 125

Temperature (oC)

Hig

h Le

vel O

utpu

t Vol

tage

(V)

Typ.

M ax.

Figure 18A. High Level Output vs. Temperature

0.0

0.5

1.0

1.5

2.0

2.5

3.0

10 12 14 16 18 20

Supply Voltage (V)

Hig

h Le

vel O

utpu

t Vol

tage

(V)

Figure 18B. High Level Output vs. Supply Voltage

Typ.

M ax.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

-50 -25 0 25 50 75 100 125

Temperature (oC)

Low

Lev

el O

utpu

t Vol

tage

(V)

Typ.

M ax.

Figure 19A. Low Level Output vs. Temperature

3.0

3.5

4.0

4.5

5.0

5.5

12 14 16 18 20

Supply Voltage (V)

ITR

IP P

ositi

ve G

oing

Thr

esho

ld (V

Figure 17D. ITRIP Positive Going Threshold vs. Supply Voltage (IR21365/IR21367/IR21368 Only)

Typ.

M ax.

M in.

Page 21: ir2136

www.irf.com 21

IR2136(2)(3)(5)(6)(7)(8)(J&S)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

10 12 14 16 18 20

Supply Voltage (V)

Low

Lev

el O

utpu

t Vol

tage

(V)

Figure 19B. Low Level Output vs. Supply Voltage

Typ.

M ax.

8

9

10

11

12

13

-50 -25 0 25 50 75 100 125

Temperature (oC)

VCC o

r VBS

Und

ervo

ltage

Loc

kout

(+) (

V)

Typ.

M ax.

Figure 22. VCC or VBS Undervoltage (+) vs. Temperature (IR21362 Only)

M in.

7

8

9

10

11

12

-50 -25 0 25 50 75 100 125

Temperature (oC)VC

C o

r VBS

Und

ervo

ltage

Loc

kout

(+) (

V

Typ.

M ax.

Figure 20. VCC or VBS Undervoltage (+) vs. Temperature (IR2136/IR21368 Only)

M in.

6

7

8

9

10

11

-50 -25 0 25 50 75 100 125

Temperature (oC)

VC

C o

r VBS

Und

ervo

ltage

Loc

kout

(-) (

V)

Typ.

M ax.

Figure 21. VCC or VBS Undervoltage (-) vs. Temperature (IR2136/IR21368 Only)

M in.

Page 22: ir2136

IR2136(2)(3)(5)(6)(7)(8)(J&S)

22 www.irf.com

7

8

9

10

11

12

-50 -25 0 25 50 75 100 125

Temperature (oC)

VC

C o

r VBS

Und

ervo

ltage

Loc

kout

(-) (

V)

Typ.

M ax.

Figure 23. VCC or VBS Undervoltage (-) vs. Temperature (IR21362 Only)

M in.

0

100

200

300

400

500

-50 -25 0 25 50 75 100 125

Temperature (oC)

Offs

et S

uppl

y Le

akag

e C

urre

nt (

µA)

M ax.

Figure 26A. Offset Supply Leakage Current vs. Temperature

10

11

12

13

-50 -25 0 25 50 75 100 125

Temperature (oC)

VC

C o

r VBS

Und

ervo

ltage

Loc

kout

(+) (

V)

Typ.

M ax.

Figure 24. VCC or VBS Undervoltage (+) vs. Temperature (IR21363/21365/IR21366/IR21367 Only)

M in.

9

10

11

12

13

-50 -25 0 25 50 75 100 125

Temperature (oC)VC

C o

r VB

S U

nder

volta

ge L

ocko

ut (-

) (V)

Figure 25. VCC or VBS Undervoltage (-) vs. Temperature (IR21363/21365/IR21366/IR21367 Only)

M in.

Typ.

M ax.

Page 23: ir2136

www.irf.com 23

IR2136(2)(3)(5)(6)(7)(8)(J&S)

0

100

200

300

400

500

100 200 300 400 500 600

VB Boost Voltage (V)

Offs

et S

uppl

y Le

akag

e C

urre

nt (

A)

Figure 26B. Offset Supply Leakage Current vs. VB Boost Voltage

M ax.

0

50

100

150

200

250

-50 -25 0 25 50 75 100 125

Temperature (oC)

VBS

Supp

ly C

urre

nt ( µ

A)

Typ.

M ax.

Figure 27A. VBS Supply Current vs. Temperature

0

50

100

150

200

250

10 12 14 16 18 20

VBS Floating Supply Voltage (V)

VBS

Sup

ply

Cur

rent

(A)

Figure 27B. VBS Supply Current vs. VBS Floating Supply Voltage

Typ.

