60
Introduction The solution is designed for IO-Link communication in factory automation systems. The system lets you implement P2P communication based on a physical IO-Link layer, using the STEVAL-IDP004V2 as the master node and the STEVAL-IDP003V1 as the device node. With these, you can address various scenarios: remote machine monitoring for predictive maintenance or diagnostics (vibration analysis or temperature evaluation close to machine bearings) environment monitoring (humidity check, temperature check, pressure check and so on) production line monitoring (object proximity, acceleration monitoring) The IO-Link physical layer is implemented using the L6360 and L6362A ST IO-Link transceivers representing the master node IC and device node IC, respectively. Both of these are soldered on dedicated microcontroller boards, creating a network node. In this solution, the STEVAL-IDP004V2 represents an IO-Link master hub, capable of hosting up to four end nodes simultaneously. The end nodes are the industrial sensor evaluation boards here represented by the STEVAL-IDP003V1. The physical connection between these two parts is achieved with industrial M12 connectors, with different pinouts for master and device network nodes, as established by the IO-Link standard. Electrical connection is implemented via a typical three pole cable, not shielded, with one wire used for communication and two wires for supply voltage. Further flexibility is provided in the form of communication interfaces (RS-485, CAN and USB) on the STEVAL-IDP004V2 that can be used for data exchange with additional units (i.e., PLC or HMI), and with multiple sensor connections on the STEVAL- IDP003V1. Note: The only difference between the STEVAL-IDP004V1 and the STEVAL-IDP004V2 is that in the latter the IO-Link stack has been embedded on the on-board STM32. The protocol stack is provided by TEConcept GmbH and comes with some limitations, as detailed further on. Figure 1. STEVAL-IDP004V2 master evaluation board Note: The STEVAL-BFA001V2B is also supported as end node, using the IO-Link stack or the STSW-IO-LINK master firmware version. The master firmware allows data visualization and power spectrum plot on PC, using the graphical user interface available in the STSW-BFA001V2 software package. IO-Link solution based on STEVAL-IDP004V2 master evaluation board and STEVAL-IDP003V1 kit AN5041 Application note AN5041 - Rev 5 - October 2020 For further information contact your local STMicroelectronics sales office. www.st.com

IO-Link solution based on STEVAL-IDP004V2 master

  • Upload
    others

  • View
    8

  • Download
    0

Embed Size (px)

Citation preview

Page 1: IO-Link solution based on STEVAL-IDP004V2 master

IntroductionThe solution is designed for IO-Link communication in factory automation systems.

The system lets you implement P2P communication based on a physical IO-Link layer, using the STEVAL-IDP004V2 as themaster node and the STEVAL-IDP003V1 as the device node.

With these, you can address various scenarios:• remote machine monitoring for predictive maintenance or diagnostics (vibration analysis or temperature evaluation close to

machine bearings)• environment monitoring (humidity check, temperature check, pressure check and so on)• production line monitoring (object proximity, acceleration monitoring)

The IO-Link physical layer is implemented using the L6360 and L6362A ST IO-Link transceivers representing the master nodeIC and device node IC, respectively. Both of these are soldered on dedicated microcontroller boards, creating a network node.

In this solution, the STEVAL-IDP004V2 represents an IO-Link master hub, capable of hosting up to four end nodessimultaneously. The end nodes are the industrial sensor evaluation boards here represented by the STEVAL-IDP003V1.

The physical connection between these two parts is achieved with industrial M12 connectors, with different pinouts for masterand device network nodes, as established by the IO-Link standard. Electrical connection is implemented via a typical three polecable, not shielded, with one wire used for communication and two wires for supply voltage.

Further flexibility is provided in the form of communication interfaces (RS-485, CAN and USB) on the STEVAL-IDP004V2 thatcan be used for data exchange with additional units (i.e., PLC or HMI), and with multiple sensor connections on the STEVAL-IDP003V1.

Note: The only difference between the STEVAL-IDP004V1 and the STEVAL-IDP004V2 is that in the latter the IO-Linkstack has been embedded on the on-board STM32. The protocol stack is provided by TEConcept GmbH andcomes with some limitations, as detailed further on.

Figure 1. STEVAL-IDP004V2 master evaluation board

Note: The STEVAL-BFA001V2B is also supported as end node, using the IO-Link stack or the STSW-IO-LINK masterfirmware version. The master firmware allows data visualization and power spectrum plot on PC, using thegraphical user interface available in the STSW-BFA001V2 software package.

IO-Link solution based on STEVAL-IDP004V2 master evaluation board and STEVAL-IDP003V1 kit

AN5041

Application note

AN5041 - Rev 5 - October 2020For further information contact your local STMicroelectronics sales office.

www.st.com

Page 2: IO-Link solution based on STEVAL-IDP004V2 master

Figure 2. STEVAL-IDP003V1 kit

Note: All the topics described in this document are valid also for the STEVAL-IDP004V1 master evaluation board,except for the IO-Link stack section.

AN5041

AN5041 - Rev 5 page 2/60

Page 3: IO-Link solution based on STEVAL-IDP004V2 master

1 Hardware description

1.1 STEVAL-IDP004V2 master hub overview

The STEVAL-IDP004V2 is designed to represent a complete master unit with several communication interfaceslike IO-Link, RS-485, CAN and USB.L6360 transceivers have two different voltage reference: one on the VCC pin with a 18 to 32V voltage range; thesecond one on the VH pin which can be supplied via a DC-DC converter in buck configuration or via the main VCCsupply.The other interface are supplied as follows: RS-485 and CAN interfaces are supplied using the 3.3 V generatedby the L6360 ICs, whereas the USB is supplied using the 5 V on the connector, since the peripheral works inslave mode and it is managed through a microcontroller interface based on the STM32F205RBT7 ARM® Cortex®-M3.As this board is designed to work in industrial applications, extra care has been taken in layout routing andprotections implemented to improve robustness in terms of EMC compliance.

Figure 3. STEVAL-IDP004V2 functional blocks

ST-Link programmerRS-485 CAN

USB

IO-LinkPorts

Supply voltage and protection

Power management

IO-LinkPorts

AN5041Hardware description

AN5041 - Rev 5 page 3/60

Page 4: IO-Link solution based on STEVAL-IDP004V2 master

Figure 4. STEVAL-IDP004V2 block diagram

Power managementand protections

UARTup to 230 kb

Supply voltage 18 to 32 V

L6360IO-LinkMaster

Transceiver

USBinterface

RS485interface

CANinterface

5V, 8V

STM32F2

UARTup to 230 kb

UARTup to 230 kb

UARTup to 230 kb

L6360IO-LinkMaster

Transceiver

L6360IO-LinkMaster

Transceiver

L6360IO-LinkMaster

Transceiver

1.1.1 Power management and protectionThe input stage is designed to adhere to the 18 to 32 V voltage range required by the standard.The supply voltage is provided to the board via screw connector CON1 and stepped-down by the DC-DCconverter to a lower voltage reference. The switching converters is the L7986A switching regulator IC, used toscale the main supply voltage to 8 V with a current capability of 400 mA (voltage reference used for VH input pinof L6360).Furthermore, to improve the robustness on the supply line, the SM15T33CA Transil offers surge protection andthe STPS1H100A power Schottky rectifier provides reverse polarity protection.

Figure 5. STEVAL-IDP004V2 power management schematic

1

C37

R127

0R

CO

MP

4

R128

0R D29STPS1L40

EMC test only -do not mount TP1

Ground

OUT 1VCC8

D21SM15T33CA

VH_C

ON

36V max

EARTH

C79

15µF/16V

Vcc

L-_M1

R12511k

FB5

D28STPS1H100A

2

Fsw

6

C78

22nF/16V

1

L-_M2

R126383R

C76

82pF/16V

EN3

GN

D2

9

L-_M0

GN

D1

7

L4

1.2mH 1ohm 400mA

R1244.7k

C80

220nF/50V

C752.2uF/50V

U1 L7986A

RS:533-0609KEMET PME295RB4470MR30

Not MountedNot Mounted

Not Mounted

8V

R15343R

4.7n

F 4k

V

Vcc

CON1

Main Voltage

TP1

EMC TEST

4.7n

F 4k

V

SYNCH2

L-_M3

C77

18nF/16V

Vcc

C38

1.1.2 RS-485, USB and CAN interfaceSeveral on-board interface modules can be used to interface with a PC or other control units. The PC interface isrealized via the USB and RS-485 communication protocols: the USB and the RS-485 are used to handle adedicated set of commands via PC to manage IO-Link IC configuration and remote sensor monitoring through theIO-Link physical layer.The interface with the other communication bus is implemented using the CAN transceiver.

AN5041STEVAL-IDP004V2 master hub overview

AN5041 - Rev 5 page 4/60

Page 5: IO-Link solution based on STEVAL-IDP004V2 master

Figure 6. RS-485, USB and CAN interface

8

R12060,4R

R1761.5KMH1

R18010K

R167100k

5V

2

CAN_SHDN

2

RS

8

CAN_RX

4

MH2

R183500R

4

R181

10K

1

R12160,4R

7

DE3

CANLTXD

1

Common Mode ChokeACT45B-101-2PTDK

2

ID4

C7410nF/10V

1

C83

47pF/10V

DI4

TP9 TP8

L1

CHOKE CM

ST3485RE

2GND

5

R146120R

J5CONN USB

3

Vdd

C108100nF/10V

8

GND5

CAN_RS

R182

0R

R1660R

RXD4

1

CANH

CANH

CANLGNDCANL

CANH

C8447pF/10V

VBUS1

5

MH

2

3

5V

2

1

Vdd

3

BUS_IND_RX

DM2

Vdd

GND2

ST3485DE

CN1

RS485

A6

MH

1

USB_DP

R148

N.M.

4CANL

6

CAN

CO

NN

ECTO

R

U4

ST3485EI

P1

R147

0R

BUS_IND_TX

1

VCC3

9

6

CAN_TX

USB_DM

B7

1

5CANH

7

RO1

7R17536K

Q1BC848C

1

R1650R

R184500R

U9MAX3051

Vcc8

USER_Vbus

9

R17410K

RE

6

D31ESDCAN24

2

DP3

SHDN5

Vdd

1.1.3 Master IO-Link portsThe IO-Link interface consists of four L6360 master ICs, each of them protected against surge discharge with STTransil SPT01-335DEE and interfaced on the IO-Link bus through a 5-pin M12 female connector, as required bythe standard.

1.1.3.1 IO-Link transceiver IC descriptionThe L6360 programmable transceiver features:1. integrated I²C serial peripheral and register for IC configuration2. output stage to support IO-Link protocol timing, designed with several integrated protections against failure

events (short-circuit, overtemperature)3. output power stage with 500 mA maximum current capability, to power the slave node4. two receiver input stages:

– one connected to an IO-Link bus through an M12 connector– one available for other IO-Link bus connections

5. digital input pin ENL+ to handle L+ output power stage activation to provide supply voltage to slave node,device reset pin to reset the IC to default configuration, ENCQ digital pin to enable the IC in receiver ortransmitter mode, and an IRQ latched interrupt pin

6. other digital input/output pins to manage I²C and IO-Link communicationThis transceiver has embedded registers to configure different IC settings:• output stage configurability (Push-Pull, High-Side, Low-Side)• output current limitation threshold protection and delay protection activation on IO-Link line• pull-down current generator on IO-Link line• de-bounce time in receive mode according to communication speed• LED registers to signal malfunction, communication status and IC status through different programming

settings

The configuration is performed with the integrated I²C peripheral, according to the write operating mode providedin the I²C protocol section in the datasheet.1. The configuration example sets the output stage in the Configuration register to push-pull configuration2. Set the cut-off protection threshold in the Control1 register to 580 mA3. Set the cut-off delay time in the Control1 register to 250 µs4. Set de-bounce time in the Control1 register to the communication speed

AN5041STEVAL-IDP004V2 master hub overview

AN5041 - Rev 5 page 5/60

Page 6: IO-Link solution based on STEVAL-IDP004V2 master

Following configuration, the ENCQ pin must be driven to enable communication transmission and reception. Toenable transmission, the pin must be set to the high level, while to enable the receiver, the pin is set to the lowlevel.Once the transmitter or receiver stages are enabled, communication between master and device node can bemanaged by driving the UART inputs pin (INCQ and OUTCQ).If some fault condition is detected during communication, the IRQ pin is activated.

