23
Single Stellar Populations models in the Near-Infrared range R. F. Peletier, S. C. Trager IoA @ Cambridge February 26, 2014 Sofia Meneses-Goytia

IoA @ Cambridge February 26, 2014 Sofia Meneses-Goytia · 2020. 5. 21. · Meneses-Goytia et al. 2014a (submitted) Their characteristics 12 Meneses-Goytia et al. 2014a (submitted)

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

  • Single Stellar Populations models in the Near-Infrared range

    R. F. Peletier, S. C. Trager

    IoA @ Cambridge

    February 26, 2014

    Sofia Meneses-Goytia

  • Motivation

     Galactic evolution of “far away” galaxies  Close enough to obtain integrated spectra

     Light at different wavelengths gives information about the stars:   In the NIR cool stars

     Prepare for ELT´s, JWST  Moving to NIR observations requires NIR models

    2

  • Spectral Energy Distribution (SED)

      SSP spectra

     Analyze galaxy spectra adapting models to the characteristics of the data   Smoothed to match the resolution of the data and galaxy internal

    velocity dispersion

      Full spectrum comparison of a particular set of features, measured on both, the galaxy spectrum and the SSP SEDs.

      Insight into   Ages   Metallicities   Abundance ratios   IMF (not easily probed in resolved systems)   Kinematic parameters determination

    3

  • Near–Infrared range  Importance   Early type galaxies / old populations  Contribution of AGB and late phases often dominate the

    spectra

      Break age/metallicity degeneracy (potentially)

     Disadvantages  Atmospheric telluric absorption  Varying IR background

    4

  • Basic outline 5

    Me

    ne

    ses-

    Go

    ytia

    et

    al.

    2014

    b (

    sub

    mitt

    ed

    )

    Fits

  • Basic outline 6

    Me

    ne

    ses-

    Go

    ytia

    et

    al.

    2014

    b (

    sub

    mitt

    ed

    )

    Fits

  • Stellar spectral library IRTF spectral library Rayner et al. 2009 and Cushing et al. 2005

      210 stars (292 spectra)

      FWHM varies with wavelength

      0.8 to 2.5 μm or 5.2 μm

      F, G, K and M stars

    7

    Meneses-Goytia et al. 2014b (submitted)

    -3.0-2.5-2.0-1.5-1.0-0.50.00.5

    3000450060007500

    [Z/Z

    !]

    Teff (K)

    -1.00.01.02.03.04.05.0

    log

    g

    -1.00.01.02.03.04.05.0

    log

    g

    -3.0-2.5-2.0-1.5-1.0-0.50.00.5

    [Z/Z

    !]

  • Parameters determination Full-spectrum fitting

    8

    Me

    ne

    ses-

    Go

    ytia

    et

    al.

    2014

    a (

    sub

    mitt

    ed

    )

    Color-temperature relations

  • Testing the flux calibration 9

    Meneses-Goytia et al. 2014a (submitted) More…

  • Determining the resolution 10

    Meneses-Goytia et al. 2014a (submitted)

    More…

  • The SSP models 11

    Re

    lativ

    e fl

    ux

    Wavelength (μm)

      Population of stars with a common age and metallicity   For each star

      Mass   Atmospheric parameters   Spectrum   Stellar class + type

      Total (stellar) mass of the population

    Meneses-Goytia et al. 2014a (submitted)

  • Their characteristics 12

    Meneses-Goytia et al. 2014a (submitted)

  • SED of SSP models 13

    Meneses-Goytia et al. 2014b (submitted)

    0.96

    0.98

    1.00

    1.02

    1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4

    Ratio

    s

    Wavelength (!m)

    GirS / MarSBaSS / MarSBaSS / GirS

    1.0

    2.0

    3.0

    F/F 1

    .65 !

    m+c

    onst

    ant

    MarSGirS

    BaSSCa Fe PP C Pa Na Si C Ca Ni Pa Al Si Fe K Si C Ti M

    gFe Ni Si

    Ca Fe Mg

    Ca Al K

    Br C C Ni Si Fe Al Si Br Na Fe Ca Mg

    CO

    I I II I

    I I I I I

    I I I I I I I I I I I

    I I I I I I

    I I II I I I I

    I I I I

  • 14

    0.2

    0.3

    1 10

    (H-K

    )

    Age(Gyr)

    0.6

    0.7

    0.8

    (J-H

    )

    0.8

    1.0

    1.2

    (J-K

    )

    MarS

    - 0.7 dex- 0.4 dex+ 0.0 dex+ 0.2 dex

    G04P08

    1 10Age (Gyr)

    GirS

    1 10Age (Gyr)

    BaSS

    Me

    ne

    ses-

    Go

    ytia

    et

    al.