Max.

0

1

2

3

4

5

-50 -25 0 25 50 75 100 125

Temperature (oC)

VCC S

uppl

y C

urre

nt (m

A)

Typ.

M ax.

Figure 28A. VCC Supply Current vs. Temperature

Page 24: ir2136

IR2136(2)(3)(5)(6)(7)(8)(J&S)

24 www.irf.com

0

1

2

3

4

5

10 12 14 16 18 20

Supply Voltage (V)

VC

C S

uppl

y C

urre

nt (m

A)

Figure 28B. VCC Supply Current vs. VCC Supply Voltage

Typ.

M ax.

0

200

400

600

800

-50 -25 0 25 50 75 100 125

Temperature (oC)

Logi

c "1

" Inp

ut C

urre

nt (

µA)

Typ.

M ax.

Figure 29A. Logic "1" Input Current vs. Temperature (IR2136/21363/21365 and IR21362 Low Side Only)

0

50

100

150

200

250

300

-50 -25 0 25 50 75 100 125

Temperature (oC)

Logi

c "1

" Inp

ut C

urre

nt (

µA)

Typ.

M ax.

Figure 29C. Logic "1" Input Current vs. Temperature (IR21362 High Side Only)

0

200

400

600

800

10 12 14 16 18 20

Supply Voltage (V)

Logi

c "1

" Inp

ut C

urre

nt (

A)

Typ.

Max.

Figure 29B. Logic "1" Input Current vs. Supply Voltage (IR2136/21363/21365 and IR21362 Low Side Only)

Page 25: ir2136

www.irf.com 25

IR2136(2)(3)(5)(6)(7)(8)(J&S)

0

50

100

150

200

250

300

10 12 14 16 18 20

Supply Voltage (V)

Logi

c "1

" Inp

ut C

urre

nt (

A)

Figure 29D. Logic "1" Input Current vs. Supply Voltage (IR21362 High Side Only)

Typ.

Max.

0

100

200

300

400

500

600

-50 -25 0 25 50 75 100 125

Temperature (oC)

Logi

c "0

" Inp

ut C

urre

nt (

µA)

Typ.

M ax.

Figure 30A. Logic "0" Input Current vs. Temperature (IR2136/21363/21365 and IR21362 Low Side Only)

0

1

2

3

4

-50 -25 0 25 50 75 100 125

Temperature (oC)

Logi

c "0

" Inp

ut C

urre

nt (

µA)

Typ.

M ax.

Figure 30C. Logic "0" Input Current vs. Temperature (IR21362 High Side Only)

0

100

200

300

400

500

600

10 12 14 16 18 20

Supply Voltage (V)

Logi

c "0

" Inp

ut C

urre

nt (

A)

Figure 30B. Logic "0" Input Current vs. Supply Voltage (IR2136/21363/21365 and IR21362 Low Side

Typ.

M ax.

Only)

Page 26: ir2136

IR2136(2)(3)(5)(6)(7)(8)(J&S)

26 www.irf.com

0

1

2

3

4

10 12 14 16 18 20

Supply Voltage (V)

Logi

c "0

" Inp

ut C

urre

nt (

A)

Figure 30D. Logic "0" Input Current vs. Supply Voltage (IR21362 High Side Only)

Typ.

M ax.

0

50

100

150

200

250

-50 -25 0 25 50 75 100 125

Temperature (oC)

"Hig

h" IT

RIP

Cur

rent

( µA)

Typ.

M ax.

Figure 31A. "High" ITRIP Current vs. Temperature

0

50

100

150

200

250

10 12 14 16 18 20

Supply Voltage (V)

"Hig

h" IT

RIP

Cur

rent

(A)

Figure 31B. "High" ITRIP Current vs. Supply Voltage

Typ.

M ax.

0

1

2

3

4

-50 -25 0 25 50 75 100 125

Temperature (oC)

"Low

" ITR

IP C

urre

nt ( µ

A)

M ax.

Figure 32A. "Low" ITRIP Current vs. Temperature

Typ.

Page 27: ir2136

www.irf.com 27

IR2136(2)(3)(5)(6)(7)(8)(J&S)

0

1

2

3

4

10 12 14 16 18 20

Supply Voltage (V)

"Low

" ITR

IP C

urre

nt (

A)

Figure 32B. "Low" ITRIP Current vs. Supply Voltage

Typ.

M ax.

0

50

100

150

200

-50 -25 0 25 50 75 100 125

Temperature (oC)

"Hig

h" IE

N C

urre

nt ( µ

A)

M ax.