1.1.4 Connectors

Table 1. Connectors

Part value Part description Pin Name Description

CON1 Main supply voltage1 Negative pole Ground supply voltage

2 Positive pole Supply voltage

J4 ST-Link Programmer

1, 2 VDD Ground Serial Data Reset

3, 4, 6, 8, 10, 12, 14, 16, 18, 20 GND Ground

5, 11, 13, 17, 19 NC Not connected

7 SWDIO Serial data

9 SWCLK Serial clock

15 NRST Reset

J5 USB connector

1 5V Input supply

2 DM USB DM

3 DP USB DP

4 ID Pull down connected

5 GND Ground

CN1 DB9 RS-485 connector

1, 4 B RS-485 inverted signal

2, 8 A RS-485 not inverted signal

3, 5 GND Ground

6, 7, 9 NC Not connected

CN2 DB9 CAN connector

1, 4, 8 NC Not connected

2 CANL CAN bus line low

3, 6 GND Ground

7 CANH CAN bus line high

9 VDD Voltage reference N.C

JR1, JR2, J3, J4 M12 IO-Link connector

1 L+ Device board supply

2 IQ Second bus line

3 L- Device board ground

4 CQ IO-Link bus line

5 NC Not connected

AN5041STEVAL-IDP004V2 master hub overview

AN5041 - Rev 5 page 6/60

Page 7: IO-Link solution based on STEVAL-IDP004V2 master

Figure 7. STEVAL-IDP004V2 connector drawings162738495

P1

CAN connector

5GND

J5

4ID

VBUSDM

21

3DP

USB connector

JR3

4

Master_M1

2

1

5

3

IO-Link connector

162738495

CN1

MH1MH2

RS485 connector

1

2Main Voltage

CON1Main supply voltage

connector

16

10

4

18

65

17

8

1214

15

7

1

20

9

J4

13

3

STLink/V2

19

2

11

Programmer connector

1.2 STEVAL-IDP003V1 kit overview

The STEVAL-IDP003V1 kit consists of:1. STEVAL-IDP003V1D device board based on L6362A IO-Link PHY with small form factor for easy insertion in

the M12 connector2. STEVAL-IDP003V1A sensor board based on accelerometer MEMS sensor IIS328DQ3. STEVAL-IDP003V1V sensor board based on accelerometer MEMS sensor IIS2DH4. STEVAL-IDP003V1T sensor board based on temperature sensor STTS7515. STEVAL-IDP003V1P sensor board based on proximity sensor VL6180XThe device boards and sensor boards are equipped with a small 1.27 mm pitch connector to reduce PCB area.

Figure 8. STEVAL-IDP003V1 block diagram

VL6180X

UART up to 230kb

Power management

C 400kHz2

Supply voltage 18 to 32V I

3.3V

STM32L0

L6362A

DeviceTransceiverfor IO-Link

and SIO mode

IIS2DH

IIS328DQ

STTS751

STEVAL-IDP003V1DSTEVAL-IDP003V1P

STEVAL-IDP003V1T

STEVAL-IDP003V1A

STEVAL-IDP003V1V

1.2.1 STEVAL-IDP003V1D evaluation boardThis board contains an L6362A IO-Link device transceiver to interface the sensors on the bus. It also implementspower stage circuitry to generate 3.3 V voltage reference for microcontroller and sensors, using a DC-DCconverter in buck configuration and a low drop voltage regulator.The communication on the IO-Link bus and the communication with sensors are handled by the STM32L071CZYmicrocontroller via the USART and I²C peripherals, respectively.

AN5041STEVAL-IDP003V1 kit overview

AN5041 - Rev 5 page 7/60

Page 8: IO-Link solution based on STEVAL-IDP004V2 master

The board features:1. layout routing to improve robustness against EMC stress and minimize board size2. connection on IO-Link bus in compliance with standard requirements in terms of connector pinout for device

board3. connection with sensor board using small 1.27 mm pitch connector for improved interfacing flexibility with

different sensors.

Figure 9. STEVAL- IDP003V1D main components

Sensor board STM32L071CZ

ST-LINKprogrammer

IO-Link port

Power management1.2.2 Power management

The IO-Link specification requires that the sensor unit either be supplied directly on sensor side by battery or viathe master node using the L+ line from the master IC.The STEVAL-IDP003V1D is supplied by the master IO-Link node through the L+ line. Therefore, to obtain a lowerreference voltage for the microcontroller, LED and sensors, the power management system has been designed toreduce the 18 to 32 V main supply voltage reference required by the standard down to 3.3 V.The reduction is achieved using an L7986 DC-DC converter (to reduce the main down to 8 V) with an LDFPURlow drop voltage regulator in series (to reduce the 8 V down to 3.3 V). The 3.3 V (3v3-Ext voltage reference)voltage reference is used for on-board LED signaling and when it is needed, in place of the default microcontrollerand sensor supply voltage provided by the L6362A internal voltage regulator.To replace the voltage supply provided by the L6362A, resistor R43 must be replaced by the series R35 (0R) andR25 (100 kΩ resistor)

AN5041STEVAL-IDP003V1 kit overview

AN5041 - Rev 5 page 8/60

Page 9: IO-Link solution based on STEVAL-IDP004V2 master

Figure 10. STEVAL-IDP003V1D power management schematic (1 of 3) - DC-DC converter

VDFPN 10

L7986TR

1OUT1

Fsw

7R4360R

2

FB6

10VCC1

L1470µH

2.2µF 50V

C6

18nF 16V

5.6k

R143R

3

EX_P

AD11

SYNCH

EN4

D1

22nF 16V

C1

GN

D8

CO

MP

OUT2

VCC2Vcc

8V

9

R3

C5

R24k7

220nF 50V

C2

C3

5

82pF 16V

22µF 10V

U1

C4

Figure 11. STEVAL-IDP003V1D power management schematic (2 of 3) - linear regulator

4GND

7

VDFPN 6 1µF 16V

3v3-Ext

C192

ADJ

8V

R2731.6k 1%

LDFPUR

2.2µF 10V

3v3

EN5

R35Vin6

C18

R2810k 1%

0 RVout

1

U5

PG3

GN

D2

AN5041STEVAL-IDP003V1 kit overview

AN5041 - Rev 5 page 9/60

Page 10: IO-Link solution based on STEVAL-IDP004V2 master

Figure 12. STEVAL-IDP003V1D power management schematic (3 of 3) - IO-Link transceiver

U3

L6362A

Vdd1

4

IN1

R170

IN2

12R25

47nF 10V

3v3-IC

SEL8

EN/DIAG5

100K N.M.

R43

11

9

10pF 10V

C14 3v3

EN/DIAG

2

3OUTH

R24

Vcc

C31

OUT/IQ

OL6

3v3

OUTL

IQ10

GND

0 N.M.

7

Vcc

N.M.

1.2.3 Device IO-Link portThe IO-Link interface consists of an L6362A IC connected to the IO-Link bus using the M12 4-pole maleconnector, as required by the standard.

1.2.4 IO-Link transceiver descriptionThe programmable transceiver features:1. configurable output stage (Push-Pull, High-Side, Low-Side)2. configurable output voltage regulator3. wake-up request detection4. integrated protection like short-circuit, overtemperature5. digital input/output ENDIAG pin to signal fault events6. overload signalingThe output stage configuration and output voltage reference can be managed by hardware or firmware by simplyconfiguring a fixed digital value on the IN1, IN2 and SEL pins. This setting modify the output stage configurationdriving (Push-Pull, High-Side, Low-Side), IO-Link bus signal polarity (signal Inverted or not) managing the IN1 andIN2 pin and the output voltage reference provided on VDD pin managing the SEL pin to suit applicationrequirements.On the STEVAL-IDP003V1, the IC bus interface is configured to have:1. power stage in output push-pull2. output signal polarity on IO-Link bus inverted3. SEL pin to GND to provide 3.3 voltage reference4. ENDIAG pin connected to pull-up5. OL pin connected to pull-upOnce the IC is configured, data exchange with the master unit is a matter of managing serial communication viapin IN2 for transmission and pin OUTI/Q for reception. If a fault condition is detected during communication, theENDIAG pin and/or the OL pin is activated and an interrupt is generated.

AN5041STEVAL-IDP003V1 kit overview

AN5041 - Rev 5 page 10/60

Page 11: IO-Link solution based on STEVAL-IDP004V2 master

1.2.5 Sensor boardsThe STEVAL-IDP003V1D can be interfaced with different sensors through a small 1.27 mm pitch connector.These small sensor boards host different kinds of sensors:• IIS328DQ accelerometer MEMS sensor (STEVAL-IDP003V1A)• VL6180X ToF proximity sensor (STEVAL-IDP003V1P)• STTS751 temperature sensor (STEVAL-IDP003V1T)• IIS2DH vibration MEMS sensor (STEVAL-IDP003V1V)

All of the above sensors exchange data with the sensor node via the I²C peripheral.Also in this case, the layout routing is optimized to meet EMC testing requirements.

Figure 13. Sensor daughter boards

1.2.5.1 Sensor descriptionVL6180X (on the STEVAL-IDP003V1P) :The VL6180X is the latest product based on ST’s patented FlightSense™ technology. This is a ground-breakingtechnology allowing absolute distance to be measured independent of target reflectance. Instead of estimating thedistance by measuring the amount of light reflected back from the object (which is significantly influenced by colorand surface), the VL6180X precisely measures the time the light takes to travel to the nearest object and reflectback to the sensor (Time-of-Flight). Combining an IR emitter, a range sensor and an ambient light sensor in athree-in-one ready-to-use reflowable package, the VL6180X is easy to integrate and saves the end-product makerlong and costly optical and mechanical design optimizations. The module is designed for low power operation.Ranging and ALS measurements can be automatically performed at user defined intervals. Multiple threshold andinterrupt schemes are supported to minimize host operations. Host control and result reading is performed usingan I²C interface. Optional additional functions, such as measurement ready and threshold interrupts, are providedby two programmable GPIO pins.STTS751 (on the STEVAL-IDP003V1T):The STTS751 is a digital temperature sensor which communicates over a 2-wire SMBus 2.0 compatible bus. Thetemperature is measured with a user-configurable resolution between 9 and 12 bits. At 9 bits, the smallest stepsize is 0.5 °C, while at 12 bits, it is 0.0625 °C. At the default resolution (10 bits, 0.25 °C/LSB), the conversion timeis nominally 21 milliseconds. The open-drain EVENT output is used to indicate an alarm condition in which themeasured temperature has exceeded the user-programmed high limit or fallen below the low limit.When the EVENT pin is asserted, the host can respond using the SMBus Alert Response Address (ARA) protocolto which the STTS751 will respond by sending its slave address. The STTS751 is a 6-pin device that supportsuser-configurable slave addresses. Via the pull-up resistor on the Addr/Therm pin, one of four different slaveaddresses can be specified. Two order numbers (STTS751-0 and STTS751-1) provide two different sets of slaveaddresses bringing the total available to eight. Thus, up to eight devices can share the same 2-wire SMBuswithout ambiguity, thereby allowing monitoring of multiple temperature zones in an application.

AN5041STEVAL-IDP003V1 kit overview

AN5041 - Rev 5 page 11/60

Page 12: IO-Link solution based on STEVAL-IDP004V2 master

IIS2DH (on the STEVAL-IDP003V1V):The IIS2DH is an ultra-low-power high performance three-axis linear accelerometer with digital I2C/SPI serialinterface standard output. The IIS2DH has user-selectable full scales of 2g/±4g/±8g/±16g and is capable ofmeasuring accelerations with output data rates from 1 Hz to 5.3 kHz. The device may be configured to generateinterrupt signals by two independent inertial wake-up/free-fall events as well as by the position of the device itself.The self-test capability allows the user to check the functionality of the sensor in the final application.IIS328DQ (on the STEVAL-IDP003V1A) :The IIS328DQ is an ultra-low-power high performance 3-axis linear accelerometer with a digital serial interface,SPI or I²C compatible. Recommended for industrial applications requiring an extended temperature range andlong lifespan, the device features ultra-low-power operational modes that allow advanced power saving and smartsleep-to-wakeup functions. The IIS328DQ has dynamic user-selectable full-scales of ±2g/±4g/±8g and is capableof measuring accelerations with output data rates from 0.5 Hz to 1 kHz. The self-test capability allows the user tocheck the functioning of the sensor in the final application. The device may be configured to generate an interruptsignal through inertial wakeup events, or by the position of the device itself. Interrupt generators areprogrammable by the end user on-the-fly.