    2014

    b (

    sub

    mitt

    ed

    )

    Integrated colors from the SEDs

  • Integrated colors from the SEDs 15

    Me

    ne

    ses-

    Go

    ytia

    et

    al.

    2014

    b (

    sub

    mitt

    ed

    )

    0.1

    0.2

    0.3

    0.62 0.67 0.72 0.77

    (H-K

    )

    (J-H)

    0.1

    0.2

    0.3

    0.82 0.92 1.02

    (H-K

    )

    (J-K)

    0.62

    0.67

    0.72

    0.77

    (J-H

    )MarS

    F78- 0.7 dex- 0.4 dex+ 0.0 dex+ 0.2 dex

    2 Gyr 7 Gyr

    14 Gyr

    0.62 0.67 0.72 0.77(J-H)

    0.82 0.92 1.02(J-K)

    GirS

    0.62 0.67 0.72 0.77(J-H)

    0.82 0.92 1.02(J-K)

    BaSS

  • Indices from the SEDs 16

    Me

    ne

    ses-

    Go

    ytia

    et

    al.

    2014

    b (

    sub

    mitt

    ed

    )

    1.16

    1.21

    1.26

    1 10

    DC

    O (m

    ag)

    Age (Gyr)

    0.1

    0.1

    0.3

    Mg

    I (Å)

    1.8

    2.3

    2.8

    Ca

    I (Å)

    0.9

    1.4

    1.9Fe

    I (Å

    )1.8

    2.3

    2.8

    3.3

    Na

    I (Å)

    MarS

    0.7 dex 0.4 dex

    + 0.0 dex+ 0.2 dex

    1 10Age (Gyr)

    GirS

    1 10Age (Gyr)

    BaSS

  • Comparison with other authors 17

    Meneses-Goytia et al. 2014b (submitted)

    2.20

    2.40

    2.60

    2.80

    3.00

    3.20

    3.40

    3.60

    1.13 1.14 1.15 1.16 1.17 1.18 1.19 1.20 1.21 1.22 1.23

    Na I

    DCO

    MQ09MarSGirS

    BaSS2 Gyr7 Gyr

    14 GyrC12

    3 Gyr7 Gyr

    14 Gyr

    0.1

    0.2

    0.3

    1 10

    (H-K

    )

    Age (Gyr)

    0.6

    0.7

    0.8

    (J-H

    )

    0.8

    1.0

    (J-K

    )

    MarSGirS

    BaSSV10C12M09

    BC03

    More…

  • Comparison with early type galaxies

     Mármol-Queraltó et al. 2009   14 bright elliptical

    galaxies (12 field, 2 Fornax)

      2.19 to 2.31 μm   FWHM 7.14 Å

      Silva et al. 2008   9 Fornax galaxies   2.19 to 3.43 μm   FWHM 6.90 Å

    18

    F (a

    rbitr

    ary

    un

    its)

  • Indices from the SEDs 19

    1.5

    2.5

    3.5

    4.5

    0.65 0.75

    Na

    I

    (J H)

    1.18

    1.22

    0.8 1.0 1.1

    DC

    O

    (J Ks)

    MarS

    MQ09MQ09 Fnx

    0.7 dex 0.4 dex

    + 0.0 dex+ 0.2 dex

    2 Gyr7 Gyr

    14 Gyr

    0.65 0.75(J H)

    0.8 1.0 1.1(J Ks)

    GirS

    0.65 0.75(J H)

    0.8 1.0 1.1(J Ks)

    BaSS

    Me

    ne

    ses-

    Go

    ytia

    et

    al.

    2014

    b (

    sub

    mitt

    ed

    )

  • Comparisons – an example 20

    Through full spectral fitting using pPXF (Cappellari & Emsellem 2004)

    – 0.40 dex ~ 4 Gyr

    Meneses-Goytia et al. 2014c (in prep)

    NGC3605

    2.20 2.22 2.24 2.26 2.28 2.30Wavelength, µm

    0.5

    0.6

    0.7

    0.8

    0.9

    1.0

    1.1

    Rela

    tive flu

    x

  • Velocity dispersion 21

    σ (

    km/s

    ) –

    pre

    sen

    t w

    ork

    σ (km/s) – Mármol-Queralto et al. 2009 σ (km/s) – HYPERLEDA

    Meneses-Goytia et al. 2014c (in prep)

  • Conclusions   SED modeling in the NIR works

      Velocity dispersions agree with established methods in the optical

     Current models not sensitive to young populations   Insufficient parameter coverage IRTF   Intrinsic sensitivity NIR   Uncertainties due to AGB   With a combination with optical colors (?)

    22

  • Thank you

    IoA @ Cambridge

    February 26, 2014