Figure 33A. "High" IEN Current vs. Temperature

Typ.

0

50

100

150

200

250

10 12 14 16 18 20

Supply Voltage (V)

"Hig

h" IE

N C

urre

nt (

A)

Figure 33B. "High" IEN Current vs. Supply Voltage

Typ.

M ax.

0

1

2

3

4

-50 -25 0 25 50 75 100 125

Temperature (oC)

"Low

" IEN

Cur

rent

( µA)

Typ.

M ax.

Figure 34A. "Low" IEN Current vs. Temperature

Page 28: ir2136

IR2136(2)(3)(5)(6)(7)(8)(J&S)

28 www.irf.com

0

1

2

3

4

-50 -25 0 25 50 75 100 125

Temperature (oC)

RC

IN In

put B

ias

Cur

rent

(A)

M ax.

Figure 35A. RCIN Input Bias Current vs. Temperature

Typ.

0

1

2

3

4

10 12 14 16 18 20

Supply Voltage (V)

RC

IN In

put B

ias

Cur

rent

(A)

Figure 35B. RCIN Input Bias Current vs. Supply Voltage

Typ.

M ax.

0

100

200

300

400

-50 -25 0 25 50 75 100 125

Temperature (oC)

Out

put S

ourc

e C

urre

nt (m

A)

Typ.

Figure 36A. Output Source Current vs. Temperature

M in.

Figure 34B. “Low” IEN Current vs. Supply Voltage

0

1

2

3

4

10 12 14 16 18 20

Supply Voltage (V)

"Low

" IEN

Cur

rent

(A)

Figure 34B. "Low" IEN Current vs. Supply Voltage

Typ.

M ax.

Page 29: ir2136

www.irf.com 29

IR2136(2)(3)(5)(6)(7)(8)(J&S)

0

100

200

300

400

500

10 12 14 16 18 20

Supply Voltage (V)

Out

put S

ourc

e C

urre

nt (m

A)

Figure 36B. Output Source Current vs. Supply Voltage

Typ.

M in.

0

100

200

300

400

500

-50 -25 0 25 50 75 100 125

Temperature (oC)

Out

put S

ink

Cur

rent

(mA) Typ.

Figure 37A. Output Sink Current vs. Temperature

M in.

0

100

200

300

400

500

600

10 12 14 16 18 20

Supply Voltage (V)

Out

put S

ink

Cur

rent

(mA)

Figure 37B. Output Sink Current vs. Supply Voltage

Typ.

M in.

0

50

100

150

200

250

-50 -25 0 25 50 75 100 125

Temperature (oC)

RC

IN L

ow O

n-re

sist

ance

( Ω)

Typ.

M ax.

Figure 38A. RCIN Low On-resistance vs. Temperature

Page 30: ir2136

IR2136(2)(3)(5)(6)(7)(8)(J&S)

30 www.irf.com

0

50

100

150

200

250

10 12 14 16 18 20

Supply Voltage (V)

RC

IN L

ow O

n-re

sist

ance

()

Figure 38B. RCIN Low On-resistance vs. Supply Voltage

Typ.

M ax.

0

50

100

150

200

250

-50 -25 0 25 50 75 100 125

Temperature (oC)

FAU

LT L

ow O

n-re

sist

ance

)

Typ.

M ax.

Figure 39A. FAULT Low On-resistance vs. Temperature

0

50

100

150

200

250

10 12 14 16 18 20

Supply Voltage (V)

FAU

LT L

ow O

n-re

sist

ance

()

Figure 39B. FAULT Low On-resistance vs. Supply Voltage

Typ.

M ax.

-15

-12

-9

-6

-3

0

10 12 14 16 18 20Supply Voltage (V)

VS

Offs

et S

uppl

y Vo

ltage

(V)

Figure 40. Maximum VS Negative Offset vs. VBS

Supply Voltage

Typ.

Page 31: ir2136

www.irf.com 31

IR2136(2)(3)(5)(6)(7)(8)(J&S)

20

40

60

80

100

120

0.1 1 10 100Frequency (KHz)

Junc

tion

Tem

pera

ture

(o C)

100V200V300V

0V

20

40

60

80

100

120

0.1 1 10 100Frequency (KHz)

Junc

tion

Tem

pera

ture

(o C)

100V

200V300V

0V

20

40

60

80

100

120

0.1 1 10 100Frequency (KHz)

Junc

tion

Tem

pera

ture

(o C)

100V

200V

300V

0V

20

40

60

80

100

120

0.1 1 10 100Frequency (KHz)

Junc

tion

Tem

pera

ture

(o C)