1.2.6 Connectors

Table 2. Connector details

Part value Part description PIN Pin name Pin description

JP1 IO-Link Connector

1 VCC Supply voltage

2 NC Not connected

3 GND Ground

4 OUTH/OUTL IO-Link Bus

J2 Sensor Connector

1, 2 GND Ground

3, 4 3v3 Supply voltage

5, 6 I2C_SCL I2C clock

7, 8 I2C_SDA I2C data

9, 10 Interrupt Sensor interrupt

J1 Programmer connector

1 3v3 Supply voltage

2 GND Ground

3 SWDIO SW data

4 SWCLK SW clock

5 NRST Reset

AN5041STEVAL-IDP003V1 kit overview

AN5041 - Rev 5 page 12/60

Page 13: IO-Link solution based on STEVAL-IDP004V2 master

Figure 14. STEVAL-IDP003V1D connector drawings

JP1

2CONN AV 4-J

4

1 3

IO-Link connector

10

46587

1

9

J2

32

Sensor connectorCON10A

43

1J1

25

Programmer connectorCON5

AN5041STEVAL-IDP003V1 kit overview

AN5041 - Rev 5 page 13/60

Page 14: IO-Link solution based on STEVAL-IDP004V2 master

2 EMC test

This IO-Link system has been built following the requirements coming from the factory automation, some testshave been performed to verify the robustness against stress events occurring during its normal life cycle.Tests for electromagnetic compatibility as per IEC61000-4-2/4 and EN60947-5-2 are performed with respect to:• IEC61000-4-2 ESD robustness• IEC61000-4-4 Burst robustness• EN60947-5-2 Surge robustness

Power is supplied through the L+ line on the STEVAL-IDP004V2 and the microcontroller on the STEVAL-IDP003V1D is set to perform continuous sensor data sampling.After testing, system functionality is verified through a complete STEVAL-IDP004V2 and STEVAL-IDP003V1parameter request routine.

2.1 Burst test

Test setup:• Burst Generator: UCS 500 N• Coupling: 150 pF• Spacer: 100 mm• Supply voltage: 2x 12 V lead battery decoupled with 1mH inductor• EUT1: STEVAL-IDP003V1• EUT2: STEVAL-IDP004V2

Figure 15. Burst test setup

Burst generator

Ground plane

Metal plane

Burst coupling

SpacerEUT1 EUT224V battery

Test results: test successfully performed at ± 4 kV with criteria B.

AN5041EMC test

AN5041 - Rev 5 page 14/60

Page 15: IO-Link solution based on STEVAL-IDP004V2 master

2.2 Surge test in differential mode

Test setup:• Surge generator: UCS 500N• Coupling: 500 Ω + 18 µF• Spacer: 100 mmS• Supply voltage: 2x 12 V lead battery decoupled with 1 mH inductor• EUT1: STEVAL-IDP003V1• EUT2: STEVAL-IDP004V2

Figure 16. Surge test setup

Surge generator

Ground plane

Metal plane

CouplingSpacer

EUT1

EUT224V battery

Spacer

Test results: test successfully performed at ± 1.2 kV with criteria A.

2.3 ESD test in contact discharge

Test setup:• ESD Generator: ESD 30N• Coupling: 330 Ω + 150 pF• Spacer: 100 mm• Spacer 1: 30 mm• Supply voltage: 2x 12 V lead battery decoupled with 1 mH inductor• EUT1: STEVAL-IDP003V1• EUT2: STEVAL-IDP004V2

AN5041Surge test in differential mode

AN5041 - Rev 5 page 15/60

Page 16: IO-Link solution based on STEVAL-IDP004V2 master

Figure 17. ESD test setup

Surge generator

Ground plane

Metal plane

Spacer

EUT1

EUT2

Spacer

24V battery

Coupling network

Spacer 1

Test results: test successfully performed at ± 4 kV with criteria B.

AN5041ESD test in contact discharge

AN5041 - Rev 5 page 16/60

Page 17: IO-Link solution based on STEVAL-IDP004V2 master

3 Firmware description

The IO-Link evaluation kit is supported by two different firmware packages.Both packages are useful to handle STEVAL-IDP004V2 to STEVAL-IDP003V1 communication and PC interface.The first firmware package (STSW-IO-LINK) is based on a customized protocol developed by STMicroelectronics,whereas the second one is based on IO-Link stack plus a dedicated protocol for PC interface, both developed byTEConcept GmbH.

3.1 STSW-IO-LINK firmware package description

This solution consists of a complete firmware package released for the STEVAL-IDP003V1 and the STEVAL-IDP004V2 master board to facilitate system configuration as well as system data exchange and processing. It isbased on the STM32Cube HAL library and was developed with the STM32CubeMX tool to help configure themicrocontroller in each part and update the created workspace without any data loss.The firmware includes the following functional blocks:1. PC and system configuration with the RS-485 interface2. Master-device communication using a customized protocol to exchange data between STEVAL-IDP004V2

and STEVAL-IDP003V13. Sensor data management to exchange data with sensors (STEVAL-IDP003V1T, STEVAL-IDP003V1V,

STEVAL-IDP003V1A, STEVAL-IDP003V1P) and process it on the device board (STEVAL-IDP003V1D), inparticular for vibration monitoring based on IIS2DH accelerometer MEMS sensor.

The first two points have been implemented with simple command declarations that allow configuration (e.g.,STEVAL-IDP004V2 L6360 configuration) and data exchange between the master (STEVAL-IDP004V2) anddevice (STEVAL-IDP003V1) nodes.The third point involves data acquisition routines running on the STEVAL-IDP003V1D board through I²C interfaceand subsequent processing. For vibration monitoring, dedicated routines for data processing using the DSP_Libto perform FFT calculation have been implemented to calculate the vibration power spectrum.

3.1.1 STEVAL-IDP004V2 evaluation firmware descriptionThis firmware package manages RS-485/USB communication with a PC for STEVAL-IDP004V2 configuration anddata exchange between the STEVAL-IDP004V2 and STEVAL-IDP003V1 through the IO-Link physical layer.The following source files are included:1. PC_Communication_RS485: with all the routines needed to manage command decoding and data

exchange between the STEVAL-IDP004V2 and the PC2. PC_Communication_USB: with all the routines needed to manage command decoding and data exchange

between the STEVAL-IDP004V2 and the PC3. Master_Settings.c: with the routines needed to configure all the L6360 ICs on the STEVAL-IDP004V2

master board4. Master_DeviceCOMM.c: with all the routines used to exchange data between the STEVAL-IDP004V2

master board and the STEVAL-IDP003V1 sensor board.

AN5041Firmware description

AN5041 - Rev 5 page 17/60

Page 18: IO-Link solution based on STEVAL-IDP004V2 master

Figure 18. STEVAL-IDP004V2 evaluation firmware project related to RS-485 implementation

At start-up, the master board is in the receiving state, waiting for a command sent by the user.Following a START command, communication with master board is established and the STEVAL-IDP004V2 startsto interact with user, prompting for input regarding which board (master or device) to select.Master board (STEVAL-IDP004V2) selectedIn this case, the firmware prompts for:1. address of the master IC2. operating mode ( Current Write, Current Read, Sequential Write, Sequential/Random Read); based on the

selection, further specific information like register addresses and values are requestedIf the programming mode is completed correctly, the message “Programming Done” or “Reading Done" isreturned.Once one or all the on-board L6360 devices are programmed, you can stop the configuration phase with“COMMAND END” command and query the STEVAL-IDP003V1 regarding the connected sensor with the “IDS”command to a particular node, and measured parameters with the “PRM” command.The parameter value returned depends on which kind of sensor is connected to the device board (STEVAL-IDP003V1D):• for the ToF VL6180X (STEVAL-IDP003V1P) sensor: distance from an object• for the STTS751 (STEVAL-IDP003V1T) sensor: temperature in Celsius degrees• for the accelerometer MEMS sensors:

– for the IIS328DQ (STEVAL-IDP003V1A): acceleration for each axis in ‘mg’– for the IIS2DH (STEVAL-IDP003V1V): vibration for each axis in m/s²

Once again you can stop communication with a sensor with “COMMAND END” or continue to query the samesensor with the “COMMAND NEW" command.Device Node (STEVAL-IDP003V1) selectedIn this case, the firmware prompts for the address of the related master IC:• if the node is not programmed, the firmware will switch to the "Master board (STEVAL-IDP004V2) selected"

routine, prompting the master node be requested before communication with the sensor.• if the node is programmed, you can begin interacting with the sensor node to identify the connected sensor

and receive measured parameter data.

3.1.2

For more details about the commands implemented to manage communication, please refer to the firmware data brief.

STEVAL-IDP003V1 evaluation firmware descriptionThis firmware package manages communication through the IO-Link physical layer between the master node(STEVAL-IDP004V2) and sensor node (STEVAL-IDP003V1), as well as data exchange with the sensor board and subsequent processing.

AN5041STSW-IO-LINK firmware package description

AN5041 - Rev 5 page 18/60

Page 19: IO-Link solution based on STEVAL-IDP004V2 master

The following source files are included:1. FFT.c: with routines to perform vibration analysis with the MEMS IIS2DH sensor2. Sensor.c: with routines for sensor configuration and data acquisition3. Master_DeviceCOMM.c: with routines used to exchange data between the STEVAL-IDP004V2 master

board and the STEVAL-IDP003V1 sensor board.

Figure 19. STEVAL-IDP003V1 evaluation firmware project

AN5041STSW-IO-LINK firmware package description

AN5041 - Rev 5 page 19/60

Page 20: IO-Link solution based on STEVAL-IDP004V2 master

At start-up, the sensor board runs two processes in parallel:• the first one keeps the sensor board on the IO-Link bus ready for a remote command• the second one handles the sensor configuration and data acquisition as follows:

1. after turn-on, the microcontroller proceeds with sensor configuration2. if it is completed correctly the “status_sensor” variable is changed from RESET to CONNECTED,

otherwise it is changed to NOT CONNECTED3. if configuration ends correctly, the microcontroller continues with different data acquisition flows based

on the connected sensor, as per the following list• Temperature sensor STTS751 and MEMS IIS328DQ: parameter values are continuously updated in the

corresponding structure.• Proximity sensor ToF VL6180X: a remote command is requested to start the acquisition for a time slot

defined by the variable STTPRX_MAX_SAMPLES in Sensor.h, when the acquisition is completed, theresults are averaged and the updated structure is returned to the master.

• MEMS IIS2DH: this sensor is used for vibration monitoring through the continuous acquisition on interruptevent of each acceleration value of each accelerometer axis. When the number of samples acquired is equalto the value fixed by the defined variable FFT_SIZE in FFT.h, acquisition for that axis is stopped. The data isconverted in m/s² and processed with dedicated routines in FFT.c. These routines implement the DSP libraryin the HAL library package to calculate the Fast Fourier Transform and evaluate vibration frequency andamplitude for each axis. The main routines used for vibration evaluation arearm_rfft_fast_f32()arm_cmplx_mag_f32(); and arm_max_f32().

These functions take the sample input vectors and the FFT size setting to obtain an output vector with the indexposition in the array representing the ‘bin’ of a frequency value and the value stored at the same index positionrepresenting the amplitude of the corresponding frequency.Once the output FFT vector has been obtained, the function arm_max_f32() extracts the maximum value andcorresponding index and, using the reverse formula of the bin calculation: the input frequency is obtained whenSamplingFreq is equal to accelerometer ODR.

3.2 Firmware package with IO-Link stack implementation

3.2.1 Firmware package for STEVAL-IDP004V2This firmware package with IO-Link stack is available only in a compiled version which is preloaded in themicrocontroller with level 1 readout protection (you can also download your own firmware into the microcontroller).The stack embeds two different communication interfaces with host unit, USB and RS485.The version is fully featured with time limitation (10000 minutes): after this time expires, the system stops workingand a new license is necessary to run the system again. To get the new free license, it is necessary to contact thestack provider (TEConcept GmbH) and provide them the hardware ID which can be read using the Control Tool, aGUI developed by the same provider.Data transmission between master and device node is managed using the Process Data features as written in theIO-Link stack standard.Data received by the master are shown on the host processor using the Control Tool allowing data visualizationand plotting: page format changes according to the information reported in the IODD file.For the STEVAL-IDP004V2, four different IODDs have been released to show the data received by each sensornode, connected to the board (for further details, refer to UM2232 on www.st.com).Data shown are:• distance• temperature• inclination• vibration (frequency and amplitude)

3.2.2 Firmware package for STEVAL-IDP003V1This package integrates the IO-Link stack library developed by TEConcept within the IO-Link consortium.The stack is provided in a compiled version (iol_ds_as_lib.a) and with customizable APIs available in the headerfile (iold_api.h).

AN5041Firmware package with IO-Link stack implementation

AN5041 - Rev 5 page 20/60

Page 21: IO-Link solution based on STEVAL-IDP004V2 master

The stack code embedded is limited in execution time and features. Time limitation prevents stack use for more than 180 minutes; when this time expires, a hardware reset is necessary to restart the application. Feature limitation, instead, is related to missed implementation of sensor data storage, block transfer and BLOB.The firmware architecture is based on the STM32Cube Ecosystem guidelines with an Application layer, a Middleware layer, a Drivers layer including BSP (board support package) and a HAL driver library.

Figure 20. STEVAL-IDP003V1 stack architecture

AN5041Firmware package with IO-Link stack implementation

AN5041 - Rev 5 page 21/60

Page 22: IO-Link solution based on STEVAL-IDP004V2 master

4 Functionality test with customized protocol

To perform a typical application test:1. Connect each STEVAL-IDP004V2 IO-Link port to a STEVAL-IDP003V1D sensor node2. Provide DC supply voltage in the range of 19 to 32 V through the STEVAL-IDP004V2 CON1 connector3. Connect the ST-LINK/V2 programmer to the board J4 20-pin connector using the flat cable4. Flash the STEVAL-IDP004V2-RS485.hex file in the microcontroller using the STM32 ST-LINK Utility5. Connect the ST-LINK/V2 to the J1 connector with an adapter to the STEVAL-IDP003V16. Flash the firmware related to the sensor connected on board using STM32 ST-LINK Utility7. Remove the programmer and reset the STEVAL-IDP004V2If the STEVAL-IDP004V2 green LED starts blinking and the STEVAL-IDP003V1 green LED is ON or blinking, thekit is working properly.After microcontroller programming, you can use a HyperTerminal (or Tera Term) interface to interact with thehardware, performing Read/Write operations on the L6360 ICs or, after L6360 programming, send commands tothe STEVAL-IDP003V1 to identify the connected sensor and the measured parameter.

4.1 Microcontroller programming procedure

The programming procedure can be performed with the STM32 ST-LINK Utility programming tool.After the ST-LINK/V2 programmer has been connected to the STEVAL-IDP004V2 J4 connector:1. Open the tool and press the toolbar connection button. The microcontroller memory first reading results

should appear.

Figure 21. STM32 ST-LINK Utility

AN5041Functionality test with customized protocol

AN5041 - Rev 5 page 22/60

Page 23: IO-Link solution based on STEVAL-IDP004V2 master

2. Then select [Target]>[ Program & Verify]

Figure 22. STM32 ST-LINK program and verify menu

3. Click [Browser] and select the .hex in the STEVAL-IDP004V2 folder

Figure 23. STEVAL-IDP004V2 folder with STEVAL-IDP004V2.hex

AN5041Microcontroller programming procedure

AN5041 - Rev 5 page 23/60

Page 24: IO-Link solution based on STEVAL-IDP004V2 master

4. Click [Start] and program the board.The same procedure must be followed to program the STEVAL-IDP003V1, but here it is necessary to selectthe appropriate Slave Node sub folder according to the sensor.

Figure 24. Sensor folder with STEVAL-IDP003V1.hex

4.2 PC interface

Tera Term or Putty HyperTerminal interfaces can be used to perform programming procedures and remote sensordata acquisition using RS-485 interface as well as USB communication. According to the communication chosen,it is necessary to compile different firmware solutions:• once both boards are powered and programmed, connect the dongle (USB-RS485)• connect the serial COM port

Figure 25. COM port connection with Tera Term

AN5041PC interface

AN5041 - Rev 5 page 24/60

Page 25: IO-Link solution based on STEVAL-IDP004V2 master

• Configure the serial communication parameters based on STEVAL-IDP004V2 settings:– Baud rate = 230400– Word length = 8 bit– Stop bits = 1– Parity = NONE– Flow Control = NONE

Figure 26. COM port settings

• Configure Terminal and check the “Local Echo” box

Figure 27. Terminal settings

AN5041PC interface

AN5041 - Rev 5 page 25/60

Page 26: IO-Link solution based on STEVAL-IDP004V2 master

After performing the steps above, you can start communication:1. Send START command2. Digit Master and click enter3. Insert Master IC address using number from 0 to 34. Insert the operating mode in this format:

– WR_C for write current– WR_S for write sequential– RD_C for read current– RD_S for read sequential

5. Based on the operating mode chosen, different information is required:– For WR_C, insert:

a. Register address in decimal formatb. Register value in decimal format with comma character at the endc. A programming completion confirmation should appear

– For WR_S, insert:a. All register values, in three-digit format, with a comma between each value and at the endb. A programming completion confirmation should appear

– For RD_C:a. The L6360 Status register value is shownb. The reading done message appears

6. Following the programming procedure, run the communication with the STEVAL-IDP003V1a. Type the command “COMMAND END”b. Type “DEVICE” and click enterc. Type “IDS” and click enterd. After the sensor responds, type “PRM”e. After sensor responds, either close the communication with the selected sensor with “COMMAND

END”, or digit "COMMAND NEW" and then continue with the “PRM” command for further dataacquisition.

The codeblock below shows an example of STEVAL-IDP004V2 programming.

AN5041PC interface

AN5041 - Rev 5 page 26/60

Page 27: IO-Link solution based on STEVAL-IDP004V2 master

SELECT MASTER OR DEVICEMASTERINSERT ADDRESS IC:0INSERT OPERATING MODE:WR_CINSERT REGISTER ADDRESS:5INSERT REGISTER VALUE:152,PROGRAMMING DONE

COMMAND NEWINSERT ADDRESS IC:0INSERT OPERATING MODE:WR_SINSERT REGISTER VALUE:096,122,033,122,122,122,122, PROGRAMMING DONE

COMMAND NEWINSERT ADDRESS IC:0INSERT OPERATING MODE:RD_C

Status register 128READING DONE

COMMAND NEWINSERT ADDRESS IC:2INSERT OPERATING MODE:WR_CINSERT REGISTER ADDRESS:1INSERT REGISTER VALUE:096,PROGRAMMING DONE

COMMAND NEWINSERT ADDRESS IC:2INSERT OPERATING MODE:RD_SINSERT REGISTER ADDRESS:0Status register 128Configuration register 96Control 1 33Control 2 33LED 1 MSB 0LED 1 LSB 0LED 2 MSB 0LED 2 LSB 0Parity register 128READING DONE

The codeblock below shows an example of STEVAL-IDP004V2 to STEVAL-IDP003V1 communication.

AN5041PC interface

AN5041 - Rev 5 page 27/60

Page 28: IO-Link solution based on STEVAL-IDP004V2 master

SELECT MASTER OR DEVICEDEVICEINSERT SENSOR COMMAND: IDSSENSOR ID: VL6180XCONNECTEDINSERT SENSOR COMMAND: PRMSENSOR ID: VL6180XDISTANCE 46 mmCOMMAND END

SELECT MASTER OR DEVICEDEVICEINSERT SENSOR COMMAND: IDSSENSOR ID: STTS751CONNECTEDINSERT SENSOR COMMAND: PRMSENSOR ID: STTS751TEMPERATURE: 28.7168 Celsius degreeCOMMAND END

SELECT MASTER OR DEVICEDEVICEINSERT SENSOR COMMAND: IDSSENSOR ID: IIS2DHCONNECTEDINSERT SENSOR COMMAND: PRMSENSOR ID: IIS2DHVIBRATION X,Y,Z: 1950Hz 0.13M/s2 ; 1971Hz 0.08m/s2 ; 1950Hz 0.25M/s2 ;COMMAND END

SELECT MASTER OR DEVICEDEVICEINSERT SENSOR COMMAND: IDSSENSOR ID: IIS328DQCONNECTEDINSERT SENSOR COMMAND: PRMSENSOR ID: IIS328DQACCELERATION X,Y,Z: 517, -35, 915, mg

AN5041PC interface

AN5041 - Rev 5 page 28/60

Page 29: IO-Link solution based on STEVAL-IDP004V2 master

5 Functionality test with IO-Link stack

To perform a typical application test on the stack:

Step 1. Connect the STEVAL-IDP003V1 to the STEVAL-IDP004V2 and supply the system using the CON1 onSTEVAL-IDP004V2

Step 2. Open TEConcept Control tool

Step 3. Connect the STEVAL-IDP004V2 to the PC

Step 4. Select the right IODD and supply the STEVAL-IDP003V1 board

Step 5. Connect the Control tool to the STEVAL-IDP004V2 and supply the STEVAL-IDP003V1 (seeSection 5.2 How to use TEConcept Control Tool for details)

Step 6. Flash the firmware related to the sensor board using STM32 ST-LINK Utility

5.1 Microcontroller programming procedure

Follow the microcontroller programing procedure only for the STEVAL-IDP003V1D board, as the STEVAL-IDP004V2 has been already programmed with the IO-Link stack.The steps necessary to program the board through the STM32 ST-LINK Utility are the same as described in theprevious section: the only difference is that the firmware package to use is the version with stack.Once the programming procedure is completed, use TEConcept Control Tool to read and plot the sensormeasured data.

5.2 How to use TEConcept Control Tool

The STEVAL-IDP004V2 with the master stack can be managed by the user via TEConcept Control Tool. Followthe procedure below to enable communication.

Step 1. Connect the STEVAL-IDP004V2 to the PC via USB or RS485 connector

Step 2. Provide the supply voltage to the board

Step 3. Open the Control Tool and select the virtual COM port related to the board in the Comm. port menu

Figure 28. TEConcept Control Tool: virtual COM port selection

AN5041Functionality test with IO-Link stack

AN5041 - Rev 5 page 29/60

Page 30: IO-Link solution based on STEVAL-IDP004V2 master

Step 4. Click on the green button to start communication

Figure 29. TEConcept Control Tool: active connection

Step 5. Click on [Select device]

Figure 30. TEConcept Control Tool: device selection

Step 6. Click [Import] to import the relevant IODD file, and then double click on the IODD to select it

AN5041How to use TEConcept Control Tool

AN5041 - Rev 5 page 30/60

Page 31: IO-Link solution based on STEVAL-IDP004V2 master

Step 7. Click [IO-Link] (on the right) to connect the node and display the plot

Figure 31. TEConcept Control Tool: node connection

Figure 32. TEConcept Control Tool: data plot

AN5041How to use TEConcept Control Tool

AN5041 - Rev 5 page 31/60

Page 32: IO-Link solution based on STEVAL-IDP004V2 master

6 STEVAL-IDP003V1 schematic diagrams

Figure 33. STEVAL-IDP003V1 circuit schematic (1 of 6) - step-down switching regulator

F V

V

F V

R

4

F VR

H

1

3H

4

5 678

V 2

2

9 V 1

_D

F V

F V220 n

R2

50

Vcc

11

NC

OUT2

R1

C1

L7986TR

43

2.