100V

200V300V

0V

Figure 42. IR2136/IR21362(3)(5)(6)(7)(8)vs. Frequency (IRG4BC30W), Rgate=15ΩΩΩΩΩ, Vcc=15V

Figure 41. IR2136/IR21362(3)(5)(6)(7)(8)vs. Frequency (IRG4BC20W), Rgate=33ΩΩΩΩΩ, Vcc=15V

Figure 44. IR2136/IR21362(3)(5)(6)(7)(8)vs. Frequency (IRG4PC50W), Rgate=5ΩΩΩΩΩ, Vcc=15V

Figure 43. IR2136/IR21362(3)(5)(6)(7)(8)vs. Frequency (IRG4BC40W), Rgate=10ΩΩΩΩΩ, Vcc=15V

Page 32: ir2136

IR2136(2)(3)(5)(6)(7)(8)(J&S)

32 www.irf.com

20

40

60

80

100

120

0.1 1 10 100Frequency (KHz)

Junc

tion

Tem

pera

ture

(o C)

100V 200V

300V

0V

20

40

60

80

100

120

0.1 1 10 100Frequency (KHz)

Junc

tion

Tem

pera

ture

(o C)

100V

200V

300V

0V

20

40

60

80

100

120

0.1 1 10 100Frequency (KHz)

Junc

tion

Tem

pera

ture

(o C)

100V 200V

300V

0V

20

40

60

80

100

120

0.1 1 10 100Frequency (KHz)

Junc

tion

Tem

pera

ture

(o C)

100V

200V

300V

0V

Figure 46. IR2136/IR21362(3)(5)(6)(7)(8) (J)vs. Frequency (IRG4BC30W), Rgate=15ΩΩΩΩΩ, Vcc=15V

Figure 45. IR2136/IR21362(3)(5)(6)(7)(8) (J)vs. Frequency (IRG4BC20W), Rgate=33ΩΩΩΩΩ, Vcc=15V

Figure 48. IR2136/IR21362(3)(5)(6)(7)(8) (J)vs. Frequency (IRG4PC50W), Rgate=5ΩΩΩΩΩ, Vcc=15V

Figure 47. IR2136/IR21362(3)(5)(6)(7)(8) (J)vs. Frequency (IRG4BC40W), Rgate=10ΩΩΩΩΩ, Vcc=15V

Page 33: ir2136

www.irf.com 33

IR2136(2)(3)(5)(6)(7)(8)(J&S)

20

40

60

80

100

120

0.1 1 10 100Frequency (KHz)

Junc

tion

Tem

pera

ture

(o C)

100V

200V300V

0V

20

40

60

80

100

120

0.1 1 10 100Frequency (KHz)

Junc

tion

Tem

pera

ture

(o C)

100V

200V

300V

0V

20

40

60

80

100

120

0.1 1 10 100Frequency (KHz)

Junc

tion

Tem

pera

ture

(o C)

100V

200V

300V

0V

20

40

60

80

100

120

0.1 1 10 100Frequency (KHz)

Junc

tion

Tem

pera

ture

(o C

)

100V

200V

300V

0V

Figure 50. IR2136/IR21362(3)(5)(6)(7)(8) (S)vs. Frequency (IRG4BC30W), Rgate=15ΩΩΩΩΩ, Vcc=15V

Figure 49. IR2136/IR21362(3)(5)(6)(7)(8) (S)vs. Frequency (IRG4BC20W), Rgate=33ΩΩΩΩΩ, Vcc=15V

Figure 52. IR2136/IR21362(3)(5)(6)(7)(8) (S)vs. Frequency (IRG4PC50W), Rgate=5ΩΩΩΩΩ, Vcc=15V

Figure 51. IR2136/IR21362(3)(5)(6)(7)(8) (S)vs. Frequency (IRG4BC40W), Rgate=10ΩΩΩΩΩ, Vcc=15V

Page 34: ir2136

IR2136(2)(3)(5)(6)(7)(8)(J&S)

34 www.irf.com

28-Lead PDIP (wide body) 01-601101-3024 02 (MS-011AB)

Case outlines

01-601301-3040 02 (MS-013AE)28-Lead SOIC (wide body)

Page 35: ir2136

www.irf.com 35

IR2136(2)(3)(5)(6)(7)(8)(J&S)

01-6009 0001-3004 02(mod.) (MS-018AC)44-Lead PLCC w/o 12 leads

NOTES

WORLD HEADQUARTERS: 233 Kansas Street, El Segundo, California 90245 Tel: (310) 252-7105http://www.irf.com/ Data and specifications subject to change without notice. 1/21/2004

Page 36: ir2136

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.