10CC

EXC2 22 µ

D1

Fsw

16

FB

VDFPN10

PA

8V

16

16

5.6k

C4

C6

10

L1

k7

C5

C3

U1

R4

GN

D2 µF

SY

OUT1

50

18n

360

COM

P

470 µ

22 n

EN

R3

CC

82p

5

AN

5041 - Rev 5

page 32/60

AN

5041Schem

atic diagrams

Page 33: IO-Link solution based on STEVAL-IDP004V2 master

Figure 34. STEVAL-IDP003V1 circuit schematic (2 of 6) - vibration sensor

1

6

4

3 2

7

5

9

8

123456789

3v3_Ax

10

C29

12

10

R39

RES

GND_Ax

U2C30

R42 10k

INT2

Interrupt1_Ax

GND3

J5

I2C_SCL_MEMS_Ax

Interrupt1_Ax

10k

GND_Ax

I2C_SDA_MEMS_Ax

GND2

GND_Ax

3v3_Ax

IIS2DH

3v3_Ax

I2C_SCL

11

I2C_SCL_MEMS_Ax

GND1

R40

INT1

Vdd_IO 10uF 6.3V

CS

SA0

3v3_Ax

10k

R41 10k

GN

D_Ax

GND_Ax

CON10A

I2C_SDA_MEMS_Ax

I2C_SDA

I2C_SCL_MEMS_Ax

GND_Ax

100nF 10V

I2C_SDA_MEMS_Ax

Vdd

Interrupt1_Ax

AN

5041 - Rev 5

page 33/60

AN

5041Schem

atic diagrams

Page 34: IO-Link solution based on STEVAL-IDP004V2 master

Figure 35. STEVAL-IDP003V1 circuit schematic (3 of 6) - accelerometer sensor

3v3_A

3v3_A3v3_A

3v3_A

3v3_A

R2910k

U8

IIS328DQ

Vdd_IO14

NC11

NC22

I2C_SCL11

GND16

I2C_SDA16

SA015

CS

12

RES2

4IN

T23

INT1

7

GND28

RES1

13

Vdd5

NC317

NC418

GND39

GND410

NC

721

NC

620

NC

519

NC

1024

NC

923

NC

822

R3010k

J4

CON10A

12345678910

C11

100nF 10V

R33 10k

C24

100nF 10V

R34 10k

C23

10µF6.3V

Interrupt1_A

GND_A

Interrupt1_A

GND_A

I2C_SCL_MEMSI2C_SDA_MEMS

I2C_SDA_MEMS

I2C_SCL_MEMS

GND_A

GND_A

GND_A

GND_A

Interrupt1_AI2C_SDA_MEMSI2C_SCL_MEMS

GND_A

AN

5041 - Rev 5

page 34/60

AN

5041Schem

atic diagrams

Page 35: IO-Link solution based on STEVAL-IDP004V2 master

Figure 36. STEVAL-IDP003V1 circuit schematic (4 of 6) - temperature sensor

1

2

6

3

5

4

1 23 45 67 89

3v3_T

3v3_T

I2C_SCL_THERM

10pF 10V

10K

EVENT

R37 R38

Vdd

10KCON10A

GPIO_THERMI2C_SCL_THERM

20K

Addr/THERM

3v3_T

R31

3v3_T

GPIO_THERMI2C_SDA_THERM

20K

I2C_SDA_THERMC21SDA

J3

U7

STTS751

GND

3v3_T

3v3_T

R32

GPIO_THERM

I2C_SCL_THERM

10I2C_SDA_THERMSCL

Figure 37. STEVAL-IDP003V1 circuit schematic (5 of 6) - proximity sensor3v3_PRX

3v3_PRX

3v3_PRX

R23

47k

C204.7uF 6.3V

R26

47k

U6

VL6180X

GPIO-11

NC12

NC23

GPIO-04

SCL5

SDA6

NC37

AVDD_VCSEL8

AVSS_VCSEL9

AVDD10

NC411

AVSS12

C22

100nF 10V

J6

CON10A

1 23 45 67 89 10

I2C_SCL_PRX

I2C_SDA_PRX

GND_PRX

GND_PRX

I2C_SCL_PRXI2C_SDA_PRX

GND_PRX

GPIO-1_PRX

GPIO-1_PRX GPIO-1_PRXI2C_SDA_PRXI2C_SCL_PRX

GND_PRX

AN

5041 - Rev 5

page 35/60

AN

5041Schem

atic diagrams

Page 36: IO-Link solution based on STEVAL-IDP004V2 master

Figure 38. STEVAL-IDP003V1 circuit schematic (6 of 6) - microcontroller

VL6180X

VDFPN 6

Vcc

Vcc

8V

3v3

3v3-IC

3v3-Ext

3v33v3-Ext

3v3

3v3

3v3

3v33v3

3v3

3v3

3v3-Ext

3v3

3v3 3v3

JP1

CONN AV 4-J

1

4

3

2

D5 RED LED

C31

10pF 10V

R64k7

Y1 24 MHz

SW1

RESET

R13100R

R1010k

R9 10k

R5 22K

C14

47nF 10V

J2

CON10A

1 23 45 67 89 10

R15 100R

R20 2k2

C17

10pF 10V

R74k7

C13100nF 10V

R12100R

D4 NSR05T40P2

R16 100R

C28 100nF 10V

R21 4k7

C27100nF 10V

C910pF

C18

1uF 16V

D2 NSR05T40P2

C16

10pF 10V

D3GREEN LED

C7

10pF

R19 4k7

U3

L6362A

Vdd1

IN12

IN23

EN/DIAG4

OUT/IQ5

OL6

GND7

SEL8

OUTL9

IQ10

OUTH11

Vcc12

C1010pF

J1

CON5

123 4

5

R430

R24 0 N.M.

R18 2k2

C15

10pF 6V

C810pF

C26

100nF 10V

R8 0 N.M.

R27 31.6k 1%

R25100K N.M.

C25

100nF 10V

C19

2.2uF 10V

C12

1uF 50V

R170

U5LDFPUR

PG3

EN5

GND4

ADJ2

Vout1

Vin6

GN

D2

7

R14 100R

R35

0 N.M.

R11 100R

U4

STM32L071x

VDD3B6

PC14

OSC

32_INC

6

PC15

OSC

32_OU

TC

7

NRSTD5

PC13B7

PA4F5

PA1E4

PA2F6

PA3G7

PA0E5

PA5/ADC5G6

PA6/ADC6G5

PA7/ADC7F4

PB0

G4

PB1

D3

VSSD4

VDD

1A7

PA8

D1

PA9/I2C1SC

LE2

PA10/I2C1SD

AC

1

PA11D2

PA12B1

PA13C2

PA14B2

PA15/NSSA2

PB3/SCKA3

PB4/SPI1MISOB3

PB5/SPI1MOSIA4

PB6B4

PB7C3

BOOTA5

PB8B5

PC1C4

PC2

E7VR

EF+

E6

VDDAF7

PB2E3

PB10G

3PB11

F3

VDD

2G

2

PB12G

1PB13

F2PB14

F1PB15

E1

PC6A6

PC0

C5

PH1

OSC

_OU

TD

7

VDD

IO2

A1

PH0

OSC

IND

6

R28 10k 1%

NRST

GND

EN/DIAG

GNDSWDIO SWCLK

NRST

EN/DIAG

I2C_SD

A

I2C_SC

L

SWCLK

SWDIO

Interrupt1

OSC_IN OSC_OUT

OSC

_IN

OSC

_OU

T

I2C_SCL

I2C_SDA

GND

I2C_SCLI2C_SDAInterrupt1

I2C_SCLI2C_SDAInterrupt1

AN

5041 - Rev 5

page 36/60

AN

5041Schem

atic diagrams

Page 37: IO-Link solution based on STEVAL-IDP004V2 master

7 STEVAL-IDP003V1 bill of materials

Table 3. STEVAL-IDP003V1 evaluation board bill of materials

Item Q.ty Ref. Part/Value Description Manufacturer Order code

1 2 C1 22 µF 10 V ±20% SMD0805

X5R ceramiccapacitor Any Any

2 1 C2 2.2 µF 50 V ±20% SMD0805

X7R ceramiccapacitor Any Any

3 1 C3 220 nF 50 V ±10% SMD0603

X7R ceramiccapacitor Any Any

4 1 C4 22 nF 16 V ±10% SMD0402

X7R ceramiccapacitor Any Any

5 1 C5 82 pF 16 V ±10% SMD0402

X7R ceramiccapacitor Any Any

6 1 C6 18 nF 16 V ±10% SMD0402

X7R ceramiccapacitor Any Any

7 1 C12 1 µF 50 V ±10% SMD 0805 X7R ceramiccapacitor Any Any

8 1 C14 47 nF 16 V ±10% SMD0402

X7R ceramiccapacitor Any Any

9 1 C18 1 µF 16 V ±10% SMD 0603 X7R ceramiccapacitor Any Any

10 1 C19 2.2 µF 10 V ±10% SMD0603

X7R ceramiccapacitor Any Any

11 6

C7, C8,C9,C10,C15,C16,C17,C31

10 pF 10 V ±5% SMD 0402 C0G ceramiccapacitor Any Any

12 5

C13,C25,C26,C27,C28

100 nF 10 V ±10% SMD0402

X7R ceramiccapacitor Any Any

13 1 D1 STPS1L60MF STmite flat(DO222-AA)

Low drop powerSchottky rectifier inflat package

ST STPS1L60MF

14 1 D5 2.3 V SMD 0603 Red LED Any Any

15 1 D3 2.3 V SMD 0603 Green LED Any Any

16 2 D2, D4 NSR05T40P2 SOD-923 Schottky barrierdiode

OnSemiconductors NSR05T40P2T5G

17 1 JP1 M12 connector male TH Binder 9043121204

18 1 J1 CON5 TH 5 way stripline male,pitch 1.27mm Harwin Inc. M52-040023V0545

19 1 J2 CON5 TH10 way stripline maledouble row, pitch1.27mm

Harwin Inc. M50-3200545

20 1 L1 470 µH 140 mA SMD Inductor TDK VLCF4028T-471MR14-2

21 1 R1 43 R ±1% SMD 0402 SMD Resistor Any Any

AN5041STEVAL-IDP003V1 bill of materials

AN5041 - Rev 5 page 37/60

Page 38: IO-Link solution based on STEVAL-IDP004V2 master

Item Q.ty Ref. Part/Value Description Manufacturer Order code

22 5

R6, R7,R2,R19,R21

4.7 k ±1% SMD 0402 SMD Resistor Any Any

23 1 R3 5.6 k ±1% SMD 0402 SMD Resistor Any Any

24 1 R4 360 R ±1% SMD 0402 SMD Resistor Any Any

25 3R9,R10,R28

10k ±1% SMD 0402 SMD Resistor Any Any

26 2 R18,R20 2k2 ±1% SMD 0402 SMD Resistor Any Any

27 1 R27 31.6 k ±1% SMD 0402 SMD Resistor Any Any

28 6

R11,R12,R13,R14,R15,R16

100 R ±1% SMD 0402 SMD Resistor Any Any

29 2 R17,R35 0 E ±1% SMD 0402 SMD Resistor Any Any

30 3R8,R24,R43

0 E ±1% SMD 0402 SMD Resistor Any Any

31 1 R25 100 k ±1% SMD 0402 SMD Resistor Any Any

32 1 R5 22 k ±1% SMD 0603 SMD Resistor Any Any

33 1 SW1 RESET SMD Micro switch C & K KMR221GLFS

34 U1 L7986TR VFQFPN10 3 x 3mm

3 A step-downswitching regulator ST L7986TR

35 1 U3 L6362A DFN12 3x3mmIO-Linkcommunicationtransceiver device IC

ST L6362ATR

36 1 U4 STM32L071CZY6WLCSP49

Access line ultra-low-power 32-bit MCU ST STM32L071CZY6

37 1 U5 LDFPUR DFN6 3x3mm 1 A very low dropvoltage regulator ST LDFPUR

38 1 Y1 24MHZ SMD 2.50x2.00 mm Crystal Abracon LLC ABM10AIG-24.000MHZ-4Z-T3

AN5041STEVAL-IDP003V1 bill of materials

AN5041 - Rev 5 page 38/60

Page 39: IO-Link solution based on STEVAL-IDP004V2 master

Table 4. Sensor board bill of materials

Item Q.ty Ref. Part / Value Description Manufacturer Order code

1 4 C11, C22, C24,C29

100 nF 10 V ±10% SMD0402 X7R ceramic capacitor Any Any

2 1 C20 4.7 µF 6.3 V ±10% SMD0603 X5R ceramic capacitor Any Any

3 1 C21 10 pF 6.3 V ±10% SMD0402 X7R ceramic capacitor Any Any

4 2 C23,C30 10 µF 6.3 V ±10% SMD0603 X5R ceramic capacitor Any Any

5 4 J3, J4, J5, J6 CON5 TH 5x2 way stripline male, pitch1.27mm Any Any

6 10

R29, R30, R33,R34, R37, R38,R39, R40, R41,R42

10 k ±1% SMD 0402 SMD Resistor Any Any

7 2 R23, R26 47 k ±1% SMD 0402 SMD Resistor Any Any

8 2 R31, R32 20 k ±1% SMD 0402 SMD Resistor Any Any

9 1 U2 IIS2DH LGA-123-axis digital accelerometer, ultralow-power high performanceMEMS motion sensor

ST IIS2DHTR

10 1 U6 VL6180X OPTICALLGA12

Proximity sensor, gesture andambient light sensing (ALS)module

ST VL6180XV0NR/1

11 1 U7 STTS751 UDFN-6L U2.25 V low-voltage local digitaltemperature sensor ST STTS751-1DP3F

12 1 U8 IIS328DQ QFN 24

3-axis accelerometer forindustrial applications, SPI/I2Cdigital output, ultra low-powerhigh performance

ST IIS328DQTR

AN5041STEVAL-IDP003V1 bill of materials

AN5041 - Rev 5 page 39/60

Page 40: IO-Link solution based on STEVAL-IDP004V2 master

8 STEVAL-IDP004V2 schematic diagrams

Figure 39. STEVAL-IDP004V2 circuit schematic (1 of 11)

IRQ_M1

C94

Rese t_M0

22pF/10V

C97 C98

ENCQ_M0

Reset_M1

22pF/10V

ENL+_M1

22pF/10VC95C99

IRQ_M0

C92

ENCQ_M1

22pF/10V

C96

ENL+_M0

22pF/10V 22pF/10V22pF/10V

C93 22pF/10V

C101

ENL+_M2

C104

ENCQ_M2

C10322pF/10V

Rese t_M2

22pF/10V 22pF/10V22pF/10VC102 C106

IRQ_M2

22pF/10V 22pF/10VC100

ENCQ_M3

C10522pF/10V

Rese t_M3

IRQ_M3

C10722pF/10V

ENL+_M3

AN

5041 - Rev 5

page 40/60

AN

5041STEVA

L-IDP004V2 schem

atic diagrams

Page 41: IO-Link solution based on STEVAL-IDP004V2 master

Figure 40. STEVAL-IDP004V2 circuit schematic (2 of 11)

L+_CON_M0

2

IQ_CON_M0

5

4

JR4

RS:464-8000Binder 99-3431-202-04Serie 713/763

CQO_CON_M0L-_M0

Master_M0

31

Vdd_M0

Vdd_M1

Vdd_M2

Vdd_M3

Vdd_M1Vdd_M0

Vdd_M2

Vdd_M3

4

3

JR2

L-_M2

2

IQ_CON_M2L+_CON_M2 1

Master_M2

5CQO_CON_M2

JR3

4 Master_M1

CQO_CON_M12

1

L-_M1

IQ_CON_M1L+_CON_M1

5

3

3

Master_M3

CQO_CON_M3

2

IEC 60947-5-2

JR1

L+_CON_M3

L-_M3 5

4

IQ_CON_M31

AN

5041 - Rev 5

page 41/60

AN

5041STEVA

L-IDP004V2 schem

atic diagrams

Page 42: IO-Link solution based on STEVAL-IDP004V2 master

Figure 41. STEVAL-IDP004V2 circuit schematic (3 of 11)

D20 LED

R54 680R

R56 680RR55 680R

R50 680R

R53 680R

R59 680R

D18 LED

D9 LED

D12 LED

D17 LED

R60 680R

D13 LED

R58 680R

D14 LED

R49 680R

R52 680R

R57 680R

D11 LED

D19 LED

D16 LEDD15 LED

D10 LED

R51 680R

LED1_M0

LED2_M0 Vdd_M0

LED1_M1

LED2_M1 Vdd_M1

LED1_M2

LED2_M2 Vdd_M2

LED1_M3

LED2_M3 Vdd_M3

AN

5041 - Rev 5

page 42/60

AN

5041STEVA

L-IDP004V2 schem

atic diagrams

Page 43: IO-Link solution based on STEVAL-IDP004V2 master

Figure 42. STEVAL-IDP004V2 circuit schematic (4 of 11)

L-_M3

L-_M1L+_CON_M1

L-_M0

CQO_CON_M3

SPT01-335DEE / Package: QFN(dim. 3.0x3.0 mm)

9

TR1

IC-SPT01-335DEE

2

L+_CON_M2TR4

34

L+_CON_M3TR3

A

7

58

2

CQO_CON_M1

16

IC-SPT01-335DEE

58

2

TR2

16

34

LS

V+

L-_M2

16

IC-SPT01-335DEE

CQO_CON_M234

9

IC-SPT01-335DEE

9

58

2

34

IQ_CON_M0

58

16

IQ_CON_M1

IQ_CON_M3

CQO_CON_M0

IQ_CON_M2

L+_CON_M0

9

7

7

7

HS

HS LSLS

LSHS

HS

K

A K

K

K

A

A

V+V+

V+

V-

V-

V-

V-

AN

5041 - Rev 5

page 43/60

AN

5041STEVA

L-IDP004V2 schem

atic diagrams

Page 44: IO-Link solution based on STEVAL-IDP004V2 master

Figure 43. STEVAL-IDP004V2 circuit schematic (5 of 11)

100nF/100V

SDA

R17 150R

R11 150RL-

21

Master M0

C9R19 150R

VH_CON

124K

0,1

%

D1STPS1L40M

C6STPS1L40M

14

13

IRQ_M0

Reset_M0 Vdd_

M0

OUTIQ_M0

19LED1

7

CQi_M0

C10

17

SCL

560pF/100V

C2

100nF/100V

8

L-2

18

5

L-_M0

C12

R3 150R

10IN C/Qo

11

ENCQ_M0

R4100R

LED1_M0

SCL

Vcc

Rbias

I/Q24

C/Qo26

L+23

Vcc

R15 150R

D2

C13

2.2µF/10VR22 150R

22

25C/Qi

R9 150R

L+_CON_M0

R13 150R

R23

OUT C/Qi

12

SA2

IRQ

Sel

1

C1

20LED2 100nF/100V

+

IQ_CON_M0

CQO_CON_M0

LED2_M0

ENL+_M0

C5

100nF/100V

CQo_M0

560pF/100V

EP27

R6 15R

SA1

6

VH3

15

SA0

4Vdd

OUT I/Q

SDA16

R1161R

R2 150R

10µF 50V

L6360DR1

EN_CQ

RST

EN_L+

9

Vcc

AN

5041 - Rev 5

page 44/60

AN

5041STEVA

L-IDP004V2 schem

atic diagrams

Page 45: IO-Link solution based on STEVAL-IDP004V2 master

Figure 44. STEVAL-IDP004V2 circuit schematic (6 of 11)

R20 150R R21

CQo_M1

IQ_CON_M1

EP27

Master M1

6

LED1

7

VH_CON

100nF/100V

R1 150R

R14 150R

D4 C7

SA0

R24 150R

LED1_M1

IRQ_M1

10IN C/Qo

C14

LED2_M1

R1171R

STPS1L40M

L-_M1

R8 15R

ENL+_M1

EN_CQ

RST17

560pF/100V

L+_CON_M1

OUT I/Q

SDA

SA2

IRQ14

R7 100R

R18 150R

STPS1L40M

Rbias

I/Q

21

2L-

560pF/100V

C/Qo26

L+

C8D3

CQi_M1

+

Vdd_M1

R12 150RENCQ_M1

CQO_CON_M1

10µF 50V

Vcc

C3

19

100nF/100V

C16

124K

0.1

%

Vdd_M1

22

C17

25C/Qi

13EN_L+

9

R5 150R

2.2µF/10V100nF/100V

R10 150R

Reset_M1

SCL

SDA

R16 150R8

Sel

11OUT C/Qi

12

100n

F/10

0V

C18

3VH

L6360DR2

C4

Vcc

20LED2

16

SCL15

23

18

5SA1

1Vcc

24

L-

4Vdd

AN

5041 - Rev 5

page 45/60

AN

5041STEVA

L-IDP004V2 schem

atic diagrams

Page 46: IO-Link solution based on STEVAL-IDP004V2 master

Figure 45. STEVAL-IDP004V2 circuit schematic (7 of 11)

18

5SA1

23

SA2

IRQ

SDA

Vdd_M2

10IN C/Qo

11

EP27

Master M2

R27 100R

21

2L-

100n

F/10

0V

VH_CON

24

L-

C19

Rbias

I/Q

STPS1L40M

Vdd_M2

STPS1L40M

12OUT I/Q

SDA

R43 150R

Vdd

3VH

+

R39 150R

C24

IRQ_M2

Reset_M2R47 150R

OUTIQ_M2

L-_M2

LED2

CQi_M2

LED1_M2

R44

R37 150R

16

SCL

R33 150R

R31 15R

14

13

22

2.2µF/10V

C28

10µF 50V

ENCQ_M2

LED2_M2

Sel

1

CQO_CON_M2

SCL

LED119

7

124K

0.1

%

Vcc

C30

8

L+_CON_M2

D6 D5

4

560p

F/10

0V

100n

F/10

0V

25C/Qi

OUT C/Qi

VccVcc

R35 150R

20C27

560pF/100V

ENL+_M2

C20

R41 150R

100nF/100V

C/Qo26

L+

CQo_M2

IQ_CON_M2

6

100n

F/10

0V

EN_CQ

RST17

R1151R

EN_L+

9

L6360DR3

R25 150R

C23

15

SA0

R28 150R

C31

AN

5041 - Rev 5

page 46/60

AN

5041STEVA

L-IDP004V2 schem

atic diagrams

Page 47: IO-Link solution based on STEVAL-IDP004V2 master

Figure 46. STEVAL-IDP004V2 circuit schematic (8 of 11)

CQO_CON_M3

17

20LED2

CQo_M3

Master M3

8Sel

6

SCL

STPS1L40MC26

7

VH_CON

C21

19LED1

C33

15

SA018

100nF/100V 100nF/100V

560pF/100V

L6360

R36 150R

SCL

Reset_M3

SDA

LED1_M3

IRQ_M3

EP27

C32ENL+_M3

C/Qi25

124K

0.1

%

Vcc

13EN_L+

9

1Vcc

2.2µF/10V

R26 150R

R42 150R

LED2_M3

R1141R

R30 100R

CQi_M3

DR4

EN_CQ

RSTR48 150R

ENCQ_M3

C/Qo26

L+23

Vcc

Rbias

I/Q

OUT I/Q

SDA16

Vdd

VH3

R38 150R

10IN C/Qo

100nF/100V

R29 150R

R40 150R

L-_M3

5SA1

C35

560p

F/10

0V

C36

SA2

IRQ14

R34 150R

24

L-21

Vdd_M3

L+_CON_M3

IQ_CON_M3

10µF 50V

C22+

100n

F/10

0V

OUTIQ_M3

R45 150R R46

22

R32 15R

C25

4

L-2

STPS1L40MD8

11OUT C/Qi

12

D7

Vdd_M3

AN

5041 - Rev 5

page 47/60

AN

5041STEVA

L-IDP004V2 schem

atic diagrams

Page 48: IO-Link solution based on STEVAL-IDP004V2 master

Figure 47. STEVAL-IDP004V2 circuit schematic (9 of 11)

Vcc

383R

Not Mounted1.2mH 1ohm 400mA

11k

C80

L7986A

1OUT

15µF/16VSYNCH

EN3

C76

8V

R15343R

C79

VH_C

ON

0R

R127

STPS1L40

R126

CO

MP

5FB

Vcc

18nF/16V

Fsw

7

C75

82pF/16V R125

8 VCC

4.7k

GN

D1

U1

0R D29

2

C78

22nF/16V

C77

R124

6

GN

D22.2µF/50V

220nF/50V

R128L4

L-_M0

C37

RS:533-0609KEMET PME295RB4470MR30

Not Mounted

L-_M3

do not mount TP1

4.7n

F 4k

V

L-_M2

L-_M1

TP1

STPS1H100A

C38

EMC TEST

4.7n

F 4k

V

SM15T33CA

D28

36V max

EARTH

EMC test only -1

Vcc

Ground

Not Mounted

1

D212Main Voltage

CON1

49

AN

5041 - Rev 5

page 48/60

AN

5041STEVA

L-IDP004V2 schem

atic diagrams

Page 49: IO-Link solution based on STEVAL-IDP004V2 master

Figure 48. STEVAL-IDP004V2 circuit schematic (10 of 11)

PB861

R163

R17

1

100R

NRST

38

100R

CQi_M0

16

100R

100n

F/10

V

CQo_M3

31

PC1

PC2

ENL+_M1

100

VDD

A

LED_M2

CAN_SHDN

R91

C73

PB11 I2C2_SDA

2

63

C70

100

100R

BUS_IND_RX

C72

R80

2.2uF/10V

R92

Package: LQFP64

OUTIQ_M2

100R

SWDIOOSC_OUTOSC_IN

CQi_M3

10

PC0

9

BUS_IND_TX

IRQ_M3

CAN_RS

4

VBAT

44PA

11

Reset_M3

STM32F205RBTx

1µF/

10V

U7

PA12

45

R161

VSS_

3

13

R67

100R

37PC

7

100R

OUTIQ_M3

5

100n

F/10

V

100n

F/10

V

100R

R98

Vdd

PA8

100

SDA

LED_M0

8

12VS

SA

100R

62

PB1536

IRQ

_M2

USB_DMUSB_DP

Reset_M2

100R

100

PH1-OSC_OUT

53

NRST

PC14-OSC32_IN

46

C66

18

R162

6

10K

PC12(UART5_TX)

55PB3(JTDO)

56

100R

C91

PA2(USART2_TX)

29

100R

R82

OUTIQ_M1

R107

100R

R159

41PA

723

C68

17

PB12PC11(USART4_RX)

R86

R11

8

PA13

PA1449

54PD2(UART5_RX)

6

100n

F/10

V

SCL

ST3485DE

2.2uF/10V

100R

ENL+

_M0

USER_Vbus

PC9

LED_M3

ST3485RE

100R

R173

PB127

43PA10(USART1_RX)

100

5

51PC10(USART4_TX)

50

PB10 I2C2_SCL 30

17

OUTIQ_M0

100R

R17

0

R83

R81

C69

PA6

PA3(USART2_RX)

16

NRST

R156

PC5

25

R178

100R

R78

LED_M1

R88

40

PC839

ENL+

_M2

100R

R109

C67

IRQ_M0

R84

100R

CAN_RX

PB4(NJTRST)

R77

PC6

33

8

12

100R

SWDIO

22

PA5

R11

9

58

100R

100R

64

R17

2

IRQ

_M1

100R

R113

VDD

_1

1415

R168

VCAP

_1

48

7

1

100R

PB557

ENL+

_M3

ENCQ_M0

CAN_TX

CAN_RX

42 100R100R

47

4.7µ

F/10

V

R94

100R

R155

BOO

T0

52

26

4

R169

C71

PA15(JTDI)

21PA

420

CAN_TX 100R

20

7

100R

R97

11PC

424

100R

R106

9

ENCQ_M3

VDD

_2

R68

ENC

Q_M

1

18VS

S_4

R160

PC13-TAMPER-RTC14

59PB

7(I2

C1_

SDA)

60

100R

J4

CQo_M1

13

CQi_M2

3

STM32F205RBTx

STLink/V2

Reset_M0

PA0-WKUPPA1

15

PB1435R164

PB0

R179

100R

Vdd

19

SWCLK

PB6(

I2C

1_SC

L)

PC15-OSC32_OUT3

10PC

3

100n

F/10

V

CQo_M0

Reset_M1

100R

R72

PH0-OSC_IN

VCAP

_2

32

100R

PB228

100R

ENCQ_M2

19VD

D_4

1

PA9(USART1_TX)

SWCLK

CQi_M1

CQo_M2

2

100R

R79 100R

VDD

_3

R70

R90

PB1334

11

R177

100R

R154

C90

100R

R85

100n

F/10

V

PB9

AN

5041 - Rev 5

page 49/60

AN

5041STEVA

L-IDP004V2 schem

atic diagrams

Page 50: IO-Link solution based on STEVAL-IDP004V2 master

Figure 49. STEVAL-IDP004V2 circuit schematic (11 of 11)

4

ACT45B-101-2P

R105

C74

VBus4 USB_DP

Vdd_M2

2

Vdd

Vdd

47pF/10V

R146

430R

ST3485DE

162738495

10K

2

C62

1

5GND

TDK

SHDN

0R

CAN_RS

OSC_OUT

3

OSC_IN

CAN_SHDN CAN

CO

NN

ECTO

R

60.4R

R111

Vdd

4K7

R104

4DI

C65

MAX3051

BUS_IND_TX

500R

USB_DM

CANL

Common Mode Choke

22pF/10V

0R

162738495

ST3485RE

Vdd_M0

D25

Vdd

R165 0R

R184

C84

22pF/10V

U10

LED

GND5

R175

TXD2

U4

R176 1.5K

3

BUS_IND_RX

J5

R120

USB_DP

MASTER Status LEDs

D31

CANH

CANLGNDCANL

CANH

D24

USB_DM

120R

BC848C

430RY116MHz

R181

60.4R

CAN_RX

ST3485EI

C108

A6

1

500R

R174

22pF

R167 100k

LED

R183

LED_M3

GND3

VCC

36K

100nF/10V

C63

R147

4

optional

to be placed close to STM32F103R

CHOKE CM

LEDLED_M0

CANH

C54

N.M.

USER_Vbus

10K

R182

USB_DP

CAN_TX

5GND

C64100nF/10V

USBLC6-2SC6Y

430R

4RXD

MH

2

IO2_IN

1

47pF/10V

MH

1

IO1_IN2

2

D27NRST

R121

7

4ID

R112390R

5V

8Vcc

R102

3

RE

P1

10nF/10V

5V

1

2

430R

R180

LED_M2

U9

R148

Vdd

Vdd

Vdd

LED

CANH

6

5

CN1

Vdd_M3

5V

B7

1RESET.

R103

CONN USB

TP8

R166 0R10K

RO1

Q1

VBUSDM

2

1

L1

R108 4K7

IO2_OUT

6

TP9

LED_M1

R110 10K

C83

S1

MH1MH2

1

8R

S

IO1_OUT

1

CANL

USB_DM

RS485

2

SCL

1

Vdd_M1

D26

SDA

Vdd

DE3

3DP

22pF

ESDCAN24

AN

5041 - Rev 5

page 50/60

AN

5041STEVA

L-IDP004V2 schem

atic diagrams

Page 51: IO-Link solution based on STEVAL-IDP004V2 master

9 STEVAL-IDP004V2 bill of materials

Table 5. STEVAL-IDP004V2 bill of materials

Item Q.ty Ref. Part/Value Description Manufacturer Order code

1 1 CN1 RS485 TH DB9 femaleconnector Any Any

2 1 CON1 Main voltage TH Two-way screwconnector Any Any

3 1 J4 TH 20-way male IDCconnector Any Any

4 4 C1, C3, C19, C21 10 µF 50 V ±20% TH Electroliticcapacitor Rubycon 50YXF10MEFC5X11

5 24

C2, C4, C9, C10,C13, C14,C16,C18, C20, C22,C27, C28, C31,C32, C33, C36,C64, C68, C69,C70, C71, C72,

C73, C108

100 nF 50 V ±5% SMD0603 X7R Ceramic capacitor Murata GRM188R71H104JA93D

6 8C5, C6, C7, C8,C23, C24, C25,

C26

560 pF 50 V ±5% SMD0603 C0G Ceramic Capacitor Murata GRM1885C1H561JA01D

7 6 C12, C17, C30,C35, C66, C67

2.2 µF 10 V ±10% SMD0805 X7R Ceramic Capacitor Any Any

8 2 C37, C38 4.7 nF 4 kV THSingle layer

ceramic capacitor(not mounted)

Vishay / BCComponents VY1472M63Y5UQ63V0

9 20

C54, C62, C63,C65, C92, C93,C94, C95, C96,C97, C98, C99,

C100, C101, C102,C103, C104, C105,

C106, C107

22 pF 50 V ±5% SMD0603 C0G Ceramic capacitor Any Any

10 1 C74 10 nF 10 V ±10% SMD0603 X7R Ceramic capacitor Any Any

11 1 C75 2.2 µF 50 V ±10% SMD1206 X7R Ceramic capacitor Any Any

12 1 C76 82 pF 25 V ±5% SMD0805 C0G Ceramic capacitor Any Any

13 1 C77 18 nF 16 V ±10% SMD0603 X7R Ceramic capacitor Any Any

14 1 C78 22 nF 16 V ±10% SMD0603 X7R Ceramic capacitor Any Any

15 1 C79 15 µF 16 V ±20% SMD1210 X7R Ceramic capacitor Any Any

16 1 C80 220 nF 50 V ±10% SMD0603 C0G Ceramic capacitor Any Any

17 2 C83, C84 47 pF 25 V ±5% SMD0603 Ceramic capacitor Any Any

18 1 C90 1 µF 10 V ±10% SMD0603 Ceramic capacitor Any Any

AN5041STEVAL-IDP004V2 bill of materials

AN5041 - Rev 5 page 51/60

Page 52: IO-Link solution based on STEVAL-IDP004V2 master

Item Q.ty Ref. Part/Value Description Manufacturer Order code

19 1 C91 4.7 µF 10 V ±10% SMD0805 Ceramic capacitor Any Any

20 4 DR1, DR2, DR3,DR4

VFQFPN-26L 3.5 x 5 x 1mm

IO-Linkcommunicationmaster transceiverIC

ST L6360

21 16

D9, D10, D11,D12, D13, D14,D15, D16, D17,D18, D19, D20,D24, D25, D26,

D27

LED SMD 0603 Green LED Any Any

22 1 D21 SMC Transil Diode 1500W ST SM15T33CA

23 1 D28 SMA High voltage PowerSchottky rectifier ST STPS1H100A

24 1 D29 SMA Low drop PowerSchottky rectifier ST STPS1L40A

25 1 D31 ESDCAN24 SOT23-3L

Automotive dual-line Transil,

transient voltagesuppressor (TVS)

for CAN bus

ST ESDCAN24-2BLY

26 8 D1, D2, D3, D4,D5, D6, D7, D8 STPS1L40M Stmite Low drop Power

Schottky rectifier ST STPS1L40M

27 4 JR1, JR2, JR3,JR4 Master TH

M12, 5 pin femaleconnector, right

angleNorcomp Inc. 861-005-213R004

28 1 J5 CONN USB Micro-USBA/B USB connector Molex 475900001

29 1 L1 CHOKE CM Choke TDK ACT45B-101-2P-TL003

30 1 L4 1.2mH 1 Ohm TH Inductor WurthElektronik 7447480122

31 1 P1 CAN connector TH DB9 maleconnector Any Any

32 1 Q1 BC848C SOT-23 NPN transistor Infineon BC848C

33 36

R1, R2, R3, R5,R9, R10, R11,

R12, R13, R14,R15, R16, R17,R18, R19, R20,R22, R24, R25,R26, R28, R29,R33, R34, R35,R36, R37, R38,R39, R40, R41,R42, R43, R45,

R47, R48

150 R SMD 0603 100mW Resistors Any Any

AN5041STEVAL-IDP004V2 bill of materials

AN5041 - Rev 5 page 52/60

Page 53: IO-Link solution based on STEVAL-IDP004V2 master

Item Q.ty Ref. Part/Value Description Manufacturer Order code

34 46

R4, R7, R27, R30,R67, R68, R70,R72, R77, R78,R79, R80, R81,R82, R84, R86,R88, R90, R91,R92, R94, R97,

R98, R106, R107,R109, R113, R118,R119, R154, R155,R156, R159, R160,R161, R162, R163,R164, R168, R169,R170, R171, R172,R177 ,R178, R179

100 R SMD 0603 100mW Resistors Any Any

35 2 R83, R85 100R SMD 0603 100 mW Resistors Any Any

36 4 R6, R8, R31, R32 15 R SMD 0805 500 mW Resistors Any Any

37 4 R21, R23, R44,R46

124 K 0.1% SMD 0603100 mW Resistors Any Any

38 12

R49, R50, R51,R52, R53, R54,R55, R56, R57,R58, R59, R60

680 R SMD 0603 100mW Resistors Any Any

39 4 R102, R103, R104,R105

430 R SMD 0603 100mW Resistors Any Any

40 3 R108, R111, R124 4 K7 SMD 0603 100 mW Resistors Any Any

41 5 R110, R173, R174,R180, R181 10 k SMD 0603 Resistors Any Any

42 1 R125 11 K SMD 0603 100 mW Resistors Any Any

43 1 R112 390 R SMD 0603 100mW Resistors Any Any

44 4 R114, R115, R116,R117 1 R SMD 0603 100 mW Resistors Any Any

45 2 R120, R121 60.4 R SMD 0603 100mW Resistors Any Any

46 1 R126 383 R SMD 0603 100mW Resistors Any Any

47 5 R127, R147, R165,R166, R182 0 R SMD 0603 100 mW Resistors Any Any

48 1 R128 0 R SMD 0603 100 mW Resistor (notmounted) Any Any

49 1 R146 120 R SMD 0603 100mW Resistor Any Any

50 1 R148 SMD 0603 100 mW Resistor (notmounted) Any Any

51 1 R153 43 R SMD 0603 100 mW Resistor Any Any

52 1 R167 100 K SMD 0603 100mW Resistor Any Any

53 1 R175 36 K SMD 0603 100 mW Resistor Any Any

54 1 R176 1.5 K SMD 0603 100 mW Resistor Any Any

55 2 R183, R184 500 R SMD 0603 100mW Resistors Any Any

AN5041STEVAL-IDP004V2 bill of materials

AN5041 - Rev 5 page 53/60

Page 54: IO-Link solution based on STEVAL-IDP004V2 master

Item Q.ty Ref. Part/Value Description Manufacturer Order code

56 1 S1 RESET SMD MICRO SWITCH6x6mm TE Connectivity 4-1437565-1

57 3 TP1, TP8, TP9 TEST POINT Copper area testpoint (not mounted) Any Any

58 4 TR1, TR2, TR3,TR4

SPT01-335DEE QFN 3x36+3 lead

Automation sensortransient andovervoltageprotection

ST SPT01-335DEE

59 1 U1 L7986A HSOP8 3 A step-downswitching regulator ST L7986A

60 1 U4 ST3485EI SO-8

3.3 V powered, 15kV ESD protected,

up to 12 MbpsRS-485/RS-422

transceiver

ST ST3485EIDT

61 1 U7 STM32F205RBT7LQFP64

High-performanceARM Cortex-M3MCU with 128Kbytes Flash

ST STM32F205RBT7

62 1 U9 MAX3051 SO8 CAN transceiver Maxim MAX3051ESA+

63 1 U10 USBLC6-2SC6YSOT23-6L

Automotive verylow capacitanceESD protection

ST USBLC6-2SC6Y

64 1 Y1 16 MHz SMD Crystal oscillator Any Any

AN5041STEVAL-IDP004V2 bill of materials

AN5041 - Rev 5 page 54/60

Page 55: IO-Link solution based on STEVAL-IDP004V2 master

Revision history

Table 6. Document revision history

Date Version Changes

05-Oct-2017 1 Initial release.

06-Jun-2018 2

Updated Section 6 STEVAL-IDP003V1 bill of materials, Figure 5. STEVAL-IDP004V1D powermanagement schematic, Figure 6. RS-485, USB and CAN interface, Section 7 STEVAL-IDP004V1schematic diagrams, Section 8 STEVAL-IDP004V1 bill of materials, Figure 18. STEVAL-IDP004V1evaluation firmware project related to RS-485 implementation, Figure 22. Master Node folder withSTEVAL-IDP004V1.hex, Figure 23. Sensor folder with STEVAL-IDP003V1.hex, Figure 24. COM portconnection with Tera Term, Figure 25. COM port settings, Figure 26. Terminal settings and Figure 28.STEVAL-IDP004V1 - STEVAL-IDP003V1 communication example.

27-Jun-2018 3 Updated Figure 1. STEVAL-IDP004V1 master evaluation board and Figure 3. STEVAL-IDP004V1functional blocks.

02-Dec-2019 4

Updated title, Introduction, Section 1.1 STEVAL-IDP004V2 master hub overview, Section 1.2.1STEVAL-IDP003V1D evaluation board, Section 3 Firmware description and Figure 18. STEVAL-IDP004V2 evaluation firmware project related to RS-485 implementation.

Added Section 3.1 STSW-IO-LINK firmware package description, Section 3.2 Firmware package withIO-Link stack implementation, Section 3.2.1 Firmware package for STEVAL-IDP004V2, Section 3.2.2Firmware package for STEVAL-IDP003V1, Section 5 Functionality test with IO-Link stack, Section 5.1Microcontroller programming procedure, Section 5.2 How to use TEConcept Control

Tool, Section 8 STEVAL-IDP004V2 schematic diagrams and Section 9 STEVAL-IDP004V2 bill ofmaterials.

01-Oct-2020 5 Updated Section 3.2.2 Firmware package for STEVAL-IDP003V1.

AN5041

AN5041 - Rev 5 page 55/60

Page 56: IO-Link solution based on STEVAL-IDP004V2 master

Contents

1 Hardware description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3

1.1 STEVAL-IDP004V2 master hub overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.1 Power management and protection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.1.2 RS-485, USB and CAN interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.1.3 Master IO-Link ports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1.4 STEVAL-IDP004V1 Connectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2 STEVAL-IDP003V1 kit overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2.1 STEVAL-IDP003V1D evaluation board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2.2 Power management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2.3 Device IO-Link port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.2.4 IO-Link transceiver description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.2.5 Sensor boards. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.2.6 connector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 EMC test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14

2.1 Burst test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 Surge test in differential mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 ESD test in contact discharge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 Firmware description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17

3.1 STSW-IO-LINK firmware package description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1.1 STEVAL-IDP004V2 evaluation firmware description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1.2 STEVAL-IDP003V1 evaluation firmware description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2 Firmware package with IO-Link stack implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2.1 Firmware package for STEVAL-IDP004V2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2.2 Firmware package for STEVAL-IDP003V1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4 Functionality test with customized protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22

4.1 Microcontroller programming procedure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.2 PC interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5 Functionality test with IO-Link stack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29

5.1 Microcontroller programming procedure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.2 How to use TEConcept Control Tool. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

AN5041Contents

AN5041 - Rev 5 page 56/60

Page 57: IO-Link solution based on STEVAL-IDP004V2 master

6 STEVAL-IDP003V1 schematic diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32

7 STEVAL-IDP003V1 bill of materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37

8 STEVAL-IDP004V2 schematic diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40

9 STEVAL-IDP004V2 bill of materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .51

Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55

AN5041Contents

AN5041 - Rev 5 page 57/60

Page 58: IO-Link solution based on STEVAL-IDP004V2 master

List of figuresFigure 1. STEVAL-IDP004V2 master evaluation board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1Figure 2. STEVAL-IDP003V1 kit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2Figure 3. STEVAL-IDP004V2 functional blocks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3Figure 4. STEVAL-IDP004V2 block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4Figure 5. STEVAL-IDP004V2 power management schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4Figure 6. RS-485, USB and CAN interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5Figure 7. STEVAL-IDP004V2 connector drawings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7Figure 8. STEVAL-IDP003V1 block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7Figure 9. STEVAL- IDP003V1D main components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8Figure 10. STEVAL-IDP003V1D power management schematic (1 of 3) - DC-DC converter. . . . . . . . . . . . . . . . . . . . . . . 9Figure 11. STEVAL-IDP003V1D power management schematic (2 of 3) - linear regulator . . . . . . . . . . . . . . . . . . . . . . . . 9Figure 12. STEVAL-IDP003V1D power management schematic (3 of 3) - IO-Link transceiver . . . . . . . . . . . . . . . . . . . . 10Figure 13. Sensor daughter boards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11Figure 14. STEVAL-IDP003V1D connector drawings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13Figure 15. Burst test setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14Figure 16. Surge test setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15Figure 17. ESD test setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16Figure 18. STEVAL-IDP004V2 evaluation firmware project related to RS-485 implementation . . . . . . . . . . . . . . . . . . . . 18Figure 19. STEVAL-IDP003V1 evaluation firmware project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19Figure 20. STEVAL-IDP003V1 stack architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21Figure 21. STM32 ST-LINK Utility. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22Figure 22. STM32 ST-LINK program and verify menu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23Figure 23. STEVAL-IDP004V2 folder with STEVAL-IDP004V2.hex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23Figure 24. Sensor folder with STEVAL-IDP003V1.hex. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24Figure 25. COM port connection with Tera Term . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24Figure 26. COM port settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25Figure 27. Terminal settings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25Figure 28. TEConcept Control Tool: virtual COM port selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29Figure 29. TEConcept Control Tool: active connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30Figure 30. TEConcept Control Tool: device selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30Figure 31. TEConcept Control Tool: node connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31Figure 32. TEConcept Control Tool: data plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31Figure 33. STEVAL-IDP003V1 circuit schematic (1 of 6) - step-down switching regulator . . . . . . . . . . . . . . . . . . . . . . . . 32Figure 34. STEVAL-IDP003V1 circuit schematic (2 of 6) - vibration sensor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33Figure 35. STEVAL-IDP003V1 circuit schematic (3 of 6) - accelerometer sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34Figure 36. STEVAL-IDP003V1 circuit schematic (4 of 6) - temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35Figure 37. STEVAL-IDP003V1 circuit schematic (5 of 6) - proximity sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35Figure 38. STEVAL-IDP003V1 circuit schematic (6 of 6) - microcontroller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36Figure 39. STEVAL-IDP004V2 circuit schematic (1 of 11) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40Figure 40. STEVAL-IDP004V2 circuit schematic (2 of 11) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41Figure 41. STEVAL-IDP004V2 circuit schematic (3 of 11) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42Figure 42. STEVAL-IDP004V2 circuit schematic (4 of 11) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43Figure 43. STEVAL-IDP004V2 circuit schematic (5 of 11) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44Figure 44. STEVAL-IDP004V2 circuit schematic (6 of 11) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45Figure 45. STEVAL-IDP004V2 circuit schematic (7 of 11) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46Figure 46. STEVAL-IDP004V2 circuit schematic (8 of 11) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47Figure 47. STEVAL-IDP004V2 circuit schematic (9 of 11) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48Figure 48. STEVAL-IDP004V2 circuit schematic (10 of 11) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49Figure 49. STEVAL-IDP004V2 circuit schematic (11 of 11). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

AN5041List of figures

AN5041 - Rev 5 page 58/60

Page 59: IO-Link solution based on STEVAL-IDP004V2 master

List of tablesTable 1. Connectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6Table 2. Connector details. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12Table 3. STEVAL-IDP003V1 evaluation board bill of materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37Table 4. Sensor board bill of materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39Table 5. STEVAL-IDP004V2 bill of materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51Table 6. Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

AN5041List of tables

AN5041 - Rev 5 page 59/60

Page 60: IO-Link solution based on STEVAL-IDP004V2 master

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to STproducts and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. STproducts are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design ofPurchasers’ products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other product or servicenames are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2020 STMicroelectronics – All rights reserved

AN5041

AN5041 - Rev 5 page 60